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Abstract

Figure/Ground segregation is a fundamental problem in visual processing. Edges often arise
because of occlusion, along the bounding contour of the occluding object. Having detected
an edge, the visual system therefore has to decide whether it is there due to occlusion, and if
so, which side of it belongs to the front surface (“the Figure”). This is known as the border
ownership problem. Determining the border ownership of an edge cannot be done locally:
it requires integrating information from an image region which contains the entire Figure or
large portions of it. Thus, a neuron whose receptive field is small compared to the Figure
cannot compute border ownership of an edge of that Figure in isolation. Recently it was
reported that the responses of V2 cells to an edge can be strongly modulated by the polarity of
border ownership of the edge (Zhou et al.2000). These effects must therefore be the product
of computations done by a network of neurons. One possibility is that such networks rely on
direct long-range connections (of the scale of the Figure) and/or feedback from areas with
cells of large receptive fields. The model presented here offers an alternative. It is shown that
network of small receptive field cells which interact only locally can nevertheless compute
Figure/Ground segregation. The long-range effects emerge as a result of iterative propagation
of information through a cascade of short-range connections. The model produces results
similar to those observed perceptually: it prefers enclosed, convex and/or smaller regions
as the Figure. Our results suggest that considerable portions of Figure/Ground segregation
can be accomplished by early visual cortex, without a need for feedback from higher areas.
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1. Introduction

A visual image is a projection of a three-
dimensional scene onto a two-dimensional sur-
face. As a result, virtually every image of
a real-world scene includes occlusion. When
one object occludes another, an edge is formed
between them, defined by differences in sur-
face brightness, color or texture. The edge is
formed at the boundary of the front surface,
and is informative about the shape of that
surface. But in the generic case, an edge has
no relation to the shape of the occluded sur-
face. In other words, when two surfaces are
separated by an edge, only one of those sur-
faces “owns” the edge — the one which is in
front. In order to recover a reliable repre-
sentation of the shape of surfaces in the 3D
world, the visual system must therefore be
able to resolve “the border ownership prob-
lem” (Nakayama et al. 1995). Determination
of border ownership is essential for correct
visual segmentation and is intimately related
to the process of recovering the true shape of
occluded surfaces.

The first clear articulation of the ambigu-
ity inherent in edges is attributed to Edgar
Rubin (1921, 1958). Rubin had the insight
that the border ownership problem occurs at
every edge, in every image, but he cleverly
used ambiguous figures to highlight this fact
and to study it further. He observed that
even when the shape of the border is such
that both sides of it form the silhouette of
a known object, as in his famous face/vase
illusion, only one of the abutting objects can
be perceived at any given moment. The per-
ception is bi-stable, alternating from one in-
terpretation to the other over time, but the
two objects cannot be perceived simultane-
ously. Rubin (1921) termed the surface seen
in front the “Figure” and the region seen be-
hind the “Ground”. By restricting his study
to images with two layers of depth, he in-
sured that the latter was indeed the back-
ground — the distant-most, shapeless region,
which nothing can come behind. In natural

scenes, the back region is often a surface with
a well-defined shape of its own. But the need
to resolve border ownership remains, since
the border is still uninformative about the
shape of the back surface.

Figure 1: An ambiguous Figure/Ground im-
age demonstrating perceptual bi-stability for un-
familiar shapes. (Adapted from Kanizsa and
Gerbino 1976)

Bi-stable Figure/Ground perception can
arise also with shapes that do not depict fa-
miliar objects. An example is shown in figure
1 (Kanizsa and Gerbino 1976; see also Rubin
1921, figure 2). The perception of this image
alternates between two interpretations — yel-
low regions in front of a blue background, or
blue regions in front of a yellow background.
Most observers report the former interpreta-
tion to be the dominant one (80%; Kanizsa
and Gerbino 1976), but with prolonged view-
ing, both interpretations will be seen. This
shows that Figure/Ground alternations are
not driven by knowledge of familiar objects.

Rubin’s (1921, 1958) observations suggest
that the brain has a built-in mechanism which
mandates a border to belong only to one sur-
face at a time, and not to both (see also
Nakayama et al.1995; Driver and Baylis 1996;
Baylis and Driver 2001; Kourtzi and Kan-
wisher 2001; Rubin 2001a). This hypoth-
esized mechanism enforces a uni-directional
resolution of border ownership, and must op-
erate on every edge, in every image. Am-
biguous figures are a useful experimental tool,



but what they teach is just as valid for im-
ages which give rise to unambiguous Fig-
ure/Ground perception.

The neural basis of Figure/Ground (F/G)
segregation, i.e., how the brain solves the
border ownership problem, remains largely
unknown. In particular, it is not yet known
at what stage, or “level” of cortical process-
ing border ownership is resolved. (Or, if
more than one level of processing is involved,
what is the role of each level, and how do
they interact to produce the perceptual re-
sults observed.) Recently, Zhou et al. (2000;
see also Baumann et al. 1997) reported a set
of striking findings which bear on the issue.
They found that a large fraction of cells in
early visual cortex (18% in V1, 59% in V2,
53% in V4) encode information about border
ownership. Specifically, those cells exhibited
marked differences in firing rates in response
to optimally oriented edges, depending on
which side of the edge the Figure laid. An il-
lustration of their findings is shown in figure
2. The stimuli shown in panels A and B pro-
duce identical stimulation within the cell’s
“minimum response field” (see Zhou et al.
2000, Methods) and its immediate surround,
but the cell consistently responded more to
the stimulus in panel A than to that in B.
The authors suggested that the difference in
responses is due to the inversion of border
ownership polarity of the edge: the cell re-
sponds when the Figure falls on one side of
the edge, but not the other. Consistent with
this hypothesis, they found that cells which
were insensitive to contrast polarity (3% of
the cells recorded in V1, 15% in V2 and 15%
in V4) retained their preferred border owner-
ship polarity when the contrast of the images
was reversed (panels C and D). Zhou et al.
(2000) went on to perform a set of ingenious
experiments which provide strong evidence
that the modulation of the cell’s firing rates
was indeed related to border ownership and
F/G polarity.
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Figure 2: An illustration of the findings of Zhou
et al. (2000, adapted from their figure 4). In
spite of the identical stimulation within its ‘min-
imum response field" (ellipses), this V2 cell re-
sponses strongly only when the Figure is to its
left (panel A) and not when it is to the right
(panel B). The cell shows preference to this Fig-
ural polarity regardless of the contrast polarity
of the edge (panels C, D). This suggests that the
cell is involved in encoding border ownership.

At first glance, the findings of Zhou et al.
(2000) may be taken to mean that F/G seg-
regation is performed in early visual corti-
cal areas. But this interpretation immedi-
ately poses new problems. As the authors
noted, “... the identification of a region as a
Figure requires global image processing (the
system needs to evaluate an area of the size
of the Figure or more.)” In other words,
the resolution of border ownership depends
on information from image regions well out-
side the receptive field of each individual cell.
(Zhou et al.found cells that showed sensitiv-
ity to F/G manipulations which took place



as far as 20° away from their classical recep-
tive field.) The small sizes of receptive fields
of cells in V1 and V2 make them seem un-
suitable for such global computations. The
processing of global image information is gen-
erally assumed to be the province of high
level visual areas, primarily in inferotempo-
ral cortex, where cells have large receptive
fields and complex response characteristics.
(We use the terms “low level” and “high
level” cortical areas without reference to their
function, based solely on their level in the hi-
erarchy of information stream in cortex, as
assessed from the distribution of incoming
and outgoing connections in specific layers
in each area; cf. Felleman and Van Essen
1991). Indeed, authors who previously re-
ported that V1 cells are affected by image
manipulations distant from their receptive
field (Lamme 1995; Zipser et al. 1996; but
see Rossi et al. 2001) proposed that those
effects may be the result of feedback from
higher level areas (Lamme et al. 1997). Zhou
et al. (2000) also seem to favor the interpre-
tation that the border ownership selectivity
they found in V1/V2 cells may result from
“the presence of top-down signals”.
Nevertheless, there are a number of rea-
sons why it may be advantageous for the vi-
sual system to achieve Figure/Ground segre-
gation in early visual cortex. A reliable seg-
mentation process needs to be able to iden-
tify the location and spatial extent of Fig-
ures in the incoming visual image across the
entire visual field, and to segment correctly
surfaces of any shape, including ones that
were never seen before. The retinotopic or-
ganization of areas V1 and V2 and the “gen-
eral purpose” type of processing commonly
associated with them (i.e., not designed for
specific shapes or objects) fit naturally with
these important requirements. Computing
F /G segregation in early visual cortex would
also free higher-level areas to perform more
specialized processing on a small number of
segmented surfaces. Another advantage is

that areas V1/V2 have immediate access to
high spatial resolution information about the
image (Lee et al. 1998.) F/G segregation
is often sensitive to very subtle manipula-
tions in the image: small changes (restricted
to, say, a 1 square-degree area), can change
the Figure/Ground assignments of large re-
gions (Gillam 1987; Minguzzi 1987; Rubin
2001b). Therefore, it would be good to per-
form as much of the computation as possible
in the regions which contain cells with recep-
tive fields of the scale of such image manip-
ulations. The purpose of the work presented
here was to show that Figure/Ground com-
putations can indeed be achieved by a net-
work whose architecture resembles that of
early visual cortex.

2. The Model

We present a model which computes Fig-
ure/Ground segregation using “units” which
resemble early cortical neurons (V1/V2). The
model units have small receptive fields and
each unit is connected only to its nearest
neighbors. Aside from these two attributes,
the model does not attempt to be faithful
to physiological details. The computations
are done by a set of equations that treat
each unit as a simple element characterized
solely by its level of activity at each mo-
ment. At present, no attempt is made to
formulate how those equations would be im-
plemented in a biologically realistic model
that takes into account the full complexity
of factors such as cells” membrane potentials
and synaptic transmission. Nevertheless, we
argue that the model has significant implica-
tions for research on the neural basis of F/G
segregation. It demonstrates that it is possi-
ble to observe global effects in a network of
local elements. Moreover, the model shows
biases similar to those of human observers
in its F/G assignments: a tendency to judge
enclosed and/or smaller surfaces as the Fig-
ure, and a bias to ascribe ownership to the
convex side of a border. The fact that these



effects can be obtained in a model which uses
locally connected units with small receptive
fields suggests that the possibility that F/G
segregation is achieved in early cortex war-
rants further consideration.

The general observation that global effects
may arise in a system of locally-interacting
elements is well known in the physical sci-
ences (e.g., thermodynamic phase transitions,
magnetization), and it has been used previ-
ously in vision models (e.g., Marr and Poggio
1976; Hildreth 1984; Sha’ashua and Ullman
1988). The intuitive explanation is that as
the system evolves in time, information may
be mediated across long distances by a cas-
cade of local interactions. How such inter-
actions give rise to the specific global F/G
effects observed, however, has not been ad-
dressed so far.

