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Abstract. The Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer bound-
ary conditions (PNP-FBV) describe ion transport with Faradaic reactions and have applications in
a wide variety of fields. Using an adaptive time-stepper based on a second-order variable step-size,
semi-implicit, backward differentiation formula (VSSBDF2), we observe that when the underlying
dynamics is one that would have the solutions converge to a steady state solution, the adaptive time-
stepper produces solutions that “nearly” converge to the steady state and that, simultaneously, the
time-step sizes stabilize at a limiting size dt∞. Linearizing the SBDF2 scheme about the steady state
solution, we demonstrate that the linearized scheme is conditionally stable and that this is the cause
of the adaptive time-stepper’s behaviour. Mesh-refinement, as well as a study of the eigenvectors
corresponding to the critical eigenvalues, demonstrate that the conditional stability is not due to a
time-step constraint caused by high-frequency contributions. We study the stability domain of the
linearized scheme and find that it can have corners as well as jump discontinuities.
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1. Introduction. In this article, we study the numerical stability properties of
a second-order implicit-explicit backwards differencing formula (SBDF2) as applied to
the Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer bound-
ary conditions (the PNP-FBV system). The PNP equations describe the transport
of charged species subject to diffusion and electromigration. The Poisson-Nernst-
Planck (PNP) equations describe the transport of charged species subject to diffusion
and electromigration. They have wide applicability in electrochemistry, and have been
used to model a number of different systems, including porous media [1, 2, 3, 4], micro-
electrodes [5, 6], ion-exchange membranes [7, 8], electrokinetic phenomena [9, 10, 11],
ionic liquids [12, 13], electrochemical thin films [14, 15, 16], fuel cells [17], supercapac-
itors [18], and many more. The Frumkin-Butler-Volmer boundary conditions describe
charge transfer reactions at electrodes.

The PNP-FBV system is a parabolic-elliptic system with nonlinear boundary
conditions that model reactions at the electrodes. There is a singular perturbation
parameter ε; small values of ε lead to thin boundary layers with sharp transitions to
the behaviour in the bulk. In the parameter regimes of interest, the dynamics are
strongly diffusive and so an implicit-explicit scheme is a natural approach: the linear
diffusive term is handled implicitly and the nonlinear terms are handled explicitly.

If one considers a system of ODEs of the form ut = L(u) + f(u) and applies an
r-step LMM to the system, this yields

1

dt

r∑
j=0

ajun+j =

r∑
j=0

cj Ln+j + bj fn+j =

r∑
j=0

cj A un+j + bj (Bn+j + fn+j)

where un ≈ u(ndt) approximates the true solution. The expression includes the
option of an operator splitting: L(u) = Au + B(u), where A is a matrix. If br =
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cr = 0, the scheme is explicit. Similarly, if bj = cj = 0 for 0 ≤ j ≤ r − 1 the scheme
is implicit. Of particular interest are semi-implicit schemes: cr 6= 0, br = 0 and some
cj and/or bj with 0 ≤ j ≤ r − 1 are nonzero. These are used for nonlinear problems
in which there are fast time-scales that yield numerical stability constraints on the
time-steps if explicit schemes are used.

In a semi-implicit scheme, one solves for un+r at each time-step. If there is
no splitting and L is nonlinear, this requires a (usually slow) nonlinear solve. If L is
linear, or if an operator splitting is used, finding un+r requires solving a linear system.
If the matrix does not have a “helpful” structure (such as being banded) or is a full
matrix, this can require (possibly slow) iterative methods such as GMRES for the
solution.

There have been many approaches to the challenge of “stiffness reduction” whether
in semi-implicit linear multi-step methods [19, 20, 21, 22, 23, 24, 25], Runge-Kutta
methods [26, 27, 28], matrix exponential/integrating factor methods [29, 30, 31], and
other approaches [32, 33, 34, 35]. The cited articles are provided as seminal/well-
written samples of a large literature on the topic.

The article is not about stiffness reduction. Rather, it’s about a system in which
the stiffness is well-handled by a commonly-used ImEx scheme. However, as the
solution equilibrates, the scheme becomes conditionally stable but not due to fast
time-scales at high frequencies. It is likely that some of the methods proposed in
the cited works would allow one to use knowledge of the structure of the linearized
operator about the steady-state solution so as to modify the scheme and shift it out
of the conditional stability.

