1.2 Equations with separable variables.

Suppose we would like to solve an equation of the form

$$
\frac{d y}{d x}=f(x) g(y),
$$

where f, g are continuous functions. If $g\left(y_{0}\right)=0$ then $y(x) \equiv y_{0}$ is a solution (check!). So us let look for solutions where $g(y) \neq 0$. Formally, we can find solutions as follows:

$$
\begin{aligned}
\frac{d y}{g(y)} & =f(x) d x \\
\int \frac{d y}{g(y)} & =\int f(x) d x \\
G(y) & =F(x)+C,
\end{aligned}
$$

where G and F are antiderivatives, i.e.

$$
G^{\prime}(y)=\frac{1}{g(y)}, F^{\prime}(x)=f(x) .
$$

Finally, solve for y by taking inverse $y=G^{-1}(F(x)+C)$ on (a, b) if G^{-1} exists. How do we justify this calculation, especially, treating $d x$ and $d y$ are separate entities?

First of all, the first two steps of the above computation can be written as follows:

$$
\frac{y^{\prime}(x)}{g(y(x))}=f(x) \Longrightarrow \int \frac{y^{\prime}(x) d x}{g(y(x))}=\int f(x) d x
$$

and making a change of variables we get $G(y(x))=F(x)+C$ as before, so separating $d x$ and $d y$ corresponds to skipping this change of variables step, even though it might seem strange at first. Taking derivatives,

$$
\frac{d}{d x} G(y(x))=\frac{y^{\prime}(x)}{g(y(x))}=f(x),
$$

we see that the solution of the implicit equation we found, $G(y)=F(x)+C$, is a solution of the original differential equation.

The reason we can take inverse $y(x)=G^{-1}(F(x)+C)$ is because we are solving around some point $\left(x_{0}, y_{0}\right)$ where $g\left(y_{0}\right) \neq 0$, so $g(y) \neq 0$ in a small neighbourhood. Therefore, $G^{\prime}(y)=1 / g(y)$ will be either strictly positive or negative and $G(y)$ will be strictly increasing or decreasing. Of course, the solution passing through (x_{0}, y_{0}) corresponds to the choice of $C=G\left(y_{0}\right)-F\left(x_{0}\right)$.

Remark. Notice that the above calculation shows by construction that, if f and g are continuous, the equation with separable variables has unique solution in a neighbourhood of any point $\left(x_{0}, y_{0}\right)$ such that $g\left(y_{0}\right) \neq 0$. Later, when we discuss existence and uniqueness of solutions we should remember that sometimes existence and/or uniqueness follows by construction.

Remark. What's meant by "formally"? This means we're doing a sequence of manipulations of unclear validity; at the end of them we find a function $y(x)$. We can then check whether or not the function we found is a solution of the ODE $y^{\prime}=f(x) g(y)$ and, if it is, what its interval of definition is. That said, the
equation $-f(x) d x+d y / g(y)=0$ can be rigorously understood in terms of 1 -forms on the manifold \mathbb{R}^{2}. A 1 -form is a linear functional from the tangent space at a point on a Manifold to \mathbb{R}. Given a vector in the tangent space, the 1 -form returns a number. The tangent space at a point in a manifold can be understood in various ways; the most useful way in this context is in terms of "germs". A "germ" is an equivalence class of parameterized curves through the point in the manifold. Specifically, if we're looking at the point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ then a tangent vector $\vec{v} \in T_{\left(x_{0}, y_{0}\right)} M$ is represented (by the equivalence class ${ }^{1}$ of) all smooth curves $\gamma(t)$ in a neighbourhood of $\left(x_{0}, y_{0}\right)$ such that $\gamma(0)=\left(x_{0}, y_{0}\right)$ and $\gamma^{\prime}(0)=\vec{v}$. For $M=\mathbb{R}^{2}$, we have $\gamma(t)=<\gamma_{1}(t), \gamma_{2}(t)>$ and the 1-form $-f(x) d x+d y / g(y)$ acts on one of these curves (and hence on the tangent vector they represent) by producing the number $-f\left(\gamma_{1}(0)\right) \gamma_{1}^{\prime}(0)+\gamma_{2}^{\prime}(0) / g\left(\gamma_{2}(0)\right)$. The equation $-f(x) d x+d y / g(y)=0$ corresponds to seeking those curves such that $-f\left(\gamma_{1}(0)\right) \gamma_{1}^{\prime}(0)+\gamma_{2}^{\prime}(0) / g\left(\gamma_{2}(0)\right)=0$. To interpret $-f(x) d x+d y / g(y)=0$ in terms of ODEs, one seeks a curve $\gamma(t)$ such that for an interval of times (a, b) one has $-f\left(\gamma_{1}(t)\right) \gamma_{1}^{\prime}(t)+\gamma_{2}^{\prime}(t) / g\left(\gamma_{2}(t)\right)=0$ for all $t \in(a, b)$. If the curve $\gamma(t)=(t, y(t))$ then this corresponds to seeking a solution $y(x)$ on (a, b). If the curve $\gamma(t)=(x(t), t)$ then this corresponds to seeking a solution $x(y)$ on (a, b). For some online notes ${ }^{2}$ that show germs, see pages 11-19 of Marco Billò's "notes on Differential Geometry". And, of course, you'll learn how to make the casual comments in this remark rigorous by taking a course on differential geometry.