The approach we take is different from
that prevalent in current vision studies. Most
models focus on edges: the bounding con-
tours of surfaces. We term this approach

contour-based. In contour-based models, units

whose receptive fields fall on homogeneous
regions in the image normally do not partic-
ipate in the processing and representation of
the scene (Ullman 1976; Sha’ashua and Ull-
man 1988; Heitger and von der Heydt 1993;
Nitzberg et al.1993; Iverson and Zucker 1995;
Williams 1996; Williams and Jacobs 1997;
Yen and Finkel 1998). The goals of seg-
mentation are thus defined in terms of con-
tours: identify continuous contours, group
together parts of the same contour which
are separated in the image because of occlu-
sion etc. Computations take place primar-
ily along contours — e.g., testing for colinear-
ity or relatability (cf. Kellman and Shipley,
1991; Elder and Zucker 1993), using “asso-
ciation fields” to identify contours embed-
ded in a noisy background (Field et al. 1993;
Yen and Finkel 1998), or constructing illu-
sory and occluded contours (Heitger et al.
1992; Heitger and von der Heydt 1993; cf.
von der Heydt et al. 1984; Peterhans and von

der Heydt 1989; Sugita 1999; Bakin et al.
2000). In the contour-based approach, res-
olution of border ownership may not even
be part of the computational task: contours
may be detected and represented indepen-
dently of the surfaces they bound (but see
Finkel and Sajda 1992; Weiss 1997).

The approach presented here is region-based.
Like contour-based models, it recognizes the
important role of edges as a source of in-
formation about surface boundaries in the
scene. But the goal of region-based models
is to identify the surfaces bounded by edges
— not the edges per se. An edge is treated as
a potential part of the bounding contour of
a region and the model attempts to find this
hypothesized region. As a result, assignment
of border ownership is an integral part of the
computational task in region-based models.
To achieve this goal, the flow of informa-
tion in region-based models is not confined
to be along contours. Instead, all units con-
tribute to the computation — including those
whose receptive fields fall within homoge-
neous parts of the image. Possibly due to
the physiological findings of the abundance
of neural responses to edges (e.g., Hubel and
Wiesel 1968), there has been a longstanding
focus on contour-based computations for vi-
sion, with relatively small attention to region-
based processes (but see Mumford et al. 1987,
Paradiso and Nakayama 1991; Kimia et al.
1995; Grossberg 1997). Recently, however,
several region-based segmentation models in
computer vision have shown promising re-
sults in delineating what are called “salient”
regions in the image (roughly, the computer
vision equivalent of what we term Figural
surfaces; cf. Zhu et al. 1995; Shi and Malik
1997; Geiger et al. 1998; Sharon et al. 2000;
see also Finkel and Sajda 1992; Grossberg
1997). In this paper, we apply the region-
based approach to resolving the border own-
ership problem and relate it to human per-
ception.



Figure 3: How region-based models give rise to
global Figure/Ground effects. Signals about the
probability that a point belongs to the Figure
are launched from locations near the edge and
propagated all around. The cumulative effects
of those signals is different on the two sides of
the contour. This asymmetry leads the model to
prefer the “inside” as the Figure. (The decreas-
ing contrast of the circles denotes attenuation
of signals away from their source.)

Allowing signals to propagate also within
homogenous regions provides a natural way
for global F/G effects to arise. An intu-
itive illustration of this is shown in figure
3. Consider three local segments along the
bounding contour of an ellipse. The goal of
a region-based model is to find out if these
segments belong to a contour that bounds
a region. Because each unit has only local
information, this is a non-trivial computa-
tion. But by propagating signals between
neighbors, the collection of units can actu-
ally “find out” that one side is more likely
to be the Figure. Suppose that a cascade of
signals is launched from each location, with
the level of activation of each unit denoting
a possibility (or probability) that the unit
belongs to the Figure. Because there is no
prior knowledge which side of each edge seg-
ment may be the Figure, those signals would
have to be launched in a completely isotropic
way — as indicated by the concentric circles.
Nevertheless, inspecting figure 3 reveals that
the signals on the inside of the ellipse rein-
force each other more strongly: the maxi-
mum (summed) activity is higher than for

signals on the outside, and points of equal
activity lie deeper (further from the edge)
on the inside. Note, that for this imbal-
ance to emerge, signals had to propagate also
between units that lie on homogeneous re-
gions of the image. Region-based models
can therefore exhibit a preference for the en-
closed region to be the Figure without need-
ing to implement any special bias in the indi-
vidual units. (The simple case of the ellipse
confounds the properties of closure and con-
vexity; those will be disentangled in section
3.)

Before moving on, there are two qualifica-
tion we need to make. One, the model pre-
sented here is designed for situations where
the foreground and background surfaces are
homogeneous, i.e., they are not textured and
do not contain other internal edges. We are
assuming that computations such as identi-
fying regions of uniform texture are handled
by other modules (in the human or artificial
visual system). The output of these modules
can then be used as input to our model. In
the tradition established by E. Rubin (1921),
who used untextured images in his studies,
we restricted ourselves to images of homoge-
neous surfaces (like that shown in figure 1)
and thus could concentrate on the computa-
tions most relevant to F/G segregation and
border ownership. For real-world applica-
tions, this model would therefore need to be
combined with models that take care of the
work of the other modules mentioned, e.g.,
texture segregation. The other simplifica-
tion we took, again following Rubin (1921),
is that we restricted ourselves to images with
two layers of depth (which also allows us to
refer to the back surface as Ground). But ex-
tending the model to handle more layers of
depth does not require conceptual changes
(see Discussion).

2.1. Formulating the problem. The model
starts by representing the input image by
a set of units which signal the luminance
and/or color at a small, restricted part of



the image. In physiologically-inspired terms,
the input is represented using a set of small
receptive-field units that tile the image retino-
topically. The output is also represented by
a set of retinotopically organized small re-
ceptive field units. In principle, the den-
sity of output units and the extent and lo-
cation of their receptive fields may be dif-
ferent from those of the input units; how-
ever for simplicity we choose them here to
be the same. The activity level of each out-
put unit represents the probability that the
local region of the image corresponding to
the unit’s receptive field belongs to a Figu-
ral surface. Using the index k for the model
units, we denote the activity of output unit
k by P(k), where 0 < P(k) < 1. The inter-
pretation of an output unit k having a value
P(k) = 1or P(k) = 0 is straightforward: the
former case indicates certainty that the cor-
responding location is part of a Figural sur-
face, whereas the latter indicates certainty
that that location is part of the background.
Intermediate values of P(k) indicate varying
amounts of uncertainty about whether the
location belongs to the Figure or the back-
ground. (See section 4 for a discussion of
possible neural implementations of interme-
diate P values.)

Next, we need to define the desired rela-
tionship, or transformation between the in-
put and the output in the model. Broadly
speaking, we want the output to correspond
to what is observed in perception. Thus, to
know the desired output for a particular in-
put image, we need to ask observers what
they perceive as Figure in that image; the
desired output of the model would then be
the one with P(k) = 1 at units that fall
within the (perceptually) Figural region, and
P(k) = 0 elsewhere. The computations per-
formed by the model should produced the
desired output (or a result close to it), i.e.
behave like human perception.

To consider a concrete example of an in-
put and its possible outputs, refer to figure

4. It presents an overview of the model, as
applied to one simple image. At this point,
we focus only on select parts of figure 4.
The top row shows the array of 100x100 in-
put units representing the image. We use
color to denote different image regions, to
prevent confusion with illustrations of subse-
quent model stages, where grayscale will be
used to denote the values of P(k). (Recall
that in principle, these two regions could be
differentiated by other attributes, e.g. lumi-
nance or texture.) Although the input units
can signal different values of color or lumi-
nance, this does not solve the border owner-
ship problem.

The top panel of figure 4, is perceived as a
yellow ellipse (the F) in front of a blue back-
ground. The desired output would therefore
be P(k) =1 for all units k inside the ellipse,
and P(k) = 0 for those outside. Denoting
P(k) = 1 with white, P(k) = 0 with black,
and using a grayscale for intermediate val-
ues, the bottom panel of figure 4 shows the
output produced by the model. Clearly, it is
a good approximation of the desired output.

En route to finding this output, many other
possible outputs are evaluated. Two of them
are shown in panels I and J of figure 4. Panel
I corresponds to a percept of an elliptical
“hole” in a blue foreground, looking onto a
yellow background. Panel J shows a pos-
sible (but undesired) output with little re-
lation to the input image: transitions be-
tween F and G occur in places where there
are no edges in the image (note: we use the
term “edge” to mean luminance-, color- or
texture-defined edges in the input image.)
Furthermore, many of the output units have
intermediate values of P(k) (gray), indicat-
ing an output with many “undecided” units.
The model evaluates the possible outputs by
computing a certain value, or “cost” for each
of them. The success of the model is that the
output with the lowest cost approximates



Stage

Input Image

Generate multiple sets of
local F/G assignments;
enforce flipping across
edges (Principle i)

Generate a candidate
organization from each
set; local smoothing
minimizes F/G flips away
from edges (Principle ii)

Evaluate candidate
organizations based on
the strength of the F units
in them (Principle iii)

Output: the organization
with the strongest Figure

Network Implementation

Mathematical Formulation

Input Image

edge detection

’

Anchoring operators
store P, (set of local

F/G assignments)

Compute
minimal-cost solution P
for each P,

Compute

Figural Entropy S

for each

candidate organization

Select the P with
lowest S

Figure 4: An overview of the model. The left and right columns describe the stages guided by
Principles i-iii and their mathematical formulation, respectively. The central column shows the
network implementation. Top panel, the input image. Bottom panel, the output. Grayscale
indicates P(k), the probability that unit k is Figure, with P(k) = 1 in white, P(k) = 0 in black,

and gray for intermediate values.



well the F/G organization observed percep-
tually, while undesired organizations (such
as 41 and J) lead to higher costs.

In a sense, the idea that the observed per-
ceptual organization is the one which mini-
mizes (or maximizes) a cost function dates
back to the Gestalt Psychologists, who theo-
rized that the brain selects visual interpreta-
tions which maximize “perceptual goodness”
(or Pragnanz; cf. Koffka 1935.) Here, how-
ever, we are faced with the challenge of de-
vising a formula that measures the “good-
ness” of Figure/Ground organizations quan-
titatively.

In addition to handling input images that
give rise to unambiguous F /G interpretations
(like that in figure 4), we would like the model
to be able to predict when a certain image
may lead to perceptual bi-stability. Thus,
for an input image like that in figure 1, we
expect to find two outputs with low cost —
one corresponding to the yellow regions be-
ing F, the other to the blue regions being F'.
As will be seen in section 3, the model will
even predict that the cost of the former will
be slightly lower than that of the latter, cor-
responding to its observed perceptual domi-
nance. Nevertheless, both costs will be much
lower than that of other, ‘nonsense’ organi-
zations, which are not observed perceptually.