For the PNP-FBV system, in [36, 37, 38], we developed and used an adaptive
time-stepping scheme based on a second-order variable step-size, semi-implicit, back-
ward differentiation formula (VSSBDF2 [39]). We considered a variety of applied
voltages and currents; the adaptive time-stepper was vital in that it could refine,
and subsequently coarsen, the time-steps in response to fast changes in the applied
forcing. However, when the applied forcing was held constant, and the underlying
physical solution relaxes to a steady state solution, the adaptive time-stepper did not
behave in the expected manner: the time-steps didn’t grow until they reached the
user-specified maximum time-step size, dtmax, and the numerical solution didn’t con-
verge to the numerical steady state. Instead, we observe that the numerical solution
gets close to, but fails to converge to, the numerical steady state and, simultaneously,
the time-step sizes stabilize at a limiting step size dt∞. In this regime, the VSSBDF2
adaptive time-stepper is effectively an SBDF2 time-stepper with time-steps equal to
dt∞.

Rosam, Jimack and Mullis [40] used an adaptive SBDF2 algorithm to study a
problem in binary alloy solidification. In their Figure 4, they appear to show time-
steps stabilizing to a constant value (i.e. thresholding), but the reason is not given:
they report that it is related to the tolerance set in the adaptive time-stepper. We
did not find such an phenomenon when we varied the tolerance; we found the same
limiting time-step size dt∞.

In this work, we perform a stability analysis of the SBDF2 scheme linearized about
the steady state solution. We demonstrate that the linearized scheme1 is conditionally

1There are articles in which an ODE or PDE is rewritten in a way that makes a certain numerical
schemes perform better. For example, ut = uux would be “linearized” by being written as ut =
αux + (u−α)ux, the time-stepping scheme would treat the αux term implicitly and the (u−α)ux



NUMERICAL STABILITY OF AN IMEX SCHEME FOR PNP EQNS 3

stable with a stability threshold dt∗. We present simulations demonstrating that
dt∞ = dt∗; this suggests the VSSBDF2 adaptive time-stepper is finding the stability
threshold. Depending on the physical parameter values, when dt = dt∗ there’s one
one eigenvector with eigenvalue −1 or there’s a pair of eigenvectors with complex
eigenvalues of magnitude 1. The eigenvectors are not highly oscillatory and when
performing the stability analysis using different spatial discretizations we find that
the stability threshold, dt∗, does not change significantly. Specifically, dt∗ doesn’t go
to zero as dx goes to zero; this shows that the conditional stability is not of “diffusive
type” in which high frequencies can grow exponentially in time if dt is too large.

The observed conditional stability is problem-specific. We used the VSSBDF2
adaptive time-steppers on several dissipative systems that had non-trivial steady
states and found that simple systems such as reaction diffusion equations did not
have asymptotically stable steady states which yielded conditionally stable schemes
when the SBDF2 scheme was linearized about them. We did find that toy models
of the PNP-BDF system did have steady states which yielded conditionally stable
schemes when the SBDF2 scheme was linearized about them [37].

The PNP-FBV system has a singular perturbation parameter ε. By varying ε, we
are able to study the stability domain to see how dt∗ depends on ε. We find that the
stability domain is not smooth — there can be corners and jump discontinuities in the
graph of dt∗(ε). Jump discontinuities are especially striking because they mean that
the same value of dt could yield a stable SBDF2 computation for one value of ε but
could result in a computation that blows up for another, close value of ε. We have not
seen this type of behaviour reported in the literature. We find that for small values
of ε the stability domain is not significantly influenced by the value of the (constant)
applied voltage or current.

The structure of the stability domain is also problem-specific. We considered
some other dissipative systems and didn’t find stability domains with corners, cusps,
or jumps; otherwise we would present results for a simpler system than the PNP-FBV
system.

The VSSBDF2 adaptive time-stepper can be used with, or without, a Richard-
son extrapolation step. Richardson extrapolation is a common way to increase the
accuracy of a scheme. We demonstrate that Richardson extrapolation can affect the
linear stability of a scheme in various ways. We give an example of a scheme that is
unconditionally stable when there is no Richardson extrapolation step and is condi-
tionally stable when there is one.

