is

n

K

ry

a

1;}

.et

nd at

ch

THE STONE-WEIERSTRASS THEOREM

7.26 Theorem If f is a continuous complex function on [a, b], there exists a sequence of polynomials P_n such that

$$\lim_{n\to\infty} P_n(x) = f(x)$$

uniformly on [a, b]. If f is real, the Pn may be taken real.

This is the form in which the theorem was originally discovered by Weierstrass.

Proof We may assume, without loss of generality, that [a, b] = [0, 1]. We may also assume that f(0) = f(1) = 0. For if the theorem is proved for this case, consider

$$g(x) = f(x) - f(0) - x[f(1) - f(0)] \qquad (0 \le x \le 1).$$

Here g(0) = g(1) = 0, and if g can be obtained as the limit of a uniformly convergent sequence of polynomials, it is clear that the same is true for f, since f - g is a polynomial.

Furthermore, we define f(x) to be zero for x outside [0, 1]. Then f is uniformly continuous on the whole line.

We put

(47)
$$Q_n(x) = c_n(1-x^2)^n \qquad (n=1, 2, 3, \ldots),$$

where c_n is chosen so that

(48)
$$\int_{-1}^{1} Q_n(x) dx = 1 \qquad (n = 1, 2, 3, ...).$$

We need some information about the order of magnitude of c_n . Since

$$\int_{-1}^{1} (1 - x^{2})^{n} dx = 2 \int_{0}^{1} (1 - x^{2})^{n} dx \ge 2 \int_{0}^{1/\sqrt{n}} (1 - x^{2})^{n} dx$$

$$\ge 2 \int_{0}^{1/\sqrt{n}} (1 - nx^{2}) dx$$

$$= \frac{4}{3\sqrt{n}}$$

$$> \frac{1}{\sqrt{n}},$$

it follows from (48) that

Rudin's "Principles of Mothemarical Analysis"

160 PRINCIPLES OF MATHEMATICAL ANALYSIS

The inequality $(1 - x^2)^n \ge 1 - nx^2$ which we used above is easily shown to be true by considering the function

$$(1-x^2)^n-1+nx^2$$

which is zero at x = 0 and whose derivative is positive in (0, 1). For any $\delta > 0$, (49) implies

$$Q_n(x) \le \sqrt{n} \left(1 - \delta^2\right)^n \qquad (\delta \le |x| \le 1),$$

so that $Q_n \to 0$ uniformly in $\delta \le |x| \le 1$. Now set

(51)
$$P_n(x) = \int_{-1}^{1} f(x+t)Q_n(t) dt \qquad (0 \le x \le 1).$$

Our assumptions about f show, by a simple change of variable, that

$$P_n(x) = \int_{-x}^{1-x} f(x+t)Q_n(t) dt = \int_{0}^{1} f(t)Q_n(t-x) dt,$$

and the last integral is clearly a polynomial in x. Thus $\{P_n\}$ is a sequence of polynomials, which are real if f is real.

Given $\varepsilon > 0$, we choose $\delta > 0$ such that $|y - x| < \delta$ implies

$$|f(y) - f(x)| < \frac{\varepsilon}{2}.$$

Let $M = \sup |f(x)|$. Using (48), (50), and the fact that $Q_n(x) \ge 0$, we see that for $0 \le x \le 1$,

$$\begin{aligned} |P_n(x) - f(x)| &= \left| \int_{-1}^1 [f(x+t) - f(x)] Q_n(t) \, dt \right| \\ &\leq \int_{-1}^1 |f(x+t) - f(x)| Q_n(t) \, dt \\ &\leq 2M \int_{-1}^{-\delta} Q_n(t) \, dt + \frac{\varepsilon}{2} \int_{-\delta}^{\delta} Q_n(t) \, dt + 2M \int_{\delta}^1 Q_n(t) \, dt \\ &\leq 4M \sqrt{n} \left(1 - \delta^2 \right)^n + \frac{\varepsilon}{2} \\ &< \varepsilon \end{aligned}$$

for all large enough n, which proves the theorem.

It is instructive to sketch the graphs of Q_n for a few values of n; also, note that we needed uniform continuity of f to deduce uniform convergence of $\{P_n\}$.

