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A NON-REFLEXIVE BANACH SPACE ISOMETRIC WITH ITS
SECOND CONJUGATE SPACE

By RoBerT C. JAMES

UNIVERSITY OF CALIFORNIA
Communicated by J. von Neumanu, December 5, 1950

A Banach space B is isometric with a subspace of its second conjugate
space B** under the ‘“natural mapping’” for which the element of B**
which corresponds to the element xy of B is the linear functional Fz, de-
fined by Fz,(f) = f(xo) for each f of B*. If every F of B**is of this form,
then B is said to be reflexive and B is isometric with B** under this natural
mapping. The purpose of this note is to show that B can be isometric
with B** without being reflexive. The example given to show this is a
space isomorphic with a Banach space known to not be reflexive, but to
be isomorphic with its second conjugate space.!

A sequence {x"} of elements of a Banach space B is said to be a basis
for B if for each x of B there is a unique sequence of numbers {a,} such
that x = Y ax’in the sense that lim ||x — D ax?| = 0. A fundamental

1

sequence {x"} is a basis if and onl;_{fmthere is ; positive number e such that
Hnipaixill > | zn:aix"]l for any positive integers # and p and numbers
{ (L: 1.2 Ife = 1,1the basis will be called an orthogonal basis. But for any
basis {x"}, |||x||| = suan{;aixiH for x =i;:aixi defines a new norm ||| |||

which is equivalent to || || and for which {x"} is an orthogonal basis.?
Hence if B has a basis {x"} for which lim ||f||, = 0 for each f of B¥, where
N>

IIf]l» is the norm of f on x**+! @ x"+2 @ ..., then the following theorem de-
scribes B** completely if the basis is orthogonal and describes B** to
within an isomorphism if the basis is not an orthogonal basis.
THEOREM. Let B be a Banach space with an orthogonal basis {z"} for
which lim ||f]|. = O for each f of B¥, where ||f||, is the norm of f on z"** @
n—a©

2"t @ .... Then {g"} is a basis for B* if g"(z™) = &, for each n and m.

If F e B**, then ||F|| = lim |2 Fg'||, where F; = F(g'). If the sequence
N> 1
{F.} is such that lim |2 Fig'|| < 4 o, then F ¢ B** if one defines F(f) =
N—> 0 1

iF'lftfor each f = f:figi of B*.

Proof: Tt has been previously known that {g"} is a basis for B¥.*+ It
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follows from this that F(f) = »_F,f;for each F of B** and eachf = D fig'
1 1
of B*, where F; = F(g%). But, for each f = D fig’, |2 Fifi| = ]f(zl:F,-z‘)l
1 1

< ISP, Thus |SFA] < [f|Gin [SFa1), and |F] < tim

n—>c

n n
I>>Fi5||. Fora fixed n,letu® = D Fz'. Define a linear functional % by
1 1

h(zY) = 0 for ¢ > n and h(u®) = ||u*|. Then |h(au™ + 2:_:1 agt)| =
lawr| < llaw* + 3. az?. Thus ||k = lonu* @z*" @2 @ ....
ntl

Extend % to all of B so that ||k]| = 1 on B. Then, for this &, & = Y h.g*
1
with i; = 0 for ¢ > n, so that |D_Fih| = |2 Fih| = |h(u™)| = ||lu*|| < ||F].
1 1 :
Since this can be done for each #, it follows that ||F|| > |[ZF %Y for each n

and ||F|| > lim ||D2 Ff|. It hasthus been shown that lim [[ZPlsz
n—» 1

n—>o

[|F|| for each element F = {F,} of B¥*. Now suppose that {Fn } is a se-
quence such that 11m HZFiziH M < 4 ». Then | Z Fgl| < 2M.

Thus for any ﬁxeclfe B*, | Z Fifil = [S( Z Fgh)| < [[fll(2M), so that

it follows from lim [/ f]|, = O that ZFifl is convergent. Thus F(f) =

ZFfft is defined for each f e B* and ||F|| = lim HZFiz’:H.
1 n—>c 1

Example: For x = (xy, Xs, X3, ...), let

n s
”.’X?H =1l u.b [Zz:l(xpi - po1)2 + (xﬂn+1 - xﬂil)z:l ’ (1)

where the l. u. b. is over all positive integers n and all finite increasing sequences
of at least two positive integers p1, ps, ..., Pni1. Let B be the Banach space
of all x for which ||x|| is finite and lim x, = 0. Then B is isometric with

n—>®
B**, but is isometric under the natural mapping with a closed maximal linear
subspace of B**.
Proof: For x = (x1, %3, ...), let

n /2
[l = 10 b [ 5 ey = o+ ] > @

where the 1. u. b. is over all positive integers # and finite increasing se-
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quences of positive integers pi, ps, ..., Papa. It follows from lim «x, =

