In general, there are some questions in the lecture notes that you should work on. Some
come after proofs and some are in italics within proofs.

1.

If y and z are two differentiable functions on (¢, ) and y(z) < z(z) for all x € («, )
does this imply that y/(x) < 2/(z) on (a, §)? Prove or disprove.

f Y (x) < 2/(x) for all z € (o, ), does this imply that y(x) < z(x) on («, 5)? Prove

or disprove.

Ify'(z)

< #()
If y'(z) < 2/(x) for all z € R, does this imply that there can be at most one x at which
y(x) = 2(x)? Prove or disprove.

If y/(z) < 2'(x
y(e) = 2(2)?
If y'(z) < 2"(z) for all € R, does this imply that there can be at most two x at

which y(z) = z(z)? Prove or disprove. If you disprove it, can you think of one more
condition on the second derivatives so that it is true?

'(z) for all z € R, does this imply that y(z) < z(z) on R? Prove or disprove.

) for all z € R, does this imply that there can be at most one x at which
Prove or disprove.

In the proof of Osgood’s Uniqueness Theorem, why did we define zo = inf{zx <
x1]|z(x) > v(x)} rather than simply saying “Let x5 be some number between xy and
x1 such that z(z9) = v(xy)?

If there’s an open set containing (xg,yo) where f(x,y) is continuous in x and y and

Lipschitz in y, then
{?/ = f(z,y)

y(wo) = Yo

has a unique solution in some open interval containing x. The solution has vy’ contin-
uous on the open interval. What conditions would you need on f to know that 3"
also continuous? For y” to be continuous?

So far, we’ve been thinking of solutions as single objects — as a graph or as a trajectory.
Given an ODE we fix the initial data and think about the solution. This approach
is useful in many ways but when geometers and dynamical systems folks are thinking
about things, they often think in a more general manner. Please read the first page
of Professor Yael Karshon’s crash course on flows http://www.math.toronto.edu/
karshon/courses/symp/flows.pdf. If you don’t already know what a manifold is,
you should by the end of MAT257. For the following, all you really need to know is
what a diffeomorphism is.

(a) Consider the interval [0, 1] (this is our manifold M) and the vector field f(y) =
y(1 —y). The flow is ¢(yo) = y(t;y0). That is y(t;yo) satisfies y'(t;y0) =
fy(t;y0)) and y(0,90) = yo. (If the “;yp)” notation is bugging you, y(t;yo)
is the solution of ¢ = f(y) such that y(0) = yy.) You can exactly solve this ODE
and so you can write down ¢;. Prove that it’s a flow.


http://www.math.toronto.edu/karshon/courses/symp/flows.pdf
http://www.math.toronto.edu/karshon/courses/symp/flows.pdf

(b) More generally, we could take M = R or we could take M = [a,b] C R and then
consider solutions of ' = f(y) with initial data in M. We have our existence
theorem and our existence and uniqueness theorem. What would we need to
know about f so that we have a flow? If we’re missing a theorem, what theorem
are we missing?

(¢) The definition of flow in Professor Karshon’s notes requires that trajectories (aka
solutions) exist for all time: ¢ € R. We could relax this and think about flows as
maps from («, §) x M — M where («a, ) is an interval of existence that contains
0 and we require ¢sy(m) = ¢s(¢¢(m)) only when s, ¢, and s + t are all in (a,b).
With this relaxation, consider M = [1,00) and the vector field f(y) = y(1 — y).
Again, you can solve this ODE and can write down ¢(y). Is ¢; a flow? If not,
why not? If not, how would your answer change if M = [1,100]?

The following four pages of exercises are from Michael E. Taylor’s Introduction to Differ-
ential FEquations.
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e s
Exercises
1. Apply the Picard iteration method to
dx
_ = =1
7 = 9, x(0) ,

given a € C. Taking z((¢) = 1, show that

n ak P
k=0 "

2. Discuss the matrix analogue of Exercise 1.

/

3. Consider the initial value problem

dx )
priaka z(0) = 1.

Take 29 = 1 and use the Picard iteration method (1.5) to write out

zn(t), m=1,2,3.

Compare the results with the formula (1.23).

4. Given Ag, Ay € M(n,C), consider the initial value problem

dx
d—t = (AO + Alt)m, 33(0) = Zg.

Take zo(t) = xo and use the Picard iteration (1.5) to write out
zn(t), n=1,23.