Theo

7.27

unifor

the W

7.28 to be a and for plicati real fu

sequen Defini

 $f_n \to f$

theore

7.29 functio

I {.

V

s easily

In the proof of Theorem 7.32 we shall not need the full strength of Theorem 7.26, but only the following special case, which we state as a corollary.

7.27 Corollary For every interval [-a, a] there is a sequence of real polynomials P_n such that $P_n(0) = 0$ and such that

$$\lim_{n\to\infty} P_n(x) = |x|$$

uniformly on [-a, a].

Proof By Theorem 7.26, there exists a sequence $\{P_n^*\}$ of real polynomials which converges to |x| uniformly on [-a, a]. In particular, $P_n^*(0) \to 0$ as $n \to \infty$. The polynomials

$$P_n(x) = P_n^*(x) - P_n^*(0)$$
 $(n = 1, 2, 3, ...)$

have desired properties.

We shall now isolate those properties of the polynomials which make the Weierstrass theorem possible.

7.28 Definition A family \mathscr{A} of complex functions defined on a set E is said to be an algebra if (i) $f + g \in \mathscr{A}$, (ii) $fg \in \mathscr{A}$, and (iii) $cf \in \mathscr{A}$ for all $f \in \mathscr{A}$, $g \in \mathscr{A}$ and for all complex constants c, that is, if \mathscr{A} is closed under addition, multiplication, and scalar multiplication. We shall also have to consider algebras of real functions; in this case, (iii) is of course only required to hold for all real c.

If \mathscr{A} has the property that $f \in \mathscr{A}$ whenever $f_n \in \mathscr{A}$ (n = 1, 2, 3, ...) and $f_n \to f$ uniformly on E, then \mathscr{A} is said to be uniformly closed.

Let \mathcal{B} be the set of all functions which are limits of uniformly convergent sequences of members of \mathcal{A} . Then \mathcal{B} is called the *uniform closure* of \mathcal{A} . (See Definition 7.14.)

For example, the set of all polynomials is an algebra, and the Weierstrass theorem may be stated by saying that the set of continuous functions on [a, b] is the uniform closure of the set of polynomials on [a, b].

7.29 Theorem Let \mathcal{B} be the uniform closure of an algebra \mathcal{A} of bounded functions. Then \mathcal{B} is a uniformly closed algebra.

Proof If $f \in \mathcal{B}$ and $g \in \mathcal{B}$, there exist uniformly convergent sequences $\{f_n\}, \{g_n\}$ such that $f_n \to f, g_n \to g$ and $f_n \in \mathcal{A}, g_n \in \mathcal{A}$. Since we are dealing with bounded functions, it is easy to show that

$$f_n + g_n \rightarrow f + g$$
, $f_n g_n \rightarrow f g$, $c f_n \rightarrow c f$,

where c is any constant, the convergence being uniform in each case. Hence $f + g \in \mathcal{B}$, $fg \in \mathcal{B}$, and $cf \in \mathcal{B}$, so that \mathcal{B} is an algebra. By Theorem 2.27, \mathcal{B} is (uniformly) closed.

at

quence

: 0, we

dt

; also,

Rudin's "Principles of Mathematical Analysis"

162 PRINCIPLES OF MATHEMATICAL ANALYSIS

7.30 Definition Let \mathscr{A} be a family of functions on a set E. Then \mathscr{A} is said to *separate points* on E if to every pair of distincts point $x_1, x_2 \in E$ there corresponds a function $f \in \mathscr{A}$ such that $f(x_1) \neq f(x_2)$.

If to each $x \in E$ there corresponds a function $g \in \mathcal{A}$ such that $g(x) \neq 0$,

we say that A vanishes at no point of E.

The algebra of all polynomials in one variable clearly has these properties on \mathbb{R}^1 . An example of an algebra which does not separate points is the set of all even polynomials, say on [-1, 1], since f(-x) = f(x) for every even function f.

The following theorem will illustrate these concepts further.