Our methods are not restricted to the PNP-FBV system or to the VSSBDF2
adaptive time-stepper. If one is using a linear multistep method (LMM) to study a
physical system that has asymptotically stable steady states, our approach is relevant
in the following ways. 1) We give a heuristic argument based on the local trunca-
tion error as to why, in general, an adaptive time-stepper would naturally find the
stability threshold if the underlying constant-time-step scheme is conditionally stable
when linearized about the steady state. As a result, if one builds an adaptive time-
stepper based on a variable-step-size version of the LMM being used, one can use
the adaptive time-stepper to explore the stability domain by computing the initial
value problem. If the time-step size stabilizes at a value dt∞, this suggests that the
underlying constant-time-step scheme is conditionally stable with stability threshold

term explicitly, and by choosing α carefully, good things happen. This is not the type of linearization
we’re referring to.
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dt∗ and dt∞ = dt∗. 2) If the adaptive time-stepper reveals that the constant-time-step
scheme is conditionally stable when linearized about the steady state, and one wishes
to compute the numerical steady state solution up to round-off error, one can do this
with confidence by using the constant-time-step scheme with a time-step size chosen
smaller than dt∞. 3) Although the adaptive time-stepper can be used to explore the
stability domain of the constant-time-step scheme when linearized about the steady
state, one still needs to linearize the scheme about the steady state and study the
eigenvalues of the linearized problem in order to to understand stability domain fea-
tures such as corners, jumps, and whether or not it’s a single real-valued eigenvalue
that goes unstable as dt exceeds dt∗. The procedure we use to linearize about the
steady state and find the eigenvalues and eigenvectors of the linearized system could
be used for any LMM.

2. The adaptive time-stepper. Consider the ODE u′ = f(u) + g(u) where
f(u) is a nonlinear term and g(u) is a stiff linear term. Given un−1 at time tn−1 =
tn − dtold and un at time tn, un+1 at time tn+1 = tn + dtnow is determined via

(1) SBDF2:
1

dt

(
3

2
un+1 − 2un +

1

2
un−1

)
= 2 f(un)− f(un−1) + g(un+1),

where the superscript notation denotes time levels: un approximates u(tn) (see, for
example, [41]). Our VSSBDF2 adaptive time-stepper is based on a second-order vari-
able step-size implicit-explicit backwards differencing formula, introduced by Wang
and Ruuth [39], as a generalization of the SBDF2 scheme:

VSSBDF2:
1

dtnow

(
1 + 2ω

1 + ω
un+1 − (1 + ω)un +

ω2

1 + ω
un−1

)
= (1 + ω)f(un)− ωf(un−1) + g(un+1),(2)

where ω = dtnow/dtold.
The VSSBDF2 adaptive time-stepper is described in detail in the companion

article [37, 38]. The key idea is: if one has computed the (approximate) solution up
to the current time, (ul, tl) for l = 0, . . . , n, one can use these solutions and the time-
stepper to choose a new time tn+1 so that the local truncation error ‖un+1−u(tn+1)‖
is “small but not too small”.

One can’t know the local truncation error if one doesn’t know the (exact) solution
u(tn+1); in practice one needs an approximation of the local trucation error. We do
this as follows. First, we choose a candidate time-step: dtnow = dtold, for example.
We then take one “coarse” step from tn − dtold and tn to tn + dtnow, using un−1

and un to create un+1
c . Next, we take one “fine” step from tn − dtold/2 and tn to

tn + dtnow/2, using u
n−1/2
f and un to create u

n+1/2
f and take a second fine step from

tn and tn + dtnow/2, using un and u
n+1/2
f to create un+1

f . We use un+1
c and un+1

f to
estimate the local truncation error [37, 38]:

(3) εn+1
c =

8 (dtold + dtnow)

7dtold + 5dtnow

(
un+1
c − un+1

f

)
≈ un+1

c − u(tn+1).

If the error is acceptable we advance in time. If the error is unacceptable we choose
a new dtnow and try again. The time-steps are constrained to by the user-specified
lower and upper bounds: dtmin and dtmax. If dtnow has been accepted, we construct
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un+1 in one of two ways:

No Richardson Extrapolation: un+1 = un+1
c(4)

With Richardson Extrapolation: un+1 = αun+1
c + β un+1

f(5)

where

(6) α = − dtold + 3 dtnow

7 dtold + 5 dtnow
, β = 8

dtold + dtnow

7 dtold + 5 dtnow
.