Compare and contrast the results with calculations from §10 of Chap-
ter 3.

5. Modify the system (1.25) to
dy_ A
a7 dt
Show that solutions satisfy
402y
dt
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and use this to establish global existence for ¢ > 0.

6. Consider the initial value problem
— =z, z(0) = 0.

Note that x(t) = 0 is a solution, and

1,2

L2 ¢ >0,
z(t) =4 4 -

0, t<0

is another solution, on ¢ € (—o00,00). Why does this not contradict the
uniqueness part of Proposition 1.1? Can you produce other solutions to
this initial value problem? -

7. Take 8 € (0,00) and consider the initial value problem

Z—f:mﬂ, z(0) = 1.

Show that this has a solution for all ¢ > 0 if and only if 8 < 1.

8. Let F': R™ — R"™ be C" and suppose z(t) solves

dsc_

(1.43) T F(z), z(ty) = w0,

1

for ¢ € I, an open interval containing ¢y. Show that, for t € I,
(1.44) — e = 22(t) - F(a(t)).
Show that, if o > 0 and =(t) # 0,
(1.45) -j—tllx(t)ll“ = of[z()]|* 2 (t) - Fa(?)).
9. In the setting of Exercise 8, suppose F satisfies an estimate

(1.46) |F ()| < CA+|z]))’, VeeR", C<oo, B<1.

Show that there exist & > 0 and K < oo such that, if ||z(£)] > 1 for
tel,

d
— Q@ < .
t“az(t)” K, Vtel

Use this to establish that the solution to (1.43) exists for all ¢ € R.
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Exercises 10-12 below will extend the conclusion of Exercise 9 to the
case § = 1 in (1.46). One approach is via the following result, known as
Gronwall’s inequality.

Proposition 1.5. Assume
(1.47) geC'®), 420

Let w and v be real-valued, continuous functions on I satisfying

ut) < A+ [ gluts)) ds,
(1.48) "

w(t) > A+/t g(v(s)) ds.
Then
(1.49) u(t) <o(t), for tel, t>t

Proof. Set w(t) = u(t) — v(t). Then

t
wit) < / [(u(s)) — g(o(s))] ds

(1.50) i )
= [ M(s)w(s)ds,
to
where
1
(1.51) M(s) = / g (ruls) + (1 — 7Yo(s)) dr.
0
Hence we have
¢
(1.52) w(t) < [ M(s)w(s)ds, M(s)>0, M ecC(I),
to
and we claim that this implies
(1.53) ‘ w(t) <0, Vtel, t>t.

In other words, we claim that w(t) < 0 on [ty, b] whenever [to,b] C I. To see
this, let ¢; be the largest number in [to, b] with the property that w < 0 on
[to, tl]. We claim that t; = b.
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Assume to the contrary that ¢; < b, Noting that fttol M(s)w(s) ds < 0,
we deduce from (1.52) that '

t
(1.54) w(t) < / M(syw(s)ds, Yte(t,b)
: 2!
Hence, with
(1.56) K = max M(s) < oo,
[tlzb]

we have, for a € (¢1,b),

(1.57) max w(t) < (a — 1)K max w(s).
[tl,a] ‘ tl,a]

If we pick a € (t1,b) such that (@ —t1)K < 1, this implies
(1.58) w(t) <0, Vielt,al,

contradicting the maximality of ¢;. Hence actually ¢; = b, and we have the
implication (1.52) = (1.53), completing the proof of Proposition 1.5.

10. Assume v > 0 is a C* function on J — (a,b), satisfying

(1.59) ‘ y % < Cv,  w(ty) = w,

where C' € (0, 00) and ¢ € I. Using Proposition 1.5, show that
(1.60) v(t) < e“Ulyg, i [1,0).

11. In the setting of Exercise 10, avoid use of Proposition 1.5 as follows.
Write (1.59) as

dv

(161) Et‘ =Cv— g(t), v(tO) =1, g=> Oa
with solution
t
(1.62) v(t) = eClt=to)y, —/ ec(t_s)g(s) ds.
1o .

Deduce (1.60) from this.

12. Return to the setting of Exercise 8, and replace the hypothesis (1.46) by
(1.63) IF@I < 0+ f2l), veern

Show that the solution to (1.43) exists for all ¢ € R.
Hint. Take v(t) = 1+ ||z(t)|| and use (1.44). Show that Exercise 10 (or
- 11) applies.



