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fwf’(x) sin(2krx)dx = O(1/k)
1

which completes the proof.

Thus for 1 <a<2 the series Y ., f(x) converges if b—a+1>0 (a+b>1 is
satisfied). Note that convergence in case a =1 does not depend on any condi-
tions, since a+5>1 and b —a-+1>0 are always satisfied.

The example shows that the scope of applications of Corollary 2 is consider-
ably wider than that of Corollary 1.
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A “Research Problem” by H. C. Kennedy (see [2]) stimulated the author to
publish the following proof, which he discovered more than 10 years ago and
since has used in lectures. We shall first present the proof, which is constructive
and deserves, in our opinion, the adjective “elementary” without restriction,
because the construction of a monotone decreasing sequence of approximate
solutions avoids equicontinuous families and an appeal to the Ascoli lemma. I
am hesitant in making the same statement on Peano’s or Perron’s proof. Critical
and historical remarks will be given at the end of the paper.

PeEANO’S EXISTENCE THEOREM. Let J be the interval 0St=<T(T>0) and let
f@, x): JXR—R be a continuous and bounded function. Then there exists, for a
given uoE R, at least one continuously differentiable function u(t): J-R satisfying

(1) w = f(t, ) m J and u(0) = u,.

The proof utilizes a variant of the Euler-Cauchy polygon method. Let
h=T/n>0 be given and ¢;=th(1=0, 1, - - -, n). In the polygon method one
constructs a sequence (2;)j according to

Vo = Uo, Vit1 = U5 -l" ]Zf(h, ‘U,') ('L = 0, 1, cec, N — 1)

We use instead the formula
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(2) vo=1t0o, Vi1 =i+ hmax{f(t,x):t; St =< tipr,vi— 3Mh S x < v;+ Mhf,

where |f(t, x)| <M in JXR; as in the classical Euler-Cauchy polygon method
the approximate solution (¢) is constructed by joining the points (¢; ,v:) (4=
0,1, - - -, ») by a polygonal line. This construction, carried out for the param-
eters k, k/2, k/4, - - -, leads to a monotone decreasing sequence of approximate
solutions.

In proving the last statement we use the following notation: s=T/%#>0 is
fixed, t;=1k (1=0,%, 1,3, - - -, n), (v:) =(o, 91, - - -, v,) is constructed accord-
ing to (2) with respect to the parameter &, (w;) = (wo, Wiz, W1, Wasz, * + + , Wy) iS
constructed similarly, but with respect to the parameter %/2, v(¢) and w(f) are
continuous, piecewise linear functions satisfying v(¢;) =v; for 7=0, 1,2, - - - , »
and w(t;) =w; for 1=0, %, 1, - - -, n. Let R(¢, x; k) be the rectangle [t, t+%]
X [x—3Mh, x+Mh] and let R;=R(t;, vi; ) =0, 1, - - -, n), Si=R(t:;, wi; h/2)
(2=0,%,1, - - -, n). In this notation the sequences (v;) and (w;) are defined as
follows:

Vo = Wo = %o, Vig1 = U + £k maxf(R.—), Wil = Wy + (h/Z) maxf(S;).

Here the standard notation max f(4) =max {f(t, x): (¢, x) EA } was used.

We shall prove, by induction on %, that w(f) <v(f) in J. Let us assume that ¢
is a nonnegative integer and that w(f) Sv(¢) for 0 <t <t¢;. Then there are two cases
to be considered,

(a) w.-év;—Mh; (b) v — Mh < w; £ v;.

In case (a) we have w(?) <v(¢) for t;<t=<t;+h/2, since |v’|, Iw’l <M. In case
(b) we have S;CR; and hence w’' <9’ for ¢;<t<t;-+h/2; again the inequality
w=v in [t;, t;y12] follows. In essentially the same way one shows that w<v in
[ti31/2) tig1]. Since v(tiy1/2) Svi+ Mh/2 there are two cases

() wiy172e < vi — 3Mh;  (b) vi — $MH < wiy12 < v; + $Mb.

In case (a) it follows as above that w(t) <v(f) for tiy1p <t <t;;1, whilein case (b)
we have Si41sCR; and therefore w'(t) <v’(¢) for tiy12 <t <tiy1. In the figure case
(a) is indicated by the punctuated lines, while the two rectangles S;, Siy1/2 corre-
spond to case (b). So far we have proved that the inequality w() <v(f) holds in
[0, t:41]; it follows then by induction that this inequality is truein J.