Example. Consider equation $2 x d x-9 y^{2} d y=0$. As we mentioned above, one can think of this equation as one of the two equations:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2 x}{9 y^{2}} \text { when } y \neq 0 \\
& \frac{d x}{d y}=\frac{9 y^{2}}{2 x} \text { when } x \neq 0
\end{aligned}
$$

When $y=0$ solve the second equation, and when $x=0$ solve the first. In either case, $\int 2 x d x=\int 9 y^{2} d y$, and $x^{2}=3 y^{3}+C$ is an implicit general solution. Below are the plots for $C=-5,0,5$.

[^0]Example. Consider the equation

$$
\frac{d y}{d x}=\frac{2 x y}{1+y}, y \neq-1 .
$$

This is an equation with separable variables and we can write

$$
\left(\frac{1}{y}+1\right) d y=2 x d x \text { if } y \neq 0
$$

As above, $y(x) \equiv 0$ is a solution of the original equation, so we should not discard it. For $y \neq 0$, integrating both sides yields the implicit solution $\ln |y|+y=x^{2}+C$. Solving for y in this case is impossible, and you can see the plot for a typical C below:

When $y=-1$, this is exactly where the curve has vertical slope $\left(y^{\prime}=\infty\right)$, so we can think that at this point we are solving $\frac{d x}{d y}=\frac{1+y}{2 x y}$ when $x \neq 0$. Also, remember that the line $y \equiv 0$ is also a solution.

Example. Let us find a solution of $x y^{2} d x+(1-x) d y=0$ satisfying $y(2)=1$, i.e. passing through a point $(2,1)$. Let us separate the variables,

$$
\left(\frac{x}{1-x}\right) d x+\frac{1}{y^{2}} d y=0
$$

assuming $x \neq 1, y \neq 0$. As before, notice that $y(x) \equiv 0$ is a solution if we rewrite this as equation for $y^{\prime}(x)$ and $x(y) \equiv 1$ is a solution if we rewrite it as equation for $x^{\prime}(y)$. For $x \neq 1, y \neq 0$ we integrate and we get

$$
\int\left(\frac{1}{1-x}-1\right) d x+\int \frac{1}{y^{2}} d y=C \Longrightarrow \ln |1-x|+x+\frac{1}{y}=-C .
$$

For $x=2, y=1$ we get $C=3$ and thus $\ln |1-x|+x+\frac{1}{y}=3$. Plot:

Important example. Let us consider equation

$$
\frac{d y}{d x}=\sqrt{|y|} .
$$

Again, $y(x) \equiv 0$ is a solution. Otherwise, we integrate:

$$
\frac{d y}{\sqrt{y}}=d x \Longrightarrow 2 \sqrt{y}=x-c \Longrightarrow y=\frac{1}{4}(x-c)^{2}, \quad x \in(c, \infty)
$$

is a solution for any fixed $c \in \mathbb{R}$. Similarly, $y=-(x-c)^{2} / 4$ with $x \in(-\infty, c)$ is a solution for any fixed $c \in \mathbb{R}$. These can be patched together to create infinitely many solutions

$$
y_{a b}(x)= \begin{cases}-\frac{(x-a)^{2}}{4} & x<a \\ 0 & a \leq x \leq b, \quad x \in \mathbb{R} \\ \frac{(x-b)^{2}}{4} & x>b\end{cases}
$$

for any $a<b$. In this way, we see that the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}=\sqrt{|y|} \\
y(0)=0
\end{array}\right.
$$

has infinitely many solutions (including the $y(x)=0$ solution).
Remark. As we will see in the proof of Osgood's Uniqueness Theorem, the fundamental problem is as follows. If one considers initial data $y\left(x_{0}\right)=y_{0}<0$ then the solution "reaches zero in finite time": there's an $x_{1}<\infty$ so that $y(x) \rightarrow 0$ and $y^{\prime}(x) \rightarrow 0$ as $x \uparrow x_{1}$. This allows the solution to be continued with the zero solution. Similarly, if one considers $y\left(x_{0}\right)=y_{0}>0$ then the solution "comes from zero in the finite past": there's an $x_{1}>-\infty$ so that $y(x) \rightarrow 0$ and $y^{\prime}(x) \rightarrow 0$ as $x \downarrow x_{1}$ This allows the solution to have emerged from the zero solution.

Remark. In a similar manner, one can construct infinitely many solutions for

$$
\left\{\begin{array}{l}
y^{\prime}=|y|^{\alpha} \\
y(0)=0
\end{array}\right.
$$

for $\alpha \in(0,1)$.

[^0]: ${ }^{1}$ Two curves γ and $\tilde{\gamma}$ are equivalent if they satisfy $\gamma(0)=\tilde{\gamma}(0)$ and $\gamma^{\prime}(0)=\tilde{\gamma}^{\prime}(0)$.
 ${ }^{2}$ If you're reading these notes in a non-clickable way, check out http://personalpages.to.infn.it/~billo/ and http: //www.math.toronto.edu/mpugh/Teaching/MAT267_19/differential_geometry_notes.pdf.