2.2. Guiding principles. In this section,
we outline the main stages of computations
in the model. We reserve details of the math-
ematical and network implementation for the
next section; here we focus on the ideas the
model is based on, and how they promote
outputs that are in agreement with human
perception. Figure 4 will be used to give
an overview of the stages of the model. For
readers who are not interested in the math-
ematical implementation, reading this sec-
tion should be enough to understand how the
model works (i.e., it is possible to skip sec-
tion 2.3 and go directly to the simulations).

The model is based on the following three
principles:

(i) F/G boundaries are likely to be present
along luminance/color gradients (edges).

(ii) F/G boundaries are unlikely where
edges are absent.

(iii) Among all possible organizations
satisfying (1) and (2), prefer the one(s)
where the Figural units (P(k) > 0.5)
have the strongest F' assignment — i.e.,
where they are closest to 1.

These three principles may seem innocu-
ous, but we will see that in concert they pro-
vide enough constraints to allow the model
to converge at the right solutions. Further-
more, these principles can be implemented
in a physiologically plausible way, on a net-
work of small receptive field units with local
connections between them.

At the first stage, the model generates sets
of F/G assignments over the entire image.
At this point, each set is only required to sat-
isfy Principle (i): that the F/G assignments
should flip across the edges. The image is
sampled with a collection of local operators
whose “receptive field” extends several in-
put units, to make it possible to detect edges
within them, but still much smaller than the
scale of the Figure (typically 8-15 units in di-
ameter; see section 2.3.1 and Appendix B).
If an edge (defined as gradient > criterion)
falls within the receptive field of an opera-
tor, the units within its receptive fields are
labeled border units. The operator then as-
signs all its border units on one side of the
edge as F, and those on the other side as G.
Which side gets F is decided at random at
this point. The rest of the units in the model
(i.e., the non-border units) are labeled as un-
decided (0.5). We term the local operators
anchoring operators to reflect the fact that
they will exert influence on the model units
to remain at their assigned values. The ex-
tent of this influence will be large for border
units (i.e., those assigned 1 or 0), and small
for non-border units.

Since the model has no “global” knowl-
edge (e.g., units with receptive fields of the



scale of the global Figure), F/G assignments
are generated independently within each an-
choring operator. As a result, there will be
many possible sets of F/G assignments. Each
set corresponds to a different combination of
the two possible F/G polarities within each
anchoring operator. Panels A-C in Figure
4 show three examples of such sets. (The
anchoring operators that fall on edges are il-
lustrated by the red circles.) The two sets of
most interest to us are those in panels A and
B. Panel A corresponds to the interpretation
observed perceptually, of an elliptical Figure,
and panel B to the reversed F/G interpreta-
tion — an elliptically-shaped hole in a ‘front’
surface. Explaining why A is preferred to
B is a major goal of the model. But there
is also something in common to these two
sets: they are globally consistent. Because
of the local nature of the F/G assignments,
the vast majority of the sets of initial F/G
assignments will not share this property, i.e.,
they will be globally inconsistent. Panel C
shows one such example. Following the cir-
cumference of the ellipse, the polarity of F/G
values changes erratically. This is unavoid-
able given the independent assignments at
each operator — there is no way to a priori
guarantee global consistency of the anchor-
ing F/G assignments. Among all possible
anchoring F /G assignments, there are many
more cases like panel C: given a anchoring
operators, there are 2 — 2 globally inconsis-
tent anchoring F/G assignments and only 2
consistent ones. Another major task of the
model is therefore to identify and exclude the
globally inconsistent sets. What will make
the model select the globally consistent an-
choring F /G assignments, albeit rare, is that
they lead to organizations that satisfy also
Principles (ii) and (iii).

At the next stage, the model takes each
set of local F/G assignments and generates
from it a candidate organization: the best
F/G organization that can be obtained for
the given set. What makes it “best” is that
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it is the organization which follows Princi-
ple (ii) most closely: minimize F/G bound-
aries in image regions that do not contain
edges. Formally, this is achieved by means
of a cost function € which penalizes for F/G
transition away from edges. The candidate
organization is the one for which £ is mini-
mized for the given set of F/G assignments.
(A detailed description of the mathematical
formulation, as well as an explanation of how
the minimization process is implemented in
the network, is given in section 2.3.2.) Con-
sider panels D-F of figure 4, where the can-
didate organizations obtained for the F/G
assignments in panels A-C, respectively are
shown. When the set of F/G assignments is
globally consistent, as in panels A and B, the
minimization of £ leads to a candidate orga-
nizations with the majority of units near 1
or 0 (panels D and E, respectively). In con-
trast, the candidate organization in panel F,
which was generated from the globally incon-
sistent set C, contains many units near 0.5
(gray). The reason for this is that in order to
minimize £ (and thereby adhere to Principle
(ii)), the model smoothly interpolated be-
tween the conflicting values near the edges,
so that sharp F/G transitions would not oc-
cur away from the edges. The abundance of
units near 0.5 in globally-inconsistent candi-
date organizations will be used in the next,
final stage of the model to prune them, leav-
ing us only with the globally consistent or-
ganization(s).

The final stage of the model implements
Principle (iii): it evaluates each of the candi-
date organizations based on the strength of
its Figure and selects the strongest one(s).
The ‘Figure’ in a candidate organization is
defined as the collection of units k& that have
P(k) > 0.5. Referring back to figure 4, pan-
els H, I and J show the Figures of candi-
date organizations D, E and F, respectively
(the units with P(k) < 0.5 were all set to
black). To evaluate the strength of each Fig-
ure, the model computes a function called



entropy, denoted S, which is monotonically
decreasing the more units in the Figure are
near 1. (For details see section 2.3.3.) It
then chooses as its output the candidate or-
ganization with lowest S. For the case of
the ellipse in figure 4, the entropies of the
Figures in panels H, I and J are 0.34, 0.74
and 0.77 respectively. The output is there-
fore that shown in panel H (reproduced in
the bottom row), which is consistent with
perception. Note, that the model pruned
the undesired organizations although no ex-
plicit computation to detect global inconsis-
tencies was built in. An intuitive explana-
tion for why the candidate organization in
panel F' leads to high Figural entropy was
already given: globally inconsistent sets of
F /G assignments (e.g., panel C) lead to can-
didate organizations with many units with
0.5 < P(k) < 1, which in turn lead to high
entropy. With regard to the high Figural
entropy of the globally consistent candidate
organization in panel E, some intuition was
given in figure 3, and this issue will be revis-
ited in section 3.

The large difference in values between the
entropy of the Figure in panel H and that
of panel I predicts that the interpretation of
the image as an elliptical Figure will be much
stronger than that of an elliptically-shaped
hole. Indeed, the entropy of the “hole” inter-
pretation is not much lower than that of the
“nonsense” interpretation J. This is in very
good agreement with what is observed per-
ceptually. For other images, however, there
may be more than one candidate organiza-
tion with entropy considerably lower than
the rest. In such cases, the model’s pre-
diction is that perception will alternate be-
tween these organizations. Some examples
of such bi-stable images will be discussed in
section 3. (Note: the “hole” interpretation
can be promoted perceptually by introduc-
ing stereoscopic cues which disambiguate the
depth relationships of image regions; here we
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do not consider such additional factors in the
resolution of border ownership.)

To summarize, once multiple sets of F/G
assignments are generated in accordance with
Principle (i), the model proceeds in two stages.
In the first stage it generates a candidate
organization from each set, by minimizing
a cost function £. The structure of £ im-
plements Principle (ii), be penalizing F/G
transitions away from edges. As a conse-
quence, global inconsistencies in the F/G as-
signments result in candidate organizations
with many ‘undecided’ units, while globally
consistent sets result in candidate organiza-
tion with few undecided units. In the second
stage, the model chooses the candidate or-
ganization with the lowest entropy S, which
leads to the elimination of candidate orga-
nizations with many undecided units, in ac-
cordance with Principle (iii).

The present model allows for an efficient
minimization of the cost function £ as a dy-
namical process in the network, but it does
not offer a similarly efficient implementation
for finding the best candidate organization(s)
with lowest §. Here, this second stage re-
quires a search through the set of candidate
organizations, a process which is not bio-
logically plausible. An efficient convergence
to the low entropy organization(s) can be
achieved if one introduces local interactions
which favor consistent polarity of F/G as-
signments between neighboring anchoring op-
erators. In effect, this turns the present “two
stage” version of the model (first minimize
the cost £, then compute the entropy §) into
a single stage of minimizing a cost function
which incorporates both £ and § (Pugh and
Rubin, in preparation). But since the math-
ematical formulation of the combined £ — S
model is much more complicated, we limit
the discussion here to the two-stage model,
which allows us to present the main ideas
and achievements of such models in a sim-
pler form.



2.3. Network and mathematical imple-
mentation.

2.3.1. Luminance edges and Figure/Ground
transitions. The first stage in the model was
described in detail in section 2.2. Below we
give a brief summary and introduce further
notation and details. After a pre-processing
stage of edge detection, the model samples
the image with a dense set of anchoring oper-
ators. F/G assignments are then generated
locally within each anchoring operator. We
denote the anchored values Fy. The values
of Py reflect Principle (i): that F/G transi-
tions are likely near edges. If an edge falls
within an anchoring operator, it assigns val-
ues Py(k) = 1 (F) or Py(k) = 0 (G) to its
border units, such that all units on one side
of the edge are assigned one value, and those
on the other side are assigned the opposite
value. Otherwise, the units within the an-
choring operator are non-border units and
they are assigned Py(k) = 0.5. The inde-
pendent generation of Py values within each
anchoring operator leads to multiple sets of
F/G assignments. The next stage will be to
generate a candidate organization from each
set.

The spatial distribution of anchoring oper-
ators in the model is dense, i.e., an operator
could be centered at any input unit location.
But not all anchoring operators are activated
when processing a given image. First, to
avoid conflicting anchoring assignments of a
single border unit, operators with overlap-
ping receptive fields are not allowed to be si-
multaneously active. In addition, the overall
density of activated operators is a parameter
in the model. In the simulations presented
here, we choose which anchoring operators
will be activated at random (subject to the
constraints listed above). We expect that for
natural scenes, anchoring operators may be
activated around the stronger edge segments
in the image.
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2.3.2. Generating the candidate organizations:
the cost function £. The next step is to com-
pute the candidate organization that each
set of F/G assignments gives rise to. This
step aims to satisfy Principle (ii): F/G bound-
aries are unlikely where no luminance bor-
ders are present. Thus, we seek a candidate
organization which agrees with the anchor-
ing F'/G values assigned to the border units,
while minimizing the amount of F/G rever-
sals at non-border units.

