29. Pr

Sec. 91 Th

c. Show that $\beta(X)$ is unique in the sense that if Z is another space with the same properties, then there is a homeomorphism φ of Z with $\beta(X)$ such that $\varphi(x) = x$ for all $x \in X$.

tions on a

40. Let X and Y be the spaces in Problems 11 and 12. Show that $\beta(X) = Y$.

is continu $0 \le g(x)$ –

41. Let N be the set of natural numbers. Discuss $\beta(N)$. Show that a sequence from N converges in $\beta(N)$ if and only if it converges in N. Hence $\beta(N)$ is compact but not sequentially compact.

Proof: $h(x) + \epsilon/3$ containing

9 The Stone-Weierstrass Theorem

for all $\dot{y} \in$ cover X, $\dot{z} \in \{O_{x_1}, \ldots, c_{x_n}\}$ $g \in L$, and

Let X be a compact Hausdorff space. We denote by C(X) the set of all continuous real-valued functions on X. Since X is normal, it follows from Urysohn's Lemma that there are enough functions in C(X) to separate points; that is, given two distinct points x and y in X, we can find an f in C(X) such that $f(x) \neq f(y)$. The set C(X) is a linear space, since any constant multiple of a continuous real-valued function is continuous and the sum of two continuous functions is continuous. The space C(X) becomes a normed linear space if we define $||f|| = \max |f(x)|$, and a metric space if we set $\rho(f, g) = ||f-g||$. As a metric space C(X) is complete.

30. Pr

The space C(X) has also a ring structure: The product fg of two functions f and g in C(X) is again in C(X). A linear space A of functions in C(X) is called an **algebra** if the product of any two elements in A is again in A. Thus A is an algebra if for any two functions f and g in A and any real numbers a and b we have af + bg in A and fg in A. A family A of functions on X is said to separate points if given distinct points x and y of X there is an f in A such that $f(x) \neq f(y)$. In the present section we study the closed subalgebras of C(X) and prove that if A is a subalgebra of C(X) that separates points, con-

i. L se f(x):

ii. If f ε

to L.

Then given there is a f

tains the constant functions, and is closed, then A = C(X).

Before r

The space C(X) also has a lattice structure: If f and g are in C(X), so is the function $f \land g$ defined by $(f \land g)(x) = \min [f(x), g(x)]$ and the function $f \lor g$ defined by $(f \lor g)(x) = \max [f(x), g(x)]$. A subset L of C(X) is called a **lattice** if for every pair of functions f and g in L we also have $f \lor g$ and $f \land g$ in L. It is convenient to investigate subalgebras of C(X) by first investigating lattices of functions. The following proposition can be thought of as a generalization of the Dini Theorem:

31. Le compact s_l Then give distinct po

Proof: 1

s [Chap. 9

Royden's "Real Analysis"

Sec. 9] The Stone-Weierstrass Theorem

other space Z with $\beta(X)$

Show that

n N. Hence

X) the set normal, it notions in x and y in C(X) is a eal-valued notions is pace if we $\rho(f, g) =$

fg of two 4 of funcelements ions f and and fg in f in

in C(X),
and the
bset L of
in L we
gate subThe folthe Dini

29. Proposition: Let L be a lattice of continuous real-valued functions on a compact space X, and suppose that the function h defined by

$$h(x) = \inf_{f \in L} f(x)$$

is continuous. Then, given $\epsilon > 0$, there is a g in L such that $0 \le g(x) - h(x) < \epsilon$ for all x in X.

Proof: For each x in X there is a function f_x in L such that $f_x(x) < h(x) + \epsilon/3$. Since f_x and h are continuous, there is an open set O_x containing x such that

$$|f_x(y) - f_x(x)| < \frac{\epsilon}{3}$$
 and $|h(y) - h(x)| < \frac{\epsilon}{3}$

for all $y \in O_x$. Hence $f_x(y) - h(y) < \epsilon$ for all y in O_x . Now the sets O_x cover X, and by compactness there are a finite number of them, say $\{O_{x_1}, \ldots, O_{x_n}\}$, which cover X. Let $g = f_{x_1} \wedge f_{x_2} \wedge \cdots \wedge f_{x_n}$. Then $g \in L$, and given y in X we may choose i so that $y \in O_{x_i}$, whence

$$g(y) - h(y) \le f_{x_i}(y) - h(y) < \epsilon$$
.

- **30.** Proposition: Let X be a compact space and L a lattice of continuous real-valued functions on X with the following properties:
 - i. L separates points; that is, if $x \neq y$, there is an $f \in L$ with $f(x) \neq f(y)$.
 - ii. If $f \in L$, and c is any real number, then cf and c + f also belong to L.

Then given any continuous real-valued function h on X and any $\epsilon > 0$, there is a function $g \in L$ such that for all $x \in X$

$$0 \le g(x) - h(x) < \epsilon.$$

Before proving the proposition, we first establish two lemmas.

31. Lemma: Let L be a family of real-valued functions on a compact space X that satisfies properties (i) and (ii) of Proposition 30. Then given any two real numbers a and b and any pair x and y of distinct points of X, there is an $f \in L$ such that f(x) = a and f(y) = b.

Proof: Let g be a function in L such that $g(x) \neq g(y)$. Let

$$f = \frac{a-b}{g(x)-g(y)}g + \frac{bg(x)-ag(y)}{g(x)-g(y)}.$$

212

Then $f \in L$, by property (ii), and f(x) = a, f(y) = b.