The local truncation error for un+1 defined by (5) is one order higher than the local
truncation error for un+1 defined by (4) [37, 38]. Note that if dtnow = dtold then (5)
reduces to the standard Richardson extrapolation formula for second-order schemes.

2.1. The Logistic Equation. As a simple example to show how the VSSBDF2
adaptive time-stepper finds the stability threshold of the SBDF2 scheme, we consider
the logistic equation

(7) ut = r u (1− u) = r u− r u2

If r > 0 then the u(t) = 0 steady state is unstable and the u(t) = 1 steady state
is asymptotically stable. Applying SBDF2 to (7) with f(u) = −r u2 and g(u) = r u
yields the scheme

(8)
1

dt

(
3

2
un+1 − 2un +

1

2
un−1

)
= run+1 − 2r(un)2 + r(un−1)2.

Time-stepping this scheme using SBDF2 with relatively small time-steps, we find that
solutions with positive initial data converge exponentially fast to the u(t) = 1 steady
state. However, if the time-steps are too large, solutions fail to converge. See the
left plot in Figure 1. If we use the VSSBDF2 adaptive time-stepper, we find that the
solution comes close to u(t) = 1 but does not converge to it. The top middle plot
in Figure 1 presents log(|1 − u(t)|) as a function of time. After a short transient,
the solution decays roughly exponentially to u(t) = 1 but around time t = 50 the
solution stays about 5 × 10−7 away from the steady state. The bottom middle plot
presents the time-step size, dt as a function of time; we see that, after a transient,
the time-step coarsens exponentially fast. It then refines and stabilizes at a time-step
size of approximately dt∞ = 4/(7r).

To understand the time-step stabilization found in the VSSBDF2 adaptive time-
stepper and the non-convergence found when using “large” time steps in the SBDF2
IMEX scheme, we linearized the SBDF2 scheme (8) about the constant steady state
un = 1:

(9)
1

dt

(
3

2
dn+1 − 2dn +

1

2
dn−1

)
= r dn+1 − 4 r dn + 2 r dn−1.

above, dl denotes the deviation from the steady state: ul = dl+1. The linear stability
analysis of Appendix A, implies (9) is conditionally stable with a stability threshold
of dt∗ = 4/(7r).

One demonstration that the stability threshold, dt∗, of the linearized scheme (9) is
relevant to the SBDF2 time-stepper (8) is that the VSSBDF2 adaptive time-stepper
had its time-steps stabilize to dt∗ as it tried, but failed, to reach the steady state
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Fig. 1: The logistic equation (7) is simulated with r = 1 and initial data u(0) = .01.
Left Figure: For each (fixed) value of dt, we time-step using SBDF2 until the 1000th iterate

has been found. (The first step is taken using Forward Euler.) In the figure, u1000 is plotted
against dt. The dashed line indicates the stability threshold dt∗ = 4/(7r). Middle figure:

The VSSBDF2 adaptive time-stepper is used with tol = 10−6 and range = tol/3. The
stability constraint is dt∗ = 4/(7r) ≈ 1.14; dtmax = 2dt∗. Top plot: log(1 − u(t)) versus
time. Middle plot: local truncation error as a function of time. Dashed lines indicate the
interval (tol − range, tol + range). Bottom plot: time-step size versus time. Dashed line
indicates dt∗ = 4/(7r). Right figure: The VSSBDF2 adaptive time-stepper for a range of
values of r. The stability constraint is dt∗ = 4/(7r); we take dtmax = 2dt∗. For each value
of r, the solution is computed to t = 750 and dt∞ is found by averaging the final 100 values
of dt. In the figure, 1/dt∞ is plotted versus r with circles and 1/dt∗ is plotted with a solid
line.

solution u(t) = 1. See the bottom middle plot figure in Figure 1. As a second demon-
stration, the left plot of Figure 1 demonstrates that if dt < dt∗ then the SBDF2
time-stepper (8) yields solutions that converge to the steady state un = 1 while if
dt > dt∗ solutions do not. This is unsurprising because the linearized scheme (9) will
determine the dynamics for any iterate that is close to the steady state un = 1. Fi-
nally, we varied the parameter r and studied how the limiting time-step size found by
the VSSBDF2 adaptive time-stepper dt∞ is related to the stability threshold, dt∗, of
the linearized scheme (9). The right plot of Figure 1 demonstrates that the VSSBDF2
adaptive time-stepper is sharply finding the stability threshold time-step size.