We denote the collection of values { Py(k)},
which is defined on the entire intermediate
layer (both border and non-border units), by
Py. We will denote the resulting candidate
organization by P: the collection of values
{P(k)} that specify the probability that the
corresponding location in the image belongs
to the Figure (for the given Pg). Finding
a network configuration that best satisfies a
set of constraints — in our case, adherence
to the F/G assignments (Principle i) while
minimizing F /G boundaries away from edges
(Principle ii) — is done by expressing them
in a cost function that the network mini-
mizes. (How network dynamics can perform
this minimization will be shown later; cf fig-
ure 5 and Appendix A.) We use the following
cost function &:

£Q) = ) Z 1 [Q(K) — Q)]
(1) +3 " [Q(k) — Py(k)]”
kcA
+ > v[Q(k) — Py(k))?
ke Ac

& was written here as a function of Q; like P,
it denotes a collection of F/G values of all the
units. However, unlike P, Q does not neces-
sarily minimize £. For example, it could be
a random collection of values — in this case,
the value of £ would simply be very large and
far from the minimum. Furthermore, the
quadratic dependence of £ on Q means that
there is only one P that minimizes it, and
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Figure 5: Network implementation of equation (1). Left, The connections to a border unit (i.e.,
one that is near an edge and is covered by an anchoring operator). Right, The connections to
a non-border unit. In both panels, the top layer shows the image, the intermediate layer shows
the values of Py and the bottom layer shows the network which computes P. Appendix A shows
that this network will settle in a state which minimizes equation (1).

this is the candidate organization that arises
from Py. The other notations are best un-
derstood by consulting figure 5, which shows
two illustrations of a small piece of the net-
work. Because the network is based on local
connections, we focus on a single unit and its
nearest neighbors. For a unit with index k,
its nearest neighbors to the ‘west’ and ‘east’
have indices £ — 1 and k + 1, respectively.
Since the network is m xn, the nearest neigh-
bors to the ‘north’ and ‘south’ are £ —n and
k+n.

The first term of equation (1) deals with
the connections between unit &£ and its near-
est neighbors, which are denoted as a set by
Ny.. Using j as a generic index for a neigh-
boring unit, its input to unit & is weighted by
tr;- The values of these weights are shown
in the bottom layers in figure 5. They de-
pend on whether unit & is near an edge (left
panel) or not (right panel). For units near an
edge, the incoming weights from neighbors
on the other side on the edge (in the figure,
it is unit k& 4+ n) are set to zero. The weights
from units on the same side of the edge have
value p, which is a free parameter (u should
be less than 1; in the simulations presented
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later, we took p = 0.1). For units not near
an edge (right panel), the incoming weights
equal p for all neighbors. (Note, that this
means that p;, the incoming connection to
unit &, is equal to pj, the outgoing connec-
tion from £ to j. This symmetry will be used
later.)

The second term in equation (1) deals with
how border units are affected by their an-
chored F/G assignments (here, A stands for
“anchored” and denotes the set of border
units.) Consider again the unit & on the left
panel of figure 5. This unit is not only near
an edge, but is also in A (recall that not all
units near edges will fall within an anchor-
ing operator; for illustrative purposes, the
figure depicts a case where unit k as well as
its neighbors are all in A.) The F/G assign-
ments are shown on the intermediate layer.
Unit £ and three of its neighbors were as-
signed Py(k) of 1 (white), while the fourth
neighbor was assigned 0 (black). But unit
k will only be affected by its own anchored
value, Py(k). This is denoted by the arrow
from the intermediate layer unit k£ to the bot-
tom layer. This connection weight is 1 (i.e.,
it is not weighted by a free parameter.)



Finally, the third term in equation (1) deals
with how non-border units are affected by
their unbiased F/G assignment of 0.5 (A°
denotes the complement set of A). This is
illustrated for unit k& on the right panel of
figure 5. The connection from the interme-
diate layer to unit k£ in the bottom layer is
weighted by a very small number, which we
denote as v. It is another free parameter
(e.g., v = 0.0002 for the results presented in
section 3).

To understand how the structure of the
cost function & affects the solution P, con-
sider the three choices of Py in panels A-
C of figure 4 and their resulting minimizers
P shown in panels D-F. Despite their obvi-
ous differences, the three minimizers share
some common characteristics. One, they are
smooth except where there are edges in the
image; two, they show fidelity to the anchor-
ing values near the edges; and three, they
contain some units with intermediate values
of P(k) (i.e., neither 1 nor 0). These com-
monalities directly relate to the three terms
in £. Below, we discuss each term in turn,
and then discuss their combined effect.

Smoothness. A notable thing about all
three candidate organizations in panels D-
F of figure 4 is the absence of sharp transi-
tions away from the edges. Along the edges,
there are jumps between Figure and Ground
(white and black, respectively), as dictated
by Principle (i). In contrast, away from the
edges, the gray levels vary smoothly. This
is an implementation of Principle (ii), and
mathematically, it is a result of the first term
in £. This term increases with every pair of
neighboring units which have different val-
ues of P(k); the larger the difference, the
larger the additional cost. The exception
to that is when the neighbors are separated
by a luminance border, in which case differ-
ences between the values of P(k) and P(j)
are not penalized, since p; was set to 0 for
such pairs (to allow for F/G changes across
luminance borders). This is why sharp F/G
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transitions occur also in portions of the edges
where anchoring units were not activated (cf.
figure 4D-E.)

The smoothness away from the edges re-
flects the fact that, for a fixed set of anchored
values along the edges, the function P which
minimizes the first term in &£ is given by
interpolating between the edge values. We
therefore call the first term the smoothness
term. It has the effect of smoothly propagat-
ing, or spreading the F/G values from border
units to non-border units, i.e., from edges
onto entire regions. Note, that although the
smoothness term explicitly couples only neigh-
boring units (and therefore preserves the lo-
cality of the model), a given unit can have
an effect on the value at much more distant
units. This is because chains of pair-wise
terms [P(k) — P(k+ 1)}, [P(k+1) — P(k +
2)],...,[P(k4+n—1)— P(k+n)| effectively
couple units separated by n other units (as
long as they are not separated by an edge).
Intuitively, we can think of this as contri-
butions to the cost by a cascade of pairs of
neighboring units with different values of P.
Thus, although the model admits only local
connections (pg; 7 0 only if units j and k are
nearest-neighbors), the smoothness term en-
ables long-range interactions (global effects)
in the model.

Fidelity to the anchoring values. There is
a clear relation between each candidate or-
ganization and the set of anchoring values
that led to it. Specifically, the minimizers
P are close to Py at the border units. This
is a result of the second term of £. This
term gets a positive contribution whenever
P(k) at a border unit k deviates from the
anchored value Py(k) there. Thus, &£ pe-
nalizes for deviations from anchored values,
although it allows such deviations, in prin-
ciple. The minimizer P will therefore tend
to remain faithful to the anchored values at
the border units. This allows the model to



evaluate different possible Py’s through their
effect on P.

The effect of Py at non-border units. The
third term in £ penalizes deviation of P(k)
from Py(k) at non-border units. However,
the cost for such deviations is much smaller
than at border units: they are weighted by
the small value of v. The effect of this term
is best understood by inspecting panels D or
E in figure 4 — for simplicity we pick one of
them, D. It shows the solution which mini-
mizes £ for the Py shown in panel A. There,
the anchoring values assigned at the edges
were globally consistent. If £ consisted only
of the first two terms (i.e., if v were set to
zero), the minimizing solution would be very
simple: P(k) = 1 for all units k inside the
ellipse, and P(k) = 0 for all units outside
of it. This solution leads to nulling of both
the first and the second terms in £ and since
both terms are quadratic (i.e., always posi-
tive), a function which nulls them is neces-
sarily the one which minimizes them.

Thus, with only the first two terms in &,
the spread of F/G values away from the bor-
der units would be potentially unlimited: all
units, no matter how far away from the edge,
may end up having “hard” F/G values P = 1
or P = 0. This might seem like a good
thing, at first glance, but in fact there are
several reasons why this is undesirable. Con-
sidering physiological plausibility, it is more
reasonable to assume that there would be
some loss of signal as it is transmitted via
a chain of short-range connections. From
a computational point of view, attenuating
the F/G signal as one moves away from the
edge can be advantageous: for example, in
resolving conflicting F/G signals which ar-
rive at a single location from different direc-
tions, it would allow the unit to go with the
stronger signal which would then imply the
closer edge. Finally, as we shall see in the
next section, unlimited spread of the F/G
signal leads to predictions which are incon-
sistent with perception, specifically about the
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effects of closure, convexity, and size on F/G
perception.

The interplay between the terms. While
isolating the terms affords some understand-
ing of the cost function, in the full problem
they play off of one another. If the cost func-
tion consisted only of the second and third
terms, then it would be minimized by Py
- i.e., the output would be identical to the
input (as these two terms control the ‘faith-
fulness’ of the solution of equation (1) to the
anchored values at border units and to the
P = 0.5 values elsewhere). If, on the other
hand, the cost function consisted only of the
first term, then the penalty it puts on devi-
ations from smoothness would drive the sys-
tem to a trivial solution of constant P values
within regions that do not contain a lumi-
nance border, with no regard to the values
set by the anchoring operators. The require-
ment that the solution minimizes the sum of
all three terms creates an interplay between
these conflicting demands. As a result, the
minimizer P will be as smooth as possible
(first term) while remaining faithful to the
initial biases (second and third terms). The
free parameters p and v affect the relative
weight of these demands. The second term
has no parameter and is of order 1. The first
term scales like p: by taking p small we are
valuing fidelity to the anchored values at the
border units over smoothness. By taking v
very small, we value a modicum of fidelity to
the unbiased values (FPy(k) = 0.5) but this is
the weakest demand of the three.

2.3.3. Identifying undesired candidate orga-
nizations: the Figural entropy. The final step
of the model is to evaluate the “global good-
ness” of each of these organizations and thus
select the best output F/G organization(s).
This stage implements Principle (iii): prefer
the organization(s) where the Figure is the
strongest. The 'Figure’ in a candidate orga-
nization is defined as the collection of Figural



units (units k£ with P(k) > 0.5). Its strength
is quantified by the Figural entropy:

1

2P(k)logy(P(k))
Nﬁg k,P%):>.5 °

where Nﬁg is the number of Figural units.

The name “entropy” comes from the simi-
larity of equation (2) to the formula for en-
tropy in statistical mechanics (Reichl 1998)
and information theory (Cover, 1991). How-
ever, we make no claim for a physical or
information-theoretic basis for S. The selec-
tion of the function —2Plog,(P) is in fact
somewhat arbitrary; any monotonically de-
creasing function defined over [0.5, 1] would
do for our purposes. Our choice has the ad-
vantage that it offers a convenient scale to in-
tuitively grasp the “goodness” of the Figure.
The value of § is confined between zero and
one: if all Figural units have P(k) = 1, S will
be 0; as more and more Figural units depart
from 1 and approach 0.5, & approaches its
maximal value of 1.