7.31 Theorem Suppose \mathcal{A} is an algebra of functions on a set E, \mathcal{A} separates points on E, and \mathcal{A} vanishes at no point of E. Suppose x_1, x_2 are distinct points of E, and c_1, c_2 are constants (real if \mathcal{A} is a real algebra). Then \mathcal{A} contains a function f such that

 $f(x_1) = c_1, \quad f(x_2) = c_2.$

Proof The assumptions show that \mathcal{A} contains functions g, h, and k such that

$$g(x_1) \neq g(x_2), \quad h(x_1) \neq 0, \quad k(x_2) \neq 0.$$

Put

$$u = gk - g(x_1)k, \qquad v = gh - g(x_2)h.$$

Then $u \in \mathcal{A}$, $v \in \mathcal{A}$, $u(x_1) = v(x_2) = 0$, $u(x_2) \neq 0$, and $v(x_1) \neq 0$. Therefore

$$f = \frac{c_1 v}{v(x_1)} + \frac{c_2 u}{u(x_2)}$$

has the desired properties.

We now have all the material needed for Stone's generalization of the Weierstrass theorem.

7.32 Theorem Let \mathcal{A} be an algebra of real continuous functions on a compact set K. If \mathcal{A} separates points on K and if \mathcal{A} vanishes at no point of K, then the uniform closure \mathcal{B} of \mathcal{A} consists of all real continuous functions on K.

We shall divide the proof into four steps.

STEP 1 If $f \in \mathcal{B}$, then $|f| \in \mathcal{B}$.

Proof Let

(52)

$$a = \sup |f(x)| \qquad (x \in K)$$

(53)

STEP 2

and m

STEP 3
exists

F

(54)

(55)

(55)

1 is said

and let $\varepsilon > 0$ be given. By Corollary 7.27 there exist real numbers c_1, \ldots, c_n such that

$$y(x) \neq 0$$

(53)
$$\left| \sum_{i=1}^{n} c_i y^i - |y| \right| < \varepsilon \qquad (-a \le y \le a).$$

operties te set of action f.

Since B is an algebra, the function

$$g = \sum_{i=1}^{n} c_i f^i$$

eparates

is a member of 3. By (52) and (53), we have

$$|g(x) - |f(x)|| < \varepsilon$$
 $(x \in K)$.

t points ntains a

Since \mathcal{B} is uniformly closed, this shows that $|f| \in \mathcal{B}$.

and k

STEP 2 If $f \in \mathcal{B}$ and $g \in \mathcal{B}$, then $\max(f, g) \in \mathcal{B}$ and $\min(f, g) \in \mathcal{B}$.

By max(f, g) we mean the function h defined by

$$h(x) = \begin{cases} f(x) & \text{if } f(x) \ge g(x), \\ g(x) & \text{if } f(x) < g(x), \end{cases}$$

and min (f, g) is defined likewise.

Proof Step 2 follows from step 1 and the identities

$$\max(f,g) = \frac{f+g}{2} + \frac{|f-g|}{2},$$

$$\min(f, g) = \frac{f+g}{2} - \frac{|f-g|}{2}$$
.

By iteration, the result can of course be extended to any finite set of functions: If $f_1, \ldots, f_n \in \mathcal{B}$, then max $(f_1, \ldots, f_n) \in \mathcal{B}$, and

$$\min (f_1, \ldots, f_n) \in \mathcal{B}.$$

STEP 3 Given a real function f, continuous on K, a point $x \in K$, and $\varepsilon > 0$, there exists a function $g_x \in \mathcal{B}$ such that $g_x(x) = f(x)$ and

(54)
$$g_x(t) > f(t) - \varepsilon \qquad (t \in K).$$

Proof Since $\mathscr{A} \subset \mathscr{B}$ and \mathscr{A} satisfies the hypotheses of Theorem 7.31 so does \mathscr{B} . Hence, for every $y \in K$, we can find a function $h_y \in \mathscr{B}$ such that

(55)
$$h_{y}(x) = f(x), \quad h_{y}(y) = f(y).$$

erefore

of the

hen the

Rudin's "Principles of Mathematical Analysis"

164 PRINCIPLES OF MATHEMATICAL ANALYSIS

By the continuity of h_y there exists an open set J_y , containing y, such that

(56)
$$h_{y}(t) > f(t) - \varepsilon \qquad (t \in J_{y}).$$

Since K is compact, there is a finite set of points y_1, \ldots, y_n such that

$$(57) K \subset J_{y_1} \cup \cdots \cup J_{y_n}.$$

Put

$$g_x = \max(h_{y_1}, \ldots, h_{y_n}).$$

By step 2, $g \in \mathcal{B}$, and the relations (55) to (57) show that g_x has the other required properties.