The rest of the proof is a matter of routine. Let bxy=T-2"%, k=1,2, - - -,
and let vx(¢) be the piecewise linear, continuous function constructed according
to (2) with respect to & =h;. We have proved that vx41(f) vx(f) in J. Further-
more, v;, satisfies a Lipschitz condition with a Lipschitz constant M independent
of k, and v,(¢) is bounded below by %,— M¢. Therefore «(f) =limy., v:(f) exists,
the convergence being uniform in J. The function % is continuous (even Lipschitz
continuous) in J; it is the desired solution of the initial value problem, as it will
be shown now.

With the exception of a finite number of points, v;(¢) exists and, according
to (2),
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If d(s) denotes a modulus of continuity for f,
[f¢, 2) —fW, )| Sd(|t—t| + |a—«|) inJ X [wo— MT, uo+ MT],
then v/ (£) =f(¢, v (£)) +cw(?), where Iozk(t)l <d(h.~+3Mh:) and hence

t
3) w(t) = uo +f £(s, w(s))ds + Bi(s), | Be(s) | = d(u + 3Mm)T.
0
It follows immediately from (3) for 2— « that
¢
w) =t [ fisuas
]

i.e., that « is a solution of the initial value problem (1).

REMARKS. (a) Itis an easy exercise to prove the following statement: If %(¢)
is another solution of (1), then #=<v; in J. Hence the solution % constructed
above is indeed the maximal solution.

(b) It is not the aim of this paper to investigate the existence proofs by
Peano (1886 and 1890) and Perron (1915). Nevertheless, the author is not in
agreement with several critical remarks in [2] concerning these proofs. Perron’s
proof is correct. Furthermore the remark in [2] that Peano’s second proof
(1890) is based on successive approximation is incorrect.

(c) The theoretical basis for the proof given in this paper as well as for
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Peano’s first proof (1886) and Perron’s proof is a theorem on differential in-
equalities which in the simplest case reads as follows (see, e.g., [3; p. 57]):

(A) Let v(t), w(t) be differentiable in J and v(0) <w(0), v'(t) —f(, v) <w'(t)
—f(t, w) in J. Then v<w in J.

Due to this theorem the operator Ly = (¢’ —f (¢, ¢), ¢(0) —u,) is “monotone.”
Using an obvious interpretation of inequalities, Theorem (A) may simply be
stated as “Ly<Lw implies v<w.” Therefore the inequalities Ly <0, Lw>0
characterize a subfunction v and a superfunction w such that v <u# <w for each
solution % of (1).

The existence proofs mentioned above in connection with (A) cannot be
transformed to systems of ordinary differential equations; the vector analog of
(A) is not true in general. It is only true if the function

f(t’ x) = (fl(t: X1 * 0, xn)a vt ,fn(t; X1y * 0y xn))

is “quasimonotone increasing in x”, i.e., if fi(, 1, - + -, %) is increasing in x;
for i#j; see, e.g., [3; p. 83]. We remark that the existence proof given here and
Perron’s proof carry over to systems whose right hand side f(¢, x) is quasimono-
tone increasing in x.

(d) In 1959, when the author carried out his “Habilitation” at the University
of Karlsruhe, Germany, the “Probevorlesung” was still part of this academic
procedure. In his Probevoriesung, entitled Der Existenzsatz von Peano, the
author first gave the existence proof described in this paper. Independently
and about the same time H. Grunsky found another constructive existence
proof [1] which, though being different in the technical details, has basic
ideas in common with our proof.

(e) Naturally, the minimum solution of (1) may be constructed in essentially
the same way. In (2) one has to replace the maximum by the minimum, and the
rectangle is now given by [t;, tiy1] X [vi— Mh, v;i+3M#E]. If (5:(f)) is the sequence
constructed in this way for s =2"*T, then (%z) turns out to be a monotone in-
creasing sequence, and lim 7(¢) is the minimum solution of (1). Therefore, if %
is any solution of (1), then

HhEhpn=uSp=u inJ
for all k. In other words, our method is a numerical procedure which yields
monotone sequences of upper and lower bounds.
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