Using the Figural entropy as a measure,
the model ranks the candidate organizations
P of a given image, creating a hierarchy of
F/G organizations. In some cases, there will
be one candidate organization whose entropy
value is significantly lower than that of all
other organizations. As seen earlier (section
2.2), this is the case for the ellipse in figure 4.
The Figural entropy of the (potential) out-
put in panel H is 0.34, while those of panels
I and J are 0.74 and 0.77, respectively. The
output of the model is therefore that in panel
H (redrawn on the bottom panel), in agree-
ment with perception. In other cases, there
may be more than one candidate organiza-
tion with low entropy. The model predicts
that these situations will result in perceptual
bi-stability, as will be discussed in the next
section.

Before proceeding to the simulations, an-
other note about § needs to be made. The
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strength, or “goodness” of a candidate or-
ganization is determined only by the values
of the Figural units (P(k) > 0.5). This
is motivated by the difference in perceptual
quality of Figure and Ground (Rubin 1921,
1958). However, mathematically it is possi-
ble to draw information from the values of
the Ground units as well. Consider the two
globally consistent sets of F/G assignments,
Py, in panels 4A and B. They are symmet-
ric about 0.5 with respect to each other: one
set can be obtained from the other by the
transformation (z — (1 — x)), i.e., from 1 —
P,. The structure of the cost function &
preserves the symmetry with respect to this
transformation. Therefore, the solution to
the Py in panel B can be obtained by reflect-
ing the solution to the Pg in panel A about
0.5. In other words, the values of P(k) shown
in panel E equal (1— P(k)) of those shown in
panel D. This relation is not limited to the
pair of globally consistent solutions: each set
Py has a complementary set obtained by re-
flection. But this fact is particularly useful
for the globally consistent ones, because it al-
lows one to evaluate the Figural entropies of
both of them from a single solution. Specif-
ically, applying equation (2) to the (1 — P)
values of the background units of one solu-
tion gives the same value as one would get
from computing the Figural entropy of the
complementary solution. We shall use this
extensively when discussing further results
in the next section.

3. Simulation results

This section presents results from a set of
images designed to study how the model be-
haves under conditions which are known to
affect Figure/Ground perception. The bulk
of this section can be understood even if sec-
tion 2.3 was skipped, although we make oc-
casional reference to it.

The first image was already introduced in
the previous section: it is the ellipse in fig-
ure 4. We have already seen that the model



output corresponded to that observed per-
ceptually: the organization with the lowest
entropy in figure 4 was that of an ellipse in
front (panel D). figure 3 gave some intuition
as to why this organization was preferred
over that of panel E (an elliptic hole): the
Figure units are, on average, stronger (closer
to 1) when signals propagate “inwards” than
“outwards”. Next, we wish to disentangle
the effect of the two properties that con-
tributed to the preference of panel D: the
ellipse being the enclosed region and the con-
vexity of its bounding contour.

To study the effect of convexity in isola-
tion, we ran the model on images that con-
tained regions with either convex or concave
sides, where no region was enclosed in an-
other. To save space, figure 6A presents only
the result of the simulation for one of the
two globally consistent solutions. (The orig-
inal image can be inferred from it easily.)
It is known that observers tend to perceive
convex regions as the Figure (Kanizsa and
Gerbino 1976; see also Liu et al. 1999).

This tendency is also shown by the model:
the entropy of the solution in figure 6A, i.e.,

when the convex regions are Figure, was 0.48+

0.03 (see Appendix B for how confidence in-
tervals were computed). In contrast, the en-
tropy for the other globally-consistent solu-
tion, i.e. when the concave regions are pre-
sumed Figure, was 0.71 + 0.03. (Globally
inconsistent solutions produced even higher
entropies and will not be discussed further.)

This difference between the two globally
consistent solutions is a direct result of con-
vexity. As one moves away from an edge
into the Figural, convex region in figure 6A,
the values of P(k) fall off from 1 (turn from
white to gray), and then start to rise again
as one approaches the edge on the other side
of the region. Similarly, the P(k) values for
units on the concave, Ground side increase
from O (turn from black to gray), and then
decrease back. However, the fall off from 1
on the convex side is slower than the rise
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Figure 6: The effect of convexity on Fig-
ure/Ground organization. A, The candidate
organization P for a globally consistent set
of F/G assignments where the convex re-
gions are be Figure. B, A cross section
showing P(k) as a function of the distance
of Figural unit & from the edge (solid curve).
The dashed curve shows P(k) for G (back-
ground) units, and the dotted curve shows
a reflected version of 1 — P(k) for the same
units, allowing the faster decay of the G
units to be compared directly with the slower
decay of the F units. C, Plots of the decay
of P(k) and 1 — P(k) for F and G units, re-
spectively, as a function of distance from the
edge. Three levels of convexity are shown,
decreasing from top.



from 0 on the concave side. To illustrate
this difference more clearly, panel B shows a
graph of P(k) for units which lie along a cen-
tral horizontal cross section. (For simplic-
ity, only one cycle of the solution is shown.)
The solid curve denotes the value of P(k) for
F units, and the dashed curve for G units.
To enable direct comparison, the values of
(1 — P(k)) for the G units have been “re-
flected” about the edge and redrawn on the
Figural (convex) side with a dotted line. In
section 2.3.3 it was shown that the entropy
of the other globally-consistent solution can
be derived from the (1 — P(k)) values of the
G units in this solution. The faster decay of
the G units therefore explains the higher en-
tropy for the other solution, where the con-
cave regions are considered Figure.

The effect of convexity depends on the cur-
vature of the edge: the more curved the edge,
the more mutual reinforcement there is be-
tween the F units on the convex side of the
edge (see figure 3). As a result, the differ-
ence in the rates of decay on the convex and
concave sides increases with curvature. This
is shown in figure 6C. The values of P(k)
for the F units and of (1 — P(k)) for the G
units are plotted for three levels of curvature
(the lowest level is zero, i.e., straight edges,
for which the two curves coincide.) Conse-
quently, the values of the Figural entropies
for the two solutions (convex regions are F
versus concave regions are F') become closer
and closer as the curvature decreases, and
coincide when the edges are straight. This
predicts that the lower curvature images will
give rise to more perceptual bi-stability.

Note that the effect of convexity is in con-
flict with another factor: the distance of a
unit from the edge. A unit at the center of a
convex region of our image was always fur-
ther away from the edges than a unit at the
center of a concave region (cf. figure 6A).
When all other factors are equal, then the
greater the distance from the edges, the more
decay a unit suffers. Nevertheless, the effect
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of convexity more than compensates for this
attenuation.

Another form of conflict between two fac-
tors — convexity and closure — is when the
circumference of an enclosed region contains
portions which are concave (e.g., a kidney
bean shape.) Near those portions, F units
on the “in” side of the curve will decay faster
than G units on the “out”. But since the re-
gion is enclosed, there are always more por-
tions of its circumference which are convex
(with respect to its inside), with the net re-
sult being that the candidate organization
where the enclosed region is F prevails (data
not shown).

Next, we discuss the model’s behavior with
perceptually ambiguous images. At first sight,
one might expect that the model will sig-
nal ambiguity by settling into a state where
many units have P(k) = 0.5. However, this
would not be consistent with perception: am-
biguous images lead to multi-stability, where
there are several (typically two) distinct con-
figurations, each with well-defined Figure and
Ground regions. Upon prolonged viewing,
which configuration is experienced alternates
— but at any given moment, there is a definite
sense which regions are Figure. Therefore,
for ambiguous images, the model should gen-
erate several candidate organizations with
low entropy (i.e., few units near 0.5). The
more comparable these entropies are, the more
balanced the competing percepts would be.
Conversely, significant differences between the
(low) entropies means that one of the per-
cepts would be more dominant.

To test these predictions, we ran the model
on the perceptually bistable image shown in
figure 1 (Kanizsa and Gerbino 1976; Kanizsa
1979). The Figural entropy of the globally
consistent organization with the yellow re-
gions as Figure is 0.42+0.02, and for the blue
regions as Figure it is 0.45 + 0.02. The Fig-
ural entropies for globally inconsistent con-
figurations, in contrast, were much higher,
averaging around 0.70. These results are in
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Figure 7: Like figure 1, this ambiguous image also leads to
perceptual bi-stability, but the greater degree of convexity here
leads to a stronger dominance of the blue regions as Figure

(Adapted from Kanizsa 1979.)

good agreement with the perception of this
image. The close values of the two globally
consistent organizations predict that both
would be perceived. At the same time, the
slightly lower entropy of the “yellow is Fig-
ure” interpretation predicts a dominance of
this percept.

Kanizsa and Gerbino (1976) attributed the
advantage of the yellow regions in figure 1
as Figure to convexity. Note, however, that
these regions are not convex in the strict,
mathematical sense of the word. It is pos-
sible, in principle, to quantify intermediate
degrees of convexity (although we will not
do this here). A shape which is convex in
the usual sense (e.g., the ellipse or the light
regions in figure 6) would get a score of (say)
1, while the yellow regions in figure 1 would
get a lower score, but yet higher than the
blue regions. It is interesting that both the
model and human perception show sensitiv-
ity to such intermediate levels of convexity.
Kanizsa (1979) was evidently aware of this
nuance. In discussing figure 7, he noted that
the convexity there was “more accentuated”
(than in figure 1), and that the dominance of
the convex regions was, in turn, stronger (pg.
109). The results the model gives for this im-
age reflect this, too: the entropy for the blue
regions as Figure is 0.48 + 0.03, while that
of the yellow regions as Figure is 0.57 £ 0.03.
This difference is larger than that obtained
for figure 1, but smaller that that obtained
for the ellipse (see also Pao, Geiger and Ru-
bin 1999).

Kanizsa and Gerbino (1976) used figures
1 and 7 to demonstrate an additional point,
which is that convexity wins over symme-
try: in both images, the less-convex regions
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are symmetric, but nevertheless perception
is dominated by the non-symmetric, but more-
convex regions. Our model suggests that
the visual system’s greater sensitivity to one
global property (convexity) over another (sym-
metry) may be related to what can be com-
puted by networks of locally connected units.

Next, we consider the effect of size on Fig-
ure/Ground organization. Graham (1929)
found that smaller regions tend to be per-
ceived as Figure. To isolate the effect of
size in our model, we used images comprised
of parallel strips of alternating widths. The
strips differed only in size, i.e., no differences
could arise from closure or convexity effects.
We created a set of images with varying rela-
tive strip sizes. For each image we computed
the Figural entropy for the two globally con-
sistent solutions. The results are shown in
figure 8. For all images except when the
strips were of equal width, the Figural en-
tropy was significantly lower when the nar-
rower strips were F. This effect grows as the
difference in size increases.

