
MAT267: 5th HW assignment. Due by 11:59pm on April 2.

1. Please do, but don’t hand in question #1 on page 184 of Hirsch, Smale, & Devaney.
For the phase portraits, feel free to use http://www.bluffton.edu/homepages/facstaff/
nesterd/java/slopefields.html although you should first plot the equilibrium points
and the behaviour of the linearized systems at the equilibrium points (as long as the
eigenvalues have nonzero real parts).

2. (10 pt) Please do (and hand in) question #3 on page 184 of Hirsch, Smale, & Devaney.

3. (15 pt) On pages 162-163 of Hirsch, Smale, & Devaney, there’s an example of a nonlin-
ear system X ′ = F (X) that has an unstable fixed point and a stable periodic solution:{

x′ = F1(x, y) = x
2
− y − x

2
(x2 + y2)

y′ = F2(x, y) = x+ y
2
− y

2
(x2 + y2)

The periodic solution is (x(t), y(t)) = (cos(t), sin(t)).

(a) As described in the book, the system can be written in polar coordinates:{
r′ = f(r) = r

2
(1− r2)

θ′ = 1

Solve the initial value problem with r(0) = r0 and θ0 = 0. If 0 < r0 < 1, what
does the solution do as t → ∞? As t → −∞? If 1 < r0, what does the solution
do as t→ −∞? As t decreases from 0?

(b) Linearize r′ = f(r) about its fixed points. Solve the linearized system{
u′1 = f ′(rss)u1

θ′ = 1

for each fixed point where u1 is the deviation from rss.

(c) Find the variational equation along the periodic solution. That is, linearize about
the periodic solution and find the linear system

U ′ = DF (X(t))U = A(t)U.

Find the solution of the variational equation.

4. (15 pt) In section 8.2 of Hirsch, Smale, & Devaney, the authors consider the a nonlinear
system X ′ = F (X) {

x′ = F1(X) = f(x, y)

y′ = F2(X) = g(x, y)

They assume that F (~0) = ~0 (and hence ~0 is a steady state solution) and that DF (~0)
has two negative real eigenvalues −λ < −µ < 0. They introduce a function L(x, y) =
1
2
x2 + 1

2
y2 and they show that if a point X is “close enough” to the fixed point then

h(x, y) := ∇L(X) · F (X) < 0.

1

http://www.bluffton.edu/homepages/facstaff/nesterd/java/slopefields.html
http://www.bluffton.edu/homepages/facstaff/nesterd/java/slopefields.html


That is, L(X) is a Lyapunov function for the system X ′ = F (X) for points that are
“close enough” to the fixed point. (Note: they didn’t use this language but this is
what they were doing.)

(a) In their argument showing that L(X) · F (X) < 0, the authors had to address
a term of the form (µ − λ)x2. This term is there because the authors used a
Liapunov function that works great for the linear system

X ′ =

(
−µ 0
0 −µ

)
X but not so great for X ′ =

(
−λ 0
0 −µ

)
X

Find a Lyapunov function L̃(X) that avoids such a term, showing that the calcu-

lation proving L̃(X) ·F (X) < 0 for X “close enough to ~0” goes through somewhat
more cleanly.

(b) Actually, if you think carefully about what they authors proved with their Lia-
punov function, it follows that if X is close enough to ~0 then

h(x, y) := ∇L(X) · F (X) ≤ −1

2
µL(X). (1)

Prove that this means that if X0 is close enough to ~0 then the initial value problem
X ′ = F (X) with X(0) = X0 will have solutions for all t > 0 and the solution
converges to ~0 as t→∞. (Hint: Compute d/dt L(X(t)) and use this to find some
function `(t) such that 0 ≤ L(X(t)) ≤ `(t) and `(t)→ 0 as t→∞.)

Is the 1/2 in (1) necessary or could it have been −αµL(X) for some other value
of α? If yes, what range of α would work?

(c) Show that for the Liapunov function you found in part (a), you can find a positive
number ω so that

∇L̃(X) · F (X) ≤ −ω L̃(X).

How does ω depend on λ and µ? Prove that this means that if X0 is close enough
to ~0 then the initial value problem X ′ = F (X) with X(0) = X0 will have a
solution for all t > 0 and the solution converges to ~0 as t→∞.

(d) Let’s go into Rn. Imagine you have a nonlinear system X ′ = F (X) so that ~0 is a
steady state and DF (~0) is diagonalizable and all of its eigenvalues are negative:

DF (~0) ∼ diag(−λ1,−λ2, . . . ,−λn)

where −λ1 ≤ −λ2 ≤ · · · ≤ −λn < 0. What Liapunov function, L(X), would you
create in order to prove that all solutions that start close to ~0 will exist for all
t > 0 and will converge to ~0 as t → ∞? In proving this, you’ll end up proving
that for X sufficiently close to ~0 you have

∇L(X) · F (X) ≤ −ωL(X).

How does ω depend on λ1, λ2, . . .λn? Does this dependence make sense to you?
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5. (10 pt) For the case where X ′ = F (X) in R2 and F (~0) = ~0 and DF (~0) has complex
conjugate eigenvalues with negative real parts (α±i β where α < 0), the authors simply
write, “It is straightforward to check that the same result holds. . . ” (See towards the
bottom of page 167.) Make this rigourous by choosing a Liapunov function L and
doing the necessary calculations to find ω > 0 so that

∇L(X) · F (X) ≤ −ωL(X).

for X0 “close enough” to ~0. How does ω depend on α and β? Prove that this means that
if X0 is close enough to ~0 then the initial value problem X ′ = F (X) with X(0) = X0

will have a solution for all t > 0 and the solution converges to ~0 as t→∞.

6. (15 pt) For the case X ′ = F (X) in R2 and F (~0) = ~0 and DF (~0) has repeated negative
eigenvalues and isn’t diagonalizable, the authors point you to pages 70-71 to find a
change of coordinates so that the new system Y ′ = G(Y ) has G(~0) = ~0 and DG(~0)
yielding the linearized system

DG(~0) =

(
−λ ε
0 −λ

)
where ε can be taken as small as you desire by choosing the change of coordinates
accordingly. They then write that it follows that “the vector field points inside circles
of sufficiently small radius.”

Make all of this rigourous by understanding the change of coordinates, choosing a
Liapunov function L, computing ∇L(Y ) · G(Y ) and then showing ∇L(Y ) · G(Y ) ≤
−ωL(Y ) for some ω > 0 if Y is “sufficiently close” to ~0 and then proving that X0 is
close enough to ~0 then the initial value problem X ′ = F (X) with X(0) = X0 will have
a solution for all t > 0 and the solution converges to ~0 as t→∞.

7. Not to hand in, just to think about it if you’re curious

If

X ′ =

(
−λ 0
0 µ

)
X = AX

where λ, µ > 0 then L(X) = µx2−λy2 has ∇L(X) ·AX = −2µλ (x2 + y2) ≤ 0. Draw
level sets of L(X) and think about what this ∇L(X) ·AX ≤ 0 means about solutions
of X ′ = AX. Can you find ω > 0 so that ∇L(X) · AX < −ωL(X)? If you could
show L(X(t))→ 0 as t→∞, what would this tell you about the solution? Must X(t)
converge at t→∞?
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