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THE STONE-WEIERSTRASS THEOREM

7.26 Theorem If f is a continuous complex function on [a, b), there exists a
sequence of polynomials P, such that

lim P,(x) = f(x)

A=+

uniformly on [a, b). If f is real, the P, may be taken real.

This is the form in which the theorem was originally discovered by

Weierstrass.

(47)

(48)

(49)

Proof We may assume, without loss of generality, that [a, 5] = [0, i 8

We may also assume that f(0) = f(1) = 0. For if the theorem is proved
for this case, consider

g(x) =f(x) = f0) — x[f(1) = f(0)] (O=<x<1).

Here g(0) = g(1) =0, and if g can be obtained as the limit of a uniformly
convergent sequence of polynomials, it is clear that the same is true for f,
since f — g is a polynomial.

Furthermore, we define f(x) to be zero for x outside [0, 1]. Then f
is uniformly continuous on the whole line.

We put

Qux)=c(1=-x*" (n=1,23,..),

where ¢, is chosen so that

[ od=1 @=1,23..).
-1

We need some information about the order of magnitude of ¢,. Since

1

L v'n
[ a-xyrav=2f -2y de22[ " (1 = Xy d
1 Y0 ]

1/v'n
EZJ s — nx?) dx
0
4

it follows from (48) that

ey <A/
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(50)

(1)

The inequality (1 — x?)" = 1 — nx® which we used above is easily
shown to be true by considering the function

(1= x*)" =1 +nx?

which is zero at x = 0 and whose derivative is positive in (0, 1).
For any é > 0, (49) implies

() S/n(1=8%) @<|x|<)),

so that 0, — 0 uniformly in é < |x| < 1.
Now set

Py(x) = j_tl fx+00Md  (0<x<1)
Our assumptions about f show, by a simple change of variable, that
=] s+ 00 di=[ 100~ 0 s
and the last integral is clearly a polynomial in x. Thus {P,} is a sequence

of polynomials, which are real if f is real.
Given ¢ > 0, we choose é > 0 such that |y — x| < & implies

f0) =19 <3¢

Let M =sup |[f(x)|. Using (48), (50), and the fact that Q,(x) =0, we
see that for0 <x <1,

1
1P.0O =) = || Ut + 0= F1Qu0) |
1
<[ G+ 1) = f() | Qutr) di
-8 E ] 1
< ZMJ'_l 0,(f) dt + EJ.—.; 0.(1) dt + ZML 0,(1) dt

&
<aMy/n (1 - 8% +3

<&

for all large enough n, which proves the theorem.

It is instructive to sketch the graphs of @, for a few values of n; also,

note that we needed uniform continuity of f to deduce uniform convergence
of {P,}.
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In the proof of Theorem 7.32 we shall not need the full strength of
Theorem 7.26, but only the following special case, which we state as a corollary.

7.27 Corollary For every interval [— a, a] there is a sequence of real poly-
nomials P, such that P,(0) = 0 and such that

I Px) = |x]|

0= oG
uniformly on | — a, al.

Proof By Theorem 7.26, there exists a sequence {P}} of real polynomials
which converges to |x| uniformly on [— @, a]. In particular, P}(0)—0
as n — oo. The polynomials

P(x)=PXx)—PX0) (n=1,23,..)
have desired properties.

We shall now isolate those properties of the polynomials which make
the Weierstrass theorem possible.

7.28 Definition A family o/ of complex functions defined on a set E is said
to be an algebra if (i) f + g € o, (ii) fg € o, and (iii) ¢f € o forall fe o, g € o
and for all complex constants ¢, that is, if o is closed under addition, multi-
plication, and scalar multiplication. We shall also have to consider algebras of
real functions; in this case, (1ii) is of course only required to hold for all real ¢.

If & has the property that /€ o whenever f,es (n=1,2,3,...) and
S = f uniformly on E, then &/ is said to be uniformly closed.

Let # be the set of all functions which are limits of uniformly convergent
sequences of members of /. Then & is called the uniform closure of . (See
Definition 7.14.)

For example, the set of all polynomials is an algebra, and the Weierstrass
theorem may be stated by saying that the set of continuous functions on [a, b]
is the uniform closure of the set of polynomials on [a, b].

7.29 Theorem Let B be the uniform closure of an algebra s¢ of bounded
functions. Then B is a uniformly closed algebra.

Proof If fe @ and g € @, there exist uniformly convergent sequences

{f.},{g,} such that f, = f,g,—g and f, € o, g, € &. Since we are dealing
with bounded functions, it is easy to show that

Saotga=f+a, fgu—=fo, cfi—df,

where ¢ is any constant, the convergence being uniform in each case.
Hence / 4+ g € 4, fy € 4, and ¢f € &, so that # is an algebra.
By Theorem 2.27, # is (uniformly) closed.
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7.30 Definition Let o/ be a family of functions on a set E. Then & is said
to separate points on E if to every pair of distincts point x,, x; € E there corre-
sponds a function f € & such that f(x,) # f(xa)- .
If to each x e E there corresponds a function g € &/ such that g(x) #0, (53)
we say that & vanishes at no point of E. |
The algebra of all polynomials in one variable clearly has these properties
on R!'. An example of an algebra which does not separate points is the set of |
all even polynomials, say on [—1, 1], since f(—=x) = f(x) forevery even function f. '
The following theorem will illustrate these concepts further. I

7.31 Theorem Suppose s is an algebra of functions on a set E, of separates |
points on E, and =/ vanishes at no point of E. Suppose X, x, are distinct points '
of E, and ¢y, ¢, are constants (real if of is a real algebra). Then o contains a
function f such that

fx)=¢, [flx)=ca. STEP .

