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¢. Show that f(X) is unique in the sense that if Z is another space

with the same properties, then there is a homeomorphism ¢ of Z with f(X)
such that @(x) = xfor all x ¢ X.

40. Let X and Y be the spaces in Problems 11 and 12. Show that
fX) =Y.

41. Let N be the set of natural numbers. Discuss B(N). Show that a
sequence from N converges in #(N) if and only if it converges in N. Hence
B(N) is compact but not sequentially compact.

9 The Stone-Weierstrass Theorem

Let X be a compact Hausdorff space. We denote by C(X) the set
of all continuous real-valued functions on X. Since X is normal, it
follows from Urysohn's Lemma that there are enough functions in
C(X) to separate points; that is, given two distinct points x and y in
X. we can find an fin C(X) such that f(x) # f(»). The set C(X) is a
linear space, since any constant multiple of a continuous real-valued
function is continuous and the sum of two continuous functions is
continuous. The space C(X) becomes a normed linear space if we
define [ f| = max |f(x), and a metric space if we set p(f, g) =
| f— g|l. As a metric space C(X) is complete.

The space C(X) has also a ring structure: The product fg of two
functions f and g in C(X) is again in C(X). A linear space A4 of func-
tions in C(X) is called an algebra if the product of any two elements
in A is again in A. Thus A is an algebra if for any two functions f and
g in A and any real numbers a and b we have af + bg in A and fg in
A. A family A of functions on X is said to separate points if given
distinct points x and y of X there is an fin A such that f(x) # f(y).
In the present section we study the closed subalgebras of C(X) and
prove that if A4 is a subalgebra of C(X) that separates points, con-
tains the constant functions, and is closed, then 4 = C(X).

The space C(X) also has a lattice structure: If fand g are in C(X),
so is the function fA g defined by (f A g)(x) = min [f(x), g(x)] and the
function fv g defined by (fv g)(x) = max [f(x), g(x)]. A subset L of
C(X) is called a lattice if for every pair of functions fand g in L we
also have fvg and fAg in L. It is convenient to investigate sub-
algebras of C(X) by first investigating lattices of functions. The fol-
lowing proposition can be thought of as a generalization of the Dini
Theorem:

Sec.9] Tt

29. Pr

tions on a

is continu
0 < glx) -

Proof: |
h(x) + €/3
containing

for all y €
cover X, :
{0x|!'++s :
g € L, and

30. Pr
Linwous rea

i. L se
f(x) -

ii. If fe
to L.

T hen give
there is a |

Before

31. Le
compact sj
Then give
distinct po

Proof: 1



% [Chap. 9

other space
Z with g X)

Show that

now that a
n N. Hence

X) the set
normal, it
nctions in
vand y in
C(X) is a
zal-valued
nctions is
race if we

plf, g) =

fg of two
4 of func-
» elements
ions fand
and fg in
s if given
x) # f(y).
C(X) and
ints, con-

2 in C(X),
] and the
bset L of
1in L we
1ate sub-

The fol-
“the Dini

waaml’%mfﬁhﬂ%wr”

Sec. 9] The Stone-Weierstrass Theorem 211

29. Proposition: Let L be a lattice of continuous real-valued func-
tions on a compact space X. and suppose that the function h defined by

h(x) = inf f(x)
SeL

is continuous. Then, given € >0, there is a g in L such that
0<g(x)— hix)<eforall xinX.

Proof: For each x in X there is a function f, in L such that f(x) <
h(x) + €/3. Since f, and h are continuous, there is an open set 0,
containing x such that

A =Sl <5 and  [h(y) = hoo| < 5

forall y € O,. Hence f,(y) — h(y) < € for all y in O,. Now the sets O,
cover X, and by compactness there are a finite number of them, say
{0, ..., O,,}, which cover X. Let g=f, Afi,,A""Af,. Then
g € L, and given y in X we may choose i so that y € O,,, whence

g(y) = h(y) < fo(y) — h(y) <. |
30. Proposition: Let X be a compact space and L a lattice of con-
tinuous real-valued functions on X with the following properties:

i. L separates points; that is, if x # y, there is an fe L with

f(x) # f(y).
i. If fe L, and c is any real number, then cf and ¢ + f also belong
to L.

Then given any continuous real-valued function h on X and any € > 0,
there is a function g € L such that for all x € X

0 < g(x) — h(x) < e
Before proving the proposition, we first establish two lemmas.