32. Lemma: Let L be as in Proposition 30, a and b real numbers with $a \le b$, F a closed subset of X, and p a point not in F. Then there is a function f in L such that $f \ge a$, f(p) = a, and f(x) > b for all $x \in F$.

Proof: By Lemma 31 we can choose, for each $x \in F$, a function f_x such that $f_x(p) = a$ and $f_x(x) = b + 1$. Let $O_x = \{y : f_x(y) > b\}$. Then the sets $\{O_x\}$ cover F, and since F is compact, there are a finite number $\{O_{x_1}, \ldots, O_{x_n}\}$ that cover F. Let $f = f_{x_1} \vee \cdots \vee f_{x_n}$. Then $f \in L$, f(p) = a, and f > b on F. If we replace f by $f \vee a$, then we also have $f \geq a$ on X.

Proof of Proposition 30: Since L is nonempty, it follows from (ii) that the constant functions belong to L. Given $g \in C(X)$, let $L' = \{f: f \in L \text{ and } f \geq g\}$. Proposition 30 will follow from Proposition 29 if we can show that for each $p \in X$ we have $g(p) = \inf f(p)$, $f \in L$. Choose a positive real number η . Since g is continuous, the set

$$F = \{x \colon g(x) \ge g(p) + \eta\}$$

is closed. Since X is compact, g is bounded on X, say by M. By Lemma 32 we can find a function $f \in L$ such that $f \ge g(p) + \eta$, $f(p) = g(p) + \eta$, and f(x) > M on F. Since $g < g(p) + \eta$ on \tilde{F} , we have g < f on X. Thus $f \in L$, and $f(p) \le g(p) + \eta$. Since η was an arbitrary positive number, we have $g(p) = \inf f(p)$, $f \in L$.

33. Lemma: Given $\epsilon > 0$, there is a polynomial P in one variable such that for all $s \in [-1, 1]$ we have $|P(s) - |s|| < \epsilon$.

Proof: Let $\sum_{n=0}^{\infty} c_n t^n$ be the binomial series for $(1-t)^{1/2}$. This series converges uniformly for t in the interval [0, 1]. Hence, given $\epsilon > 0$, we can choose N so that for all $t \in [0, 1]$ we have

$$|(1-t)^{1/2}-Q_N(t)|<\epsilon,$$

where $Q_N = \sum_{n=0}^N c_n t^n$. Let $P(s) = Q_N(1-s^2)$. Then P is a polynomial in s, and $||s| - P(s)| < \epsilon$ for $s \in [-1, 1]$.

34. Theorem (Stone-Weierstrass): Let X be a compact space and A an algebra of continuous real-valued functions on X that separates

Sec. 9]

the poin: continuo tion g in words, A

Proof C(X). T limits of itself ar theorem follow f ε \overline{A} and the poly the conhave |f| and so absolute

and

Thus \bar{A}

35. X in R' coordin

Proo forms a given to differen

Proble

42. L 2π ; that

series

 $|\varphi(x)|$

Royden's "Real Malysis"

es [Chap. 9

eal numbers Then there all x ε F.

function $f_x > b$. Then are a finite f_{x_n} . Then hen we also

ws from (ii) Y), let L' = position 29if f(p), $f \in L'$. e set

by M. By $\geq g(p) + \eta$, \tilde{F} , we have an arbitrary

one variable

This series given $\epsilon > 0$,

polynomial

at separates

the points of X and contains the constant functions. Then given any continuous real-valued function f on X and any $\epsilon > 0$ there is a function g in A such that for all x in X we have $|g(x) - f(x)| < \epsilon$. In other words, A is a dense subset of C(X).

Proof: Let \bar{A} denote the closure of A considered as a subset of C(X). Thus \bar{A} consists of those functions on X that are uniform limits of sequences of functions from A. It is easy to verify that \bar{A} is itself an algebra of continuous real-valued functions on X. The theorem is equivalent to the statement that $\bar{A} = C(X)$. This will follow from Proposition 30 if we can show that \bar{A} is a lattice. Let $f \in \bar{A}$ and $\|f\| \le 1$. Then given $\epsilon > 0$, $\||f| - P(f)\| < \epsilon$, where P is the polynomial given in Lemma 33. Since \bar{A} is an algebra containing the constants, $P(f) \in \bar{A}$, and since \bar{A} is a closed subset of C(X), we have $|f| \in A$. If now f is any function in A, then $f/\|f\|$ has norm 1, and so $|f|/\|f\|$ and hence also |f| belong to \bar{A} . Thus \bar{A} contains the absolute value of each function which is in \bar{A} . But

$$f \vee g = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$$

and

$$f \wedge g = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|.$$

Thus \bar{A} is a lattice and must be C(X) by Proposition 30.

35. Corollary: Every continuous function on a closed bounded set X in \mathbb{R}^n can be uniformly approximated on X by a polynomial (in the coordinates).

Proof: The set of all polynomials in the coordinate functions forms an algebra containing the constants. It separates points, since given two distinct points in **R**ⁿ, one of the coordinate functions takes different values on these points. Hence Theorem 34 applies.

Problems

42. Let f be a continuous periodic real-valued function on \mathbf{R} with period 2π ; that is, $f(x+2\pi)=f(x)$. Show that, given $\epsilon>0$, there is a finite Fourier series φ , given by $\varphi(x)=a_0+\sum\limits_{n=1}^N{(a_n\cos nx+b_n\sin nx)}$, such that $|\varphi(x)-f(x)|<\epsilon$ for all x. [Hint: Note that periodic functions are really