0 and [|x]] > |x, — x,| that ||x|| > [x,| for each p. Clearly |||x||| = |x,| for
each p. But by grouping alternating terms of (1) and isolating x,,, one
gets [[x]| <L wb. {la| + [(6,,)° + @,y — %9,)* + (9, g — %5, _,)* +

1 LG, = )t F @y = N, )P 1 < Bl But
extra terms can be introduced in (2) to give a sum of type (1), except for
£eplacing (i) bY (g — ). Thus [[e]] < 2l Since V]l
< |lx]] < 3]||x|||, these two norms are equivalent. But the Banach space
of all x = (x1, %z, ...) for which lim x, = 0 and |||x||| is finite is known

N>

to not be reflexive, but to be isometric under the natural mapping with a
closed maximal linear subspace of its second conjugate space.! Hence
this is also true of the space B.

Letz* = (0,0, ...,0,1,0, ...) be the element of B whose components
are all zero except for the #th component, whichis 1. Thensz! @22 D ...

n nt+p
= B, so that {z"} is an orthogonal basis for B if |2 aiz* + 2, bzl >
1 n+l

n
I>"az!|| for all numbers {a;} and {b;} and positive integers # and p. Since
1

n
> a:z! has only a finite number of non-zero components, a sequence p;, s,
1

.., Pr+1 can be chosen so that

n k /2
H; aizin = [El (afli - az)i+1)2 + (all’lc+l. - apl)Z:l ’ (';)

where a, = 0if > n. If pry1 < 7, then it is immediate from (1) and (3)
3 ntp . n

that ||Dai® + 2, b2 = ||Doas. If pryn > n, then each p; with
1 n+l 1

ps > n can be replaced by some p; > # -+ p without changing the value of
(3), since @, = 0if r > n. But it will then again follow from (1) and (3)

n ntp n
that [|2ai® + 2 b = [|[2oaz’|. For B with the norm ||| [|], and
1 nt+l 1
hence also for B with the norm || ||, it is known that lim [f||, = 0,
N=>
where || f]], is the norm of fon 2"+ @ z**? @ ....! Hence by Theorem 1

above, B** is the space of all F = (Fi, Fs, ...) for which ||F|| = lim

|>_Fiz'|| is finite. Thus for F to belong to B**, it is necessary that lim F,
1

n—a

exist. Consider the correspondence:

X = (xhxﬁx ) - (x2—xlpx3-—x1) sy X T X ) =

(Fy Fy, .. .) = F,
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To show that [jx]| = [F:]|, first consider a sum [E (9, — %p,,,)% +
;=1

CA xpl)z:l. If p1 > 2, this is equal to [};1 (Fp,—1 = Fppt)® +
- :

(Fpp—t — F,,I_I)Z], If py = 1, it is equal to [Z_:z (Fpr — Fpyy-1)? +

(Fp — Fy)? + (Fxy — ,,2_1)2], if N > puy1 — 1 and Fy is replaced

nt1—1

n .
by zero. Since |2 Fiz|| is a monotonically increasing function of #, it
1

n
follows that ||x|| < ||F.||, where ||F,|| = lim |2 Fiz||. Now consider asum
n—>o 1

m

I;z::l (Fp; — Fpp)? + (B — F,,l)‘{l, formed for the element ; F3t,
where F, is to be replaced by 0if p > m. If ppp1 < m, then this sum is

equal to 21 (Xppt1 — Xpy + 1+ (%p,4 a7 % w2|- Now suppose
E—1

that pyy1 > m,butp; < m if ¢ < k. Then the sum becomes [Z (Fy; —

1=1

k—1 .
Fpi+1)2 =+ (Fpk)2 + (Fm,)2 = Z (xpi+l — Xpitl + 1)2 + (xpk + 1'41)2
=1

+ (% — xpl+1)2]. Thus [jx|| > H}:L:F,z’ll for each #. Hence |jx|| = |||

and x < F, is an isometry with domain equal to B. But if F = (F,
F,, ...) is an element of B¥* and lim F, = L, thenxy = (—L, F; — L,

n—>wo
F, — L, ...) is, by the above, an element of B for which ||xz| = ||F|| and
xp < F. Thus the range of the isometry is B**.

1 James, R. C., “Bases and Reflexivity of Banach Spaces,” Ann. Math., 52, 518-527
(1950).

2 Grinblum, M. M., “Certain théorémes sur la base dans un espace du type (B),” C. R.
(Doklady) Acad. Sci. URSS (N. S.), 31, 428-432 (1941).

3 Banach, S., Théorie des Opérations Linéaires, Warsaw, 1932, p. 111.

4 James, loc. cit., Theorem 3.