What is the cause for the effect of size?
As in the case of convexity, the difference
in entropies results from differences in de-
cay from the 1,0 anchored values near the
edges. However, here the difference does not
come from the rate of decay: as was shown
in figure 6¢, for a straight edge the rate of
decay is equal on the F and G sides. In-
stead, the effect of size arises because the
decay extends further for the wider strips, re-
sulting in a higher proportion of units with
P(k) far from 1 or 0. As discussed in sec-
tion 2.3.2, the decay occurs because the non-
border units have an anchoring value of 0.5.
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Figure 8: Effect of relative size on F/G organi-
zation. The entropy of the two globally consis-
tent solution is shown for images with different
ratios of strip widths. Similar to perception, the
model shows a preference for the thinner strips
to be Figure.

The third term in equation (1), which penal-
izes for deviations from this anchored value,
is weighted by the small parameter v. The
rate of decay therefore depends on the value
of v. Large values will lead to fast decay; as
v is taken to be smaller and smaller, there
will be more and more propagation of the
anchored values (1,0) from the border units
into the depth of the regions. Therefore, the
graphs shown in figure 8b will change with
a different choice of v. Nevertheless, as long
as v is non-zero, there will be an effect of
size. The perceptual effect of size therefore
supports the notion that non-border units
should have some small “inertia” towards an
undecided F/G state. The specific way of
implementing this may take different forms.
In our model, v was set for this image and
then its value was chosen according to a spe-
cific scaling law for the other images; see
Appendix B). More experimental data are
needed in order to constrain v or, more gen-
erally, explore the implementation of F/G
decay away from edges (as well as its poten-
tial dependence on scale.)

The images we have considered so far dif-
fered in several ways, but there is also an
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important property which they all shared.
In all cases, the contours that bound the re-
gions perceived as Figure coincided with the
luminance (and/or color) edges in the im-
age. In terms of the model, this meant that
these images yielded solutions that were al-
ways in perfect agreement with both Prin-
ciples (i) and (ii): there were F/G bound-
aries along all luminance edges, and there
were no F/G boundaries elsewhere. (In the
case of ambiguous images, the polarity of the
F/G boundaries could reverse, perceptually
as well as in the model, but the boundaries
always coincided with the luminance edges
in the image.) There are, however, images
that give rise to percepts which deviate from
one or both Principles (i) and (ii) in places.
The first class of such images we consider are
those that contain figures outlined by open
contours. Outlined figures can give rise to a
sense of an enclosed region even when this
region is not bound by a luminance edge all
around. A simple example is shown in figure
9A. Observers report perceiving an enclosed,
near-elliptical Figural region. Although it
may be difficult to introspect what happens
(perceptually) in the vicinity of the gap, for-
mally there must be a transition between F
for units inside and G for those outside. This
is at odds with Principle (ii), which stated
that F/G transitions are unlikely where no
luminance edges are present. But the model
is nevertheless capable of handling this sit-
uation. The reason is that the implemen-
tation of Principle (ii) via minimization of
& allowed for deviations from it: F/G tran-
sitions away from edges are penalized, but
they are not banned.

To run the model on this image, we treated
the outlining contour the same way we have
treated luminance edges so far. Panels B
and C show two globally consistent candi-
date organizations with the Figure units on
the inside versus outside, respectively. Panel
D shows a globally inconsistent organization
where the polarity of the F/G assignments



Figure 9: How the region-based model interprets figures outlined by open contours. A:, Perceptually,
the image gives rise to a sense of an enclosed Figural region even though it is not bound by a luminance
edge all around. B, C': Globally consistent candidate organizations where the F units were set on the
inside and outside, respectively. D: A globally inconsistent organization.

reverse between different anchoring opera-
tors. The qualitative resemblance to the three
candidate organizations shown for the ellipse
(panels 4D-F) is evident. The entropies of
the three organizations in 9B-D are 0.46, 0.71
and 0.73, respectively. The model thus pro-
duces a nearly-elliptical Figural region (panel
B), in accordance with perception. Upon
closer inspection, traces of the gap in the
outlining contour can be seen in the solution.
Across the two sides of the outline, there
are sharp F/G transitions also in the por-
tions where no anchoring operators were ac-
tivated. (This is because the coefficients ju;
in the cost function, eq. (1), equal zero when
units k and j are separated by an edge.) In
contrast, between the two ends of the out-
line, the transition between F (P(k) > 0.5)
and G (P(k) < 0.5) is more gradual. This is
because, in the absence of a luminance con-
tour there, the coefficients p; are non-zero,
enforcing a smooth transition between F and
G.

Region-based models thus offer a natural
way to interpret how fragmentary edge in-
formation can give rise to complete, enclosed
Figural regions. Importantly, this can hap-
pen even in the absence of “good continua-
tion” of the contour fragments — as in the
case for figure 9a. This is in contrast with
contour based models, which do not offer a
natural way to complete regions when good
continuation is absent. The advantage of
the region-based approach follows from its
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stated goal, to find Figural regions, and the
resulting distinction it makes between lumi-
nance edges and F /G transitions.

Another class of images that give rise to
percepts where edge information and F/G
transitions do not coincide — i.e., when Prin-
ciples (i) and/or (ii) are violated — is those
that give rise to globally inconsistent F/G
organizations. An example is shown in fig-
ure 10A. Observers report that there are two
“lobe-shaped” Figural regions, a blue one on
the left and a yellow one on the right. Fol-
lowing the single luminance edge that bounds
these two regions, it is evident that the per-
cept just described involves a reversal of the
F/G polarity at some point. This suggests
that global consistency is not, in general,
an absolute perceptual constraint, and that
other factors may override it. This impor-
tant observation was already made by Rubin
(1921, cf. figure 2).

To study the behavior of the model for this
image, we compare several different candi-
date organizations. We first consider a glob-
ally consistent organization, shown in panel
B. Here, the yellow region was taken as Fig-
ure, leading to the right-hand lobe being Fig-
ure and the left lobe as part of the back-
ground. This organization (which, as already
mentioned, does not correspond to percep-
tion) yields a Figural entropy of 0.71 4+ 0.02.
Next, we flipped the F /G assignments of the
anchoring operators around the left lobe, to
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Figure 10: A: This image gives rise to a globally inconsistent Figure/Ground organization. Observers
report perceiving two lobe-shaped Figural regions, a blue one on the left and a yellow one on the right,
but this necessitates a reversal of the F/G polarity along the continuous contour that bounds both. B: A
globally consistent candidate organization. C: When the polarity of the F/G assignments around the left
lobe is reversed, the organization is not longer globally consistent, but nevertheless yields lower entropy.
D: The output of the model based on the candidate organization in C'yields, in addition to the two
Figural lobes, regions which are not observed perceptually. E: The organization observed perceptually
is achieved when anchoring operators are suppressed from enforcing F/G flips along the vertical edges

that separate the blue and yellow sides.

make the resulting organization better re-
semble the reported percept. This is shown
in panel C. The Figural entropy is lower:
0.56 +0.02. This organization, however, still
differs somewhat from that observed percep-
tually. This can be seen more easily in panel
D, where the background units (P(k) < 0.5)
were all set to black, making the F/G tran-
sitions clearly visible. In addition to the two
lobes, this organization contains pie-shaped
Figural regions which are not observed per-
ceptually. Moreover, parts of the F/G tran-
sitions around these regions occur where there
are no luminance edges in the image. As
discussed previously, such “spurious” transi-
tions are an inevitable result of F/G assign-
ments which are globally inconsistent. (Flip-
ping the F /G assignments of the units around
the left lobe forced a transition between the
G units outside it and the F units along the
left sides of the vertical edges.) The fact
that the organization in panel C nevertheless
yielded a lower entropy than that in panel
B reflects the model’s strong preference for
enclosed, smaller regions to be the Figure.
The mutual reinforcement of Figure units in-
side the lobes more than compensated for the
penalty incurred for the ‘gray’ (P(k) ~ 0.5)
units along the spurious F/G transition.
Enforcing F /G transitions along all edges,
including the vertical ones, was done in or-
der to adhere to Principle (i), which stated
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that F/G transitions are likely along lumi-
nance edges. The reported percept, however,
suggests that for the image in panel A, this
principle may need to be reconsidered. Re-
porting the two lobes as the Figures in the
image implies, among other things, that the
vertical luminance edges are not perceived as
F/G transitions. We therefore tested what
happens if we suppressed the anchoring oper-
ators along the vertical edges. The result of
minimizing equation (1) for this modified set
of F/G assignments is shown in panel E. The
entropy of this organization is 0.34 + 0.04.
Note, however, that in spite of its obvious
advantage, this organization will not be ob-
tained by running the version of the model
described here. The present version auto-
matically enforces F/G flips across all lumi-
nance edges (i.e., it can only give organiza-
tions like those in panels B and C). Panel
E was obtained by manually suppressing se-
lect luminance edges from being loci of F/G
transitions, as guided by our knowledge of
the percept. In subsection 2.2, we mentioned
that there should be mechanisms that allow
the suppression of certain luminance edges
from being considered as F/G transitions.
There, we gave as an example the case of
texture. The image in figure 10A serves as
a reminder that, more generally, the visual
system also has the means to admit the pos-
sibility of sharp luminance variations on a



single surface (due to a change of surface
property, e.g., paint color, or to illumination,
e.g., shadows), or the existence of two abut-
ting surfaces. The present model focuses on
how to assign F/G polarity to edges, which
is a major component in segmenting the im-
age. But clearly, the ultimate interpretation
of any image must involve many other fac-
tors, and possibly more than one iteration,
until a self-consistent, ecologically valid in-
terpretation of the scene is reached.

4. Discussion

We presented a model for Figure/Ground
(F/G) segregation. The starting point of the
model is the need to determine which of the
two sides of an edge is in front (the Figure),
and which side is in the background. This
“border ownership” problem is particularly
severe when the units have only local infor-
mation (small receptive fields), since its reso-
lution requires integrating information from
an image region approximately of the size of
the Figure. Zhou et al. (2000) reported that
early visual cortical cells (V1/V2/V4) show
sensitivity to the polarity of border owner-
ship induced by Figures much larger than
their “minimum response fields”. We there-
fore asked whether those effects could be ac-
counted for by computations performed in
those early areas, or whether receiving global
information via feedback from higher areas
was necessary. We found that Figure/Ground
segregation can indeed be computed by a
model network of small receptive-field units
which interact only locally (nearest-neighbor
connections). Importantly, the model shows
sensitivity to global image properties in a
way similar to human perception: it prefers
enclosed, smaller or “more convex” regions
as the Figure. This suggests that the sen-
sitivity to Figure/Ground polarity found by
Zhou et al. (2000) for early cells (V1, V2 and
V4) may be computed in those regions, i.e.,
it may not necessitate feedback from higher
areas.
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4.1. Timing considerations. What allows
the model to show global effects despite hav-
ing only local connections is that signals can
propagate through the network iteratively.
The iterations lead to long-range propaga-
tion of information as the system evolves with
time. This raises a natural question: can
such a model be fast enough to account for
the rapid F/G segregation effects observed
experimentally? Zhou et al.(2000) concluded
from their results (figure 20) that “the corti-
cal processing that leads to border-ownership
discrimination requires no more than ~ 25
msec.” This poses a challenge to iteration-
based models such as ours, but does not ex-
clude them a-priori. The number of itera-
tions needed for global effects to emerge is
no more than half the number of units that
span the most distant points in the Figure.
Here, we restricted the model units to be of
a single scale, to keep things simple. But
in reality computations like those described
here would need to be performed at multi-
ple scales, including somewhat coarse ones.
Cross-talk between the different scales could
then allow the system to identify the ap-
propriate scale for analysis of a given Fig-
ure — that which converges rapidly to the
most stable solution. In such a more realis-
tic system, a relatively small number of it-
erations may suffice for a wide range of Fig-
ural surfaces. For modestly sized Figures,
say those bound within 5°, as few as 2-3
iterations can provide an adequate solution
even with 1° receptive field units. For larger
Figural regions, the computations would be
carried out by units with larger receptive
fields, which are known to exist in early cor-
tex (at least 3° parafoveally in V2, cf. Foster
et al. 1985; see also Van Essen et al. 1984;
Maunsell and Newsome 1987; Sceniak et al.
2001.) Given estimates of the extent of lat-
eral connections, and how rapidly those sig-
nals may spread (T’so et al. 1986; Grinvald
et al. 1994; Das and Gilbert 1995; see also
Movshon and Newsome 1996; Girard et al.