31. Lemma: Let L be a family of real-valued functions on a
compact space X that satisfies properties (i) and (ii) of Proposition 30.
Then given any two real numbers a and b and any pair x and v of
distinct points of X, there is an f & L such that f(x) = a and f(y) = b.

Proof: Let g be a function in L such that g(x) # gly). Let

fa a—b . bg(x) — agl y)
glx) — g(y) gix) —g(y)
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Then f & L, by property (i), and f(x) = a, f(¥) = B

32. Lemma: Let L be as in Proposition 30. a and b real numbers
with a < b, F a closed subset of X, and p a point not in F. Then there
is a function [ in L such that { = a, f(p) = a. and f(x) > b for all x € '

Proof: By Lemma 31 we can choose, for each x € F. a function f
such that f.(p) = a and fAx)=0b+ 1. Let g0.={y: ) > b}. Then
the sets {O,) cover F, and since F is compact, there arc a finite
sumber {0, ..., O that cOVEX F. Let f=f,V " Vi Then
fe L, flp)=a and f> b on F. 1f we replace f by /' v & then we also

have f=aon X. 1

Proof of Proposition 30: Since L is nonempty, it follows from (i1)
that the constant functions belong to L. Given g & C(X), let L=
{f:feLand f = g}. Proposition 30 will follow from Proposition 29
if we can show that for each p &€ X we have g(p) = inf f(p) fe L
Choose a positive real number 1. Since g 18 continuous, the set

F = {x: () = ¢(p) + 1}

is closed. Since X is compact, ¢ is bounded on X, say by M. By
Lemma 32 we can find a function f& L such that f=g(p) +
1(p) = g(p) + n. and f(x) > M on F. Since g < g(p) + n on F, we have
g <fonX. Thus f & L, and f(p) = g(p) + n. Since n was an arbitrary
positive number, we have g(p) = inf f(p), S L.

33. Lemma: Given € > 0, there is a polynomial P in one variable
such that for all s e [—1, 1] we have | P(s) — |s]| < €.

Proof: Let ) c,t" be the binomial series for (1 — )12, This series
n=10
converges uniformly for ¢ in the interval [0, 1]. Hence, given € > 0,
we can choose N so that for all t € [0, 1] we have

(1 = 0?2 — QD) <6

N
where Qy = Y, ¢ut" Let P(s)= Q(1 — s%). Then P is a polynomial
n=0

in s, and | |s| — P(s)| < eforse Pt 1) |

34, Theorem (Stone—Weierstrass): Let X be a compact space and
A an algebra of continuous real-valued functions on X that separates
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the points of X and contains the constant functions. Then given any
continuous real-valued function { on X and any € > 0 there is a func-
tion g in A such that for all x in X we have |g(x) — j(x)| < €. In other
words, A is a dense subset of C(X).

Proof: Let A denote the closure of A considered as a subset of
C(X). Thus A consists of those functions on X that are uniform
limits of sequences of functions from A. It is easy to verify that A is
itself an algebra of continuous real-valued functions on X. The
theorem is equivalent to the statement that A = C(X). This will
follow from Proposition 30 if we can show that { is a lattice. Let
feAand || f| <1. Then given € >0, |||f| — P(f) <e, where P is
the polynomial given in Lemma 33. Since A is an algebra containing
the constants, P(f) € A, and since A is a closed subset of C(X), we
have |f| € A. If now f is any function in A, then f/ f| has norm 1,
and so | f|/| f| and hence also |f| belong to A. Thus A contains the
absolute value of each function which is in 4. But

fvg=3f+9 + 3lf—ygl

and

fag=4f+g) — 3f—ygl
Thus A is a lattice and must be C(X) by Proposition 30. |

35. Corollary: Every continuous function on a closed bounded set
X in R" can be uniformly approximated on X by a polynomial (in the
coordinates).

Proof: The set of all polynomials in the coordinate functions
forms an algebra containing the constants. It separates points, since
given two distinct points in R", one of the coordinate functions takes
different values on these points. Hence Theorem 34 applies. [

Problems

42, Let f be a continuous periodic real-valued function on R with period

27; that is. f(x + 2m) = f(x). Show that, given € > 0, there is a finite Fourier
N

series ¢, given by @(x)=a, + 3 (a, cos nx + b, sin nx), such that
n=1

lo(x) — f(x)| < € for all x. [Hint: Note that periodic functions are really