STEP 4 Given a real function f, continuous on K, and $\varepsilon > 0$, there exists a function $h \in \mathcal{B}$ such that

$$(58) |h(x) - f(x)| < \varepsilon (x \in K).$$

Since B is uniformly closed, this statement is equivalent to the conclusion of the theorem.

Proof Let us consider the functions g_x , for each $x \in K$, constructed in step 3. By the continuity of g_x , there exist open sets V_x containing x, such that

(59)
$$g_x(t) < f(t) + \varepsilon \qquad (t \in V_x).$$

Since K is compact, there exists a finite set of points x_1, \ldots, x_m such that

$$(60) K \subset V_{x_1} \cup \cdots \cup V_{x_m}.$$

Put

$$h=\min(g_{x_1},\ldots,g_{x_m}).$$

By step 2, $h \in \mathcal{B}$, and (54) implies

(61)
$$h(t) > f(t) - \varepsilon \qquad (t \in K),$$

whereas (59) and (60) imply

(62)
$$h(t) < f(t) + \varepsilon \qquad (t \in K).$$

Finally, (58) follows from (61) and (62).

for cobe self

function point of function

P

th sh

fo

ev he th

EXERC

1. Prov form

2. If {f unifo prove

3. Cons that (E).

4. Cons

For v it con contir taining y,

such that

the other

1 function

nclusion

ructed in aining x,

1, ..., Xm

Theorem 7.32 does not hold for complex algebras. A counterexample is given in Exercise 21. However, the conclusion of the theorem does hold, even for complex algebras, if an extra condition is imposed on A, namely, that A be self-adjoint. This means that for every $f \in \mathcal{A}$ its complex conjugate \bar{f} must also belong to \mathcal{A} ; \overline{f} is defined by $\overline{f}(x) = \overline{f(x)}$.

7.33 Theorem Suppose A is a self-adjoint algebra of complex continuous functions on a compact set K, A separates points on K, and A vanishes at no point of K. Then the uniform closure B of A consists of all complex continuous functions on K. In other words, \mathcal{A} is dense $\mathcal{C}(K)$.

Proof Let \mathcal{A}_R be the set of all real functions on K which belong to \mathcal{A} . If $f \in \mathcal{A}$ and f = u + iv, with u, v real, then $2u = f + \bar{f}$, and since \mathcal{A} is self-adjoint, we see that $u \in \mathcal{A}_R$. If $x_1 \neq x_2$, there exists $f \in \mathcal{A}$ such that $f(x_1) = 1$, $f(x_2) = 0$; hence $0 = u(x_2) \neq u(x_1) = 1$, which shows that \mathcal{A}_R separates points on K. If $x \in K$, then $g(x) \neq 0$ for some $g \in \mathcal{A}$, and there is a complex number λ such that $\lambda g(x) > 0$; if $f = \lambda g$, f = u + iv, it follows that u(x) > 0; hence \mathcal{A}_R vanishes at no point of K.

Thus \mathcal{A}_R satisfies the hypotheses of Theorem 7.32. It follows that every real continuous function on K lies in the uniform closure of \mathcal{A}_R , hence lies in \mathcal{B} . If f is a complex continuous function on K, f = u + iv, then $u \in \mathcal{B}$, $v \in \mathcal{B}$, hence $f \in \mathcal{B}$. This completes the proof.

EXERCISES

- 1. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 2. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, prove that $\{f_n+g_n\}$ converges uniformly on E. If, in addition, $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, prove that $\{f_ng_n\}$ converges uniformly on E.
- 3. Construct sequences $\{f_n\}$, $\{g_n\}$ which converge uniformly on some set E, but such that $\{f_ng_n\}$ does not converge uniformly on E (of course, $\{f_ng_n\}$ must converge on E).
- 4. Consider

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2 x}.$$

For what values of x does the series converge absolutely? On what intervals does it converge uniformly? On what intervals does it fail to converge uniformly? Is f continuous wherever the series converges? Is f bounded?