2001; Hupe et al. 2001 for between-area it-
erations times), Figural regions as large as
30° may still be resolved within time frames
of the order of 25 msec. Nevertheless, even
with multiple-scale computations, iteration-
based models predict a trend of slower con-
vergence for computations on larger regions
(cf. Paradiso and Nakayama 1991.) Further
behavioral and physiological experiments are
needed to test this prediction, that the time
required for border-ownership resolution
should grow with Figure size.

4.2. Region-based processes in physiol-
ogy and perception. An important prop-
erty of the present model is that it is region-
based. The iterative propagation of signals
gives rise to global Figure/Ground effects be-
cause these signals are allowed to propagate
into homogenous (edge-free) regions in the
image (recall figure 3). Although region-
based computations have not been empha-
sized in experimental or theoretical studies
in vision, there is evidence for the existence
of such processes. Cells whose receptive fields
fall within homogeneous regions can show
differential responses if the apparent bright-
ness of the region they represent is affected
by changes to the far surround (Rossi et al.
1996; MacEvoy et al. 1998; Rossi and Par-
adiso 1999.) Several other studies (Lamme

1995; Zipser et al.1996; Lee et al.1998; Lamme

et al. 1999) showed that cells within homo-
geneous, or homogeneously textured regions
exhibit heightened activity if those regions
belong to a Figure (but see Rossi et al.2001.)
The increased activity had a latency of 30-40
ms relative to the onset of cells’ responses.
Interestingly, some of the later studies re-
ported that the increased activity was greater
near the edge than away from it, towards the
center of the Figure (Lee et al. 1998; Lamme
et al. 1999; Rossi et al. 2001) — similar to
what happens in our model.

Psychophysical studies have also focused
on the role of contour-based processes for

24

segmentation, especially for perceptual com-
pletion of occluded and illusory surfaces (Kell-
man and Shipley 1991; Ringach and Shap-
ley 1996; Rubin 2001b; but see Mumford
et al. 1987). Nevertheless, there are percep-
tual phenomena that are more naturally ex-
plained by positing region-based processes.
As shown in this paper, the preference for
enclosed, convex regions to be perceived as
Figure is one such example. More examples
can be found in the domain of illusory con-
tours. Consider panels A and B in figure
11: both show a group of lines which termi-
nate along a circular arc. But observers re-
port quite different percepts in the two cases:
the terminators in panel A induce an illu-
sory contour (IC) which bounds an occlud-
ing white surface, while such an IC is not
reported for panel B. Models of how ICs are
induced by line terminators have emphasized
computations along the contour defined by
the terminators (Heitger et al. 1992). But
such a contour-based approach cannot ac-
count for the perceptual difference in pan-
els A and B, since the shape of the contour
along the lines’ terminators is identical in
the two cases (panel C). In contrast, if sig-
nals propagate not only along the contour,
but also into the region posited as an oc-
cluder, there would be more mutual enhance-
ment in A (see panel D), similarly to how a
preference for convexity arises in our region-
based model. Other examples for IC phe-
nomena that are more naturally explained
by a region-based approach can be found in
Gillam (1987; figures 30.8, 30.9). Indeed,
the emergence of illusory contours is inti-
mately related to the border ownership prob-
lem (Nakayama et al. 1995), and therefore
it is quite likely that region-based processes
play a part in IC-related computations as
well.

From a computational point of view, region-
based models have several attractive features,
which explains their recent popularity in com-
puter vision (e.g., Zhu et al. 1995; Shi and
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Figure 11: Region-based effects in the formation of illusory contours (ICs). The terminators in panel A
give rise to an IC which bounds an occluding white surface on the left. In contrast, no IC is observed in
panel B. The difference in the perception of the two images cannot be explained by a purely contour-
based approach, as the contours traced by the terminators are identical in the two cases (panel C).
Positing region-based computations, on the other hand, provides a natural explanation (panel D.)

Malik 1997; Geiger et al. 1998; Sharon et al.

2000). In general, in such models the output
of the computation is a collection of pixels,
grouped together and labeled as a ‘region’.
Such regions are naturally bounded by closed
contours, and therefore region-based models
can be less sensitive to image noise that in-
terrupts parts of a luminance edge. (Recall,
for example, figure 9, which readily yielded a
Figural region in our model, but would pose
a problem for contour based models.) Fur-
thermore, the bounding contours of the re-
gions produced as output are globally consis-
tent by definition, thus eliminating the need
to test for self-consistency of traced contours
as valid surface boundaries (Williams and
Hanson 1996; Williams 1997.)

4.3. Probability and neural representa-
tion. A key feature of the model is the use
of intermediate values to represent proba-
bilities that image locations are Figure or
background. It is therefore natural to won-
der about the neural plausibility of such a
probabilistic scheme. While in the present
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model we do not commit to any specific neu-
ral implementation, a few possibilities can
be suggested. One, there may be a single
population of neurons whose role is to sig-
nal whether the location they correspond to
is part of the Figure (P(k) = 1), in which
case they fire at a maximal rate, or in the
background (P(k) = 0), in which case they
are quiescent. In this case, intermediate F/G
values would mean that the neurons are fir-
ing less than their maximal rate. Another
possibility is to have two populations of cells:
at each location, there would be a corre-
sponding “F neuron” which fires maximally
if the location is part of the Figure and a “G
neuron” which fires if the location is part
of the background. The F and G neurons
would be mutually inhibitory since, ideally,
only one of them fires, corresponding to P(k)
values of 1 and 0. The less desirable case
in which both neurons fire (at intermediate
rates) would correspond to an intermediate
value of P(k). This latter scheme is similar
to that favored by Zhou et al. (2000) to ac-
count for their results (see their figure 28).



Interestingly, this scheme can offer an alter-
native to the “temporal binding” hypothe-
sis for how to encode that different neurons
belong to the same surface (cf. Finkel and
Sajda 1992; Wang and Terman 1997; Roskies
1999 and references therein). Instead of us-
ing correlated firing as a code, the fact that
a collection of F neurons are active simul-
taneously may itself signal that they belong
to the same surface, even for non-contiguous
populations. (At its simplest form, however,
this mechanism only allows the signaling of
one Figural surface at any given moment.)
The probabilistic nature of the activity of
units in the model has an appealing advan-
tage: it offers a natural way to incorporate
additional cues in a distributed way. In the
present version, the setting of the F/G as-
signments by anchoring operators was unbi-
ased, i.e., there were equal chances for F to
be on either side of an edge. But there may
be other sources of information in the im-
age (or image statistics) about which side
is more likely to be in front. Such infor-
mation is easily incorporated into the model
by biasing the probability in favor of a cer-
tain side to be F. The most obvious exam-
ple is stereoscopic depth, which can disam-
biguate the relative depth of (all or parts of)
an edge. There are also monocular (picto-
rial) cues for depth stratification, such as T-
junctions (Rubin 2001b) and concave cusps
(Stevens and Brookes 1988), which could eas-
ily be incorporated in a probabilistic scheme.
Global biases about depth relationships can
be implemented also. For example: the lower
parts of images tend to be perceived as nearer
than the upper parts (presumably reflecting
the learned statistics of the ground plane.)
This effect can override the preference for
convex regions to be Figure: when a region
is divided horizontally by a curved edge, the
bottom part is often seen as Figure even if
it lies on the concave side of the edge. This
bias can be implemented in the model by
having Py(k) change as a function of the y
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value (height) of the unit in the image, i.e.,
by introducing priors about the probability
of lower and upper parts in the image to be
Figure. In this regard, the model presented
here is related to “Bayesian networks” and
“belief nets” which have been used for im-
age analysis in several domains (Weiss 1997;
Freeman and Viola 1998).

4.4. Further extensions to the model.
The model presented here was kept as sim-
ple as possible in order to isolate and high-
light the main ideas it implements. To make
it a realistic model of how F/G segregation
may be implemented in the brain, however,
it needs to me extended in many directions.
Some of these extensions have already been
mentioned. Below, we revisit the most im-
portant one and then list further directions
to extend the model which were not discussed
before.

An important modification to the model
was mentioned in section 2.2. The present,
two-stage version requires a search through
the set of candidate organizations to find the
low-entropy ones. This was done in order to
present the principles of the model in their
simplest form, but it is not biologically plau-
sible. A one-stage model which minimizes a
cost function that incorporates both £ and &
can be achieved by introducing local interac-
tions which favor consistent polarity of F/G
assignments between neighboring anchoring
operators (Pugh and Rubin, in preparation).

Another limitation of the present version
of the model is that it does not represent
more than two layers of depth at a time (the
Figure and the Ground), and this obviously
needs to be addressed in order to handle real-
world occlusion situations. (This does not
necessarily imply a need to invoke numerous
layers of F/G units: an alternative approach
may be to combine the model with an atten-
tional /control module, so that detailed seg-
mentation is performed on only a piece of
the image at a time. In support of this idea,
there is evidence that human observers are



able to perform only rather crude segmen-
tation on “busy” images that contain many
surfaces; cf. Gurnsey et al. 1996) A related
problem is that the present model does not
have a mechanism to allow the background
(or, more generally, occluded surfaces) to con-
tinue behind the Figure. This is necessary
for correct recovery of the shape of surfaces,
including linking disjoint region into a uni-
tary surface. Such “perceptual completion”
processes clearly take place in human vision
(E. Rubin 1921, 1958; Nakayama et al. 1995;
Driver and Baylis 1996), and neural corre-
lates of it have recently been reported (Baylis
and Driver 2001; Kourtzi and Kanwisher 2001;
Rubin 2001a). Future extensions of the model
should therefore incorporate completion mech-
anisms.