Proof The assumptions show that &/ contains functions g, h, and k
such that

glx,) #g(x;),  h(x,)#0,  ki(x3)#0.

Put
and
u =gk — g(x,)k, v =gh — g(xy)h. .

Then u € &, v € o, u(x,) = v(x;) = 0, u(x,) # 0, and v(x,) # 0. Therefore

cyv Ca U
fm—— +

77 oxy)  u(xs)

has the desired properties.

We now have all the material needed for Stone’s generalization of the
Weierstrass theorem.

732 Theorem Let o/ be an algebra of real continuous functions on a compact
set K. If of separates points on K and if o vanishes at no point of K, then the

uniform closure A of = consists of all real continuous functions on K. Erng
s : exIsts |
We shall divide the proof into four steps.
(54)
sTEP 1 Iffe @, then |f| € &.
Proof Let
(52) a=sup |f(x)| (xeK) (55)
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and let ¢ >0 be given. By Corollary 7.27 there exist real numbers
Cyy « v «» Cy SUCH that

n P
Lo — bl
i=1

Since 4 is an algebra, the function

:iﬂ’-‘fE
i=1

<eg (—a<y<a).

(53)

is a member of #. By (52) and (53), we have
lg(x) - If®) || <& (xeK).

Since 4 is uniformly closed, this shows that |f] e 8.

sTEP 2 Iffe & and g € B, then max(f, g) € # and min(f, g) € .

By max (f, g) we mean the function & defined by

) i) 2 g(),
st {g(x) if £ (x) < g(x),

and min (f, g) is defined likewise.

Proof Step 2 follows from step | and the identities

max[f,g]=f;g+ |f;§|,
T f+g |f;§|_

By iteration, the result can of course be extended to any finite set
of functions: If f;, ..., f, € #, then max (f,,...,f,) € 4, and

min (fi, ..., f,) € 3.

STEP 3 Given a real function f, continuous on K, a point x € K, and ¢ > 0, there
exists a function g, € & such that g (x) = f(x) and

Ly R g >f(1)—e  (tekK).

Proof Since of = # and .o/ satisfies the hypotheses of Theorem 7.31 so
does #. Hence, for every y € K, we can find a function /, € # such that

(55) hy(x) =f(x), () =f()
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By the continuity of /i, there exists an open set J,, containing y,

such that
(56) hy(t) > f(1)—¢ (r e Jy).
Since K is compact, there is a finite set of points y;, ..., Vx such that
(57) Kl weradie,
Put

B

By step 2, g € #, and the relations (55) to (57) show that g, has the other
required properties.

g, =max (hy, , .

STEP 4 Given a real function f, continuous on K, and £ > 0, there exisis a function
h € # such that

(38) |h(x) = f(x)| <

Since 2 is uniformly closed, this statement is equivalent to the conclusion
of the theorem.

(x € K).

Proof Let us consider the functions g,, for each x € K, constructed in
step 3. By the continuity of g,, there exist open sets ¥, containing x,

such that
(59) g <fW)+e eV |
Since K is compact, there exists a finite set of points X, ..., Xu
such that
(60) - KeV, uvol,.
Put

h=min G, s G-

By step 2, h € #, and (54) implies

(61) h(r) > f(1)—¢e  (1€K),
whereas (59) and (60) imply
(62) h(t) < flt) + ¢ (r e K).

Finally, (58) follows from (61) and (62).
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Theorem 7.32 does not hold for complex algebras. A counterexample is
given in Exercise 21. However, the conclusion of the theorem does hold, even
for complex algebras, if an extra condition is imposed on ./, namely, that .=/
be self-adjoint. This means that for every /e & its complex conjugate f must

also belong to & ; f is defined by f(x) = f(x).
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7.33 Theorem Suppose o/ is a self-adjoint algebra of complex continuous

functions on a compact set K, o/ separates points on K, and =/ vanishes at no

point of K. Then the uniform closure @ of s consists of all complex continuous
| functions on K. In other words, s is dense €(K).

! Proof Let o/ be the set of all real functions on K which belong to «/.
:_ If fe o and f = u + iv, with u, v real, then 2u = f + f, and since &/
3 is self-adjoint, we see that u € &/. If x, # x,, there exists f € &/ such
. that f(x,) = 1, f(x;) = 0; hence 0 = u(x,) # u(x,) = 1, which shows that
: o p separates points on K. If x € K, then g(x) # 0 for some g € &/, and
there is a complex number / such that Ag(x) > 0; if f=1g,f=u+iv, it
follows that u(x) > 0; hence o vanishes at no point of K.

Thus =/ satisfies the hypotheses of Theorem 7.32. It follows that
every real continuous function on X lies in the uniform closure of /g,
hence lies in #. If fis a complex continuous function on K, f= u +iv,
then ue @, v € &, hence [ € #. This completes the proof.

EXERCISES

1. Prove that every uniformly convergent sequence of bounded functions is uni-
formly bounded.

2. If {f,} and {g.} converge uniformly on a set E, prove that {f, + g.} converges
uniformly on E. If, in addition, {f,} and {g,} are sequences of bounded functions,
prove that {f,g.} converges uniformly on E.

3. Construct sequences {/f.}, {g»} Which converge uniformly on some set E, but such
that { f,¢.} does not converge uniformly on E (of course, {f.g.. must converge on
E).

4. Consider

- r——— -

A= T ot

ey 1+ n?x’

For what values of x does the series converge absolutely? On what intervals does
it converge uniformly? On what intervals does it fail to converge uniformly? Is f
continuous wherever the series converges? Is / bounded?