The region-based model we presented here
makes minimal contact with contour-based
computations: the only way in which con-
tours were used was to determine where F/G
transitions are likely to occur (Principle i).
However, in reality it is likely that there is in-
tensive cross-talk between contour-based and
region-based computations. One example of
how such cross-talk may significantly improve
the performance of the model is by mak-
ing use of local contour-orientation informa-
tion. In the present version, signals propa-
gate isotropically in all directions (cf. fig-
ure 3). Preliminary results suggest that if
stronger signals are sent in the direction or-
thogonal to the local edge orientation, the
mutual enhancement on the convex/enclosed
side of the edge is more pronounced (Pao
2001). Such “directional diffusion” therefore
offers a way to significantly enhance F /G res-
olution, and possibly also accelerate conver-
gence.

Finally, the present model focused entirely
on how Figure/Ground resolution may be
achieved in a stimulus-driven way, relying
solely on the geometrical properties of shapes
in the image. But it is known that high-level
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factors such as object knowledge and atten-
tion can affect F/G resolution (Peterson and
Gibson 1994; Driver and Baylis 1998). Any
ultimate model of segmentation would un-
doubtedly need to incorporate “top-down”
information alongside “bottom-up” compu-
tations like those described here. In addi-
tion to enabling high-level effects to emerge,
feedback from higher cortical areas may also
facilitate the computations in complex situ-
ations, e.g. for very large Figures or when
the image is very cluttered (cf. Kienker et
al. 1986).
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AprPENDIX A. Computing P
The Algebraic approach

To find the function P which minimizes &
we use the fact that the derivative of any well-
behaved function is zero at points where the
function is minimal (or maximal). This is true
also for functions of more than one variable,
such as £(Q(k)). Therefore, we take the deriva-
tives of £ as a function of Q(k) for all units k
and demand that these derivatives equal zero:

oe _
0oQ

The derivatives of £ are given by

(A1) 0.

o)) ;
5005 = 4]-621% 1 [Q(k) — Q(4)]
(A2) + 2 [Q(k) — Po(k)].

The first term comes from differentiating the
first term in equation (1), using the symme-
try pg; = pjk. Np denotes the set of nearest
neighbors of unit k, as before. The second term
unifies the derivatives of the second and third
terms of equation (1); the coefficient vy equals
1 if unit k£ is a border unit and v otherwise.
Referring back to figure 5, note that the coef-
ficients of the first term in equation A2 corre-
spond to the connection weights between unit
k and its neighbors j in the bottom layer, and
the coefficient in the second term corresponds
to the connection from the unit storing Py (k) in
the intermediate later to unit k. Thus, the lo-
cal neighborhood of unit £ in the network com-
putes the value of %fk), i.e., the effect of a small

change in (k) on the cost function €.
Equation (A2) is linear in Q, since it is the
derivative of £ which is quadratic in Q. There-
fore, equation (A1) can be solved as a set of N
linear equations, determining the minimizer P.
This is the algebraic approach. In the generic



case, such a system of N equations with N un-
knowns would take O(N3) operations to solve.
But since each unit only interacts with its near-
est neighbors, this makes the linear system in
equation (A2) sparse. This allows the efficient
methods developed specifically for sparse sys-
tems (Dongarra et al. 1979) to be applied. These
methods find P quickly with O(NN) computa-
tions.

The dynamical-systems approach

The algebraic approach is useful for finding
P numerically, but it has a significant disadvan-
tage in terms of physiological plausibility. We
would not want to suppose that a neural system
uses sparse linear algebra (at least, not explic-
itly). Therefore, it is important to show that
the computation of P has an alternative formu-
lation, one that lends itself readily to network
implementation. Eq. (A2) gives the value of the
gradient of £ for any Q. Instead of equating the
gradient to zero, as in the algebraic approach,
we use it to define a dynamical system. In this
case, Q evolves from one moment to the next in
such a way as to decrease & the fastest. Specif-
ically, for each unit k

o€

(43) o0

Q(k,t + At) = Q(k, ) — At -

with %&) given by equation (A2). Since the
network in figure 5 computes these derivatives
(locally) for every k, equation A3 therefore shows
that it will converge towards the state P which
minimizes the cost function £. In theory, one
needs to let the system evolve infinitely to ob-
tain this asymptotic value. However, for a de-
sired degree of precision, P will be approximated
in a finite number of time steps.

In the continuum limit (N — oo with a fixed
image size and At — 0), eq. (A3) yields a par-
tial differential equation (PDE) which is also
used to describe heat flow in the presence of
external heat sources. This is useful because
it makes it possible to draw insights about the
time evolution of the model from known prop-
erties of heat flow.

32

APPENDIX B. Numerical methods and
parameters

The model was simulated with Matlab (The
MathWorks, Inc., version 5.3.1.29215a, 1999.)
The input image, represented by an m x n ma-
trix J with values of 0 and 1, was edge-detected
with the Canny operator. Anchoring operators
were then placed on the image with a specified
high density, disallowing overlap of two or more
operators. Each anchoring operators was then
checked to see if an edge fell within it, and if
so, all units within it were labeled border units.
The border units were given F/G assignments
Py according to the following rule: for the two
globally consistent organizations, each unit was
given the value of the image J at the same loca-
tion, or of its contrast-reversed image 1 — J, re-
spectively. For all other organizations, for each
anchoring operator the border units on one side
of the edge received a value of 1 and those on
the other side received 0, with a random deci-
sion which side receives which value. Finally, all
non-border units receive a value of Py = 0.5.

Next, we find P which minimizes the cost
function € (eq. 1). As discussed in subsection
2.3.2, this corresponds to solving the linear sys-
tem given by equations (A1-A2).

Treating the unknown P as a vector of length
N (= mxmn), those equations can be rewritten as
AP = ¢, where A is a symmetric N x N matrix
and Cis a vector of length N. The matrix A is
sparse, with at most five nonzero entries in each
row. Using the notation kyest, Keast, knorth and
ksoutn for the four nearest neighbors of unit &
(their indices are k — 1, k+ 1, k —n and k + n,
respectively; see figure 5), the k-th row in the
linear system is:

Mwest(k) [P(kwest) - P(k)]
+ Meast (k) [P(keast) — P (k)]
+ Muortn (k) [P(knortn) — P (k)]
+ Maouth (k) [P(Ksoutn) — P(k)]
— V(k)P(k) = =V (k)Po(k).

(B1)

The diffusion matrices are defined by:

1% J(kwest)J(k)
+ % (1 — J(kwest)(l - J<k))

Mwest (k')
(B2)



image size | lengthscale v extension
Fig.1 | 200 x 200 | 30 pixels | 0.000556 | 27 pixels
Fig.6 | 70 x 210 70 pixels 0.0002 | 10 pixels
Fig.7 | 67 x 331 50 pixels 0.0002 | 36 pixels
Fig.8 | 210 x 210 | 30 pixels | 0.000556 | 27 pixels
Fig.10 | 180 x 220 | 50 pixels 0.0002 | 36 pixels
Images used for illustrative purposes
Fig.4 | 100 x 100 | 50 pixels 0.0004 | 36 pixels
Fig.9 86 x 80 50 pixels 0.0004 | 36 pixels

Table 1:

with Megst, Mportn and Mg, defined analo-
gously. They implement the requirement that
the value of 5, the connection between neigh-
boring units k£ and j, should be zero if they
are separated by an edge, and p otherwise (first
term in eq. 1). V(k) is 1 for border units and v
for non-border units, implementing the second
and third terms in eq. (1).

Equation (B1) holds for each unit that is not
on the boundary of the network (i.e., n < k <
n(m —1) and ((k —1) mod n) # 0,n —1). For
units on the boundary, one has to choose what
boundary conditions to apply, thus determin-
ing the remaining 2n + 2(m — 2) equations. We
used Dirichlet boundary conditions: P(k) = 0.5
for all £ on the boundary. As a result, the P
values go to 0.5 as one approaches the bound-
ary. To prevent the boundary conditions from
affecting the output of the model, we solved for
P on an ‘extended’ version of the image which
contained an additional band of units around
the boundary, and then ‘cropped’ it back be-
fore computing the Figural entropy. (To obtain
the extended version of an image we simply de-
fined the target image as a cropped version of a
larger image.) The width of the band was deter-
mined empirically to be such that the effect of
the boundary dissipated faster than the band
width. (The effect of the boundary was con-
sidered eliminated if the change in the entropy
produced by extending the band further was in
the fourth significant digit or higher.) All the
results shown in paper are for the cropped im-
ages. Table 1 lists the widths of the band used
for each image.
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Finally, the entropy was computed according
to eq. (2). When confidence intervals are given,
they were computed by generating ten sets of
anchoring operators, producing Py for each ac-
cording to the case at hand (globally consistent
with polarity of J or 1 — J, or globally incon-
sistent), and computing P and the resulting en-
tropy for each. The values given for the entropy
represent mean + 2std.

Free parameters. Their values were chosen as
follows:

The anchoring operator were always of diam-
eter 7 units, except for figures 4 and 9 where
they were made larger (15 units) for illustrative
purposes.

The density of the anchoring operators was 0.88+
0.05 operators per 100 units (the variability arises
from the need to eliminate overlapping opera-
tors.) This value holds for all the results shown,
except for figures 4 and 9 where they were placed
manually.

The parameter p was set to 0.1 for all the sim-
ulations shown here.

The choice of the parameter v, which controls
the rate of decay of P(k) away from the edges, is
related to the scale of the image (as measured
by number of units, not physical size.) Con-
sider the image in figure 8. It is 210 x 210 pixels
and was processed by a network of that many
units. If the same image was doubled in reso-
lution and processed by a network of 420 x 420
units without changing v, the entropy value for
the best candidate organization (as well as all
other organizations) would be different. The
reason is that the new Figural regions extend
twice as many units and therefore would suffer



comparatively more decay than before, leading
to higher Figural entropy. But this higher value
is an artifact of the different scales of the images,
i.e., it is not truly representative of a stronger
Figural organization in one of them. To pre-
serve Figural entropy when scaling an image,
v should be scaled by (1/1,)?, where [ and I,
are the old and new lengthscales, respectively.
(Strictly speaking, the diameter of the anchor-
ing operators needs to be scaled, too, but we did
not do this as we found it had a negligible ef-
fect on the results.) Generally, the appropriate
lengthscale of an image is determined not by its
overall size but rather by the size of the Figural
regions. The decay rate should be scaled with
respect to the Figure if one is to make meaning-
ful comparisons between the performance of the
model on different images. We fixed the value
of v at 0.0002 for figure 6 and then scaled it for
other images by their lengthscales as given in
Table 1. (As mentioned in the Discussion, ulti-
mately the computations would need to be done
at multiple scales, with cross-talk between the
different scales to choose the best organization.
For the present purpose of explaining the princi-
ples of the model, however, we pre-selected the
relevant scale for each image manually.)
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