3. Simulations of the PNP-FBV system. The logistic equation provided a
simple example where the SBDF2 method, when linearized about the asymptotically
stable steady state, is conditionally stable. As demonstrated, the VSSBDF2 adap-
tive time-stepper finds the stability threshold. The stability domain for the logistic
equation is simple: dt∗ = 4/(7r); this is a smooth curve when plotted as a function
of r.

We now turn to the PNP-FBV system. The stability domain of the SBDF2
method, linearized about the asymptotically stable steady state, is neither smooth
nor continuous; see Figure 5. The PNP-FBV system is significantly more complex
than the logistic equation and a natural question whether there are simpler dissipative
systems for which the SBDF2 method had stability domains with corners, cusps, or
jumps. We tried a few simple options such as reaction diffusion equations and simple
models of the PNP-FBV system with different types of boundary conditions [37] but
the stability domains were not as interesting.

The one-dimensional, nondimensionalized PNP equations for a media with 2 mo-
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bile species is

∂c±
∂t

= − ∂

∂x

[
−∂c±
∂x
− z± c±

∂φ

∂x

]
, t > 0, x ∈ (0, 1),(10)

−ε2 ∂
2φ

∂x2
=

1

2
(z+ c+ + z− c−) , x ∈ (0, 1),(11)

where c± and z± are the concentration and charge number of the positive/negative ion,
φ is the potential and ε is the ratio of the Debye screening length to the interelectrode
width L. The PNP equations are combined with generalized Frumkin-Butler-Volmer
(FBV) boundary conditions2 on each species which describe charge transfer reactions
at electrodes. We choose z+ = −z− = 1 with two no-flux boundary conditions and
two FBV boundary conditions for equation (10) :

−
(
−∂c−
∂x
− c−

∂φ

∂x

) ∣∣∣∣
x=0

=

(
−∂c−
∂x
− c−

∂φ

∂x

) ∣∣∣∣
x=1

= 0

(12)

−
(
−∂c+
∂x
− c+

∂φ

∂x

) ∣∣∣∣
x=0

= F (t) := 4kc,a c+(0, t) e−0.5 ∆φleft − 4 jr,a e
0.5 ∆φleft ,

(13)

(
−∂c+
∂x
− c+

∂φ

∂x

) ∣∣∣∣
x=1

= G(t) := 4kc,c c+(1, t) e−0.5 ∆φright − 4 jr,c e
0.5 ∆φright ,(14)

where kc,a, kc,c, jr,a, and jr,c are reaction rate parameters; the second part of the
subscripts a and c refer to the anode and cathode, respectively . Equations (13)–
(14) model the electrodeposition reaction C+ + e− −−⇀↽−− M where M represents the
electrode material. There is a compact layer of charge, called the Stern layer, that
occurs in the electrolyte next to an electrode surface [42, 43]. In equations (13)–(14),
∆φleft and ∆φright refer to the potential differences across the Stern layers that occur
at the anode and cathode respectively. Specifically,

(15) ∆φleft = φanode−φ(0, t) = −φ(0, t), ∆φright = φcathode−φ(1, t) = v(t)−φ(1, t)

where the potential at the anode has been set to zero and v(t) denotes the potential at
the cathode. In addition, the Poisson equation (11) uses a mixed (or Robin) boundary
condition [14, 15, 16],

−ε δ ∂φ
∂x

∣∣∣∣
x=0

= ∆φleft := −φ(0, t),(16)

+ε δ
∂φ

∂x

∣∣∣∣
x=1

= ∆φright := v(t)− φ(1, t),(17)

where δ is the ratio of the compact layer thickness to L. Finally, there is an ODE
which ensures conservation of electrical current at the electrode [44, 45],

(18) − ε2

2

d

dt
φx(1, t) = jext(t)−

[
kc,c c+ (1, t) e−0.5 ∆φright − jr,c e0.5 ∆φright

]
,

where jext(t) is the current through the device. We refer to the PNP equations
with the generalized Frumkin-Butler-Volmer boundary conditions as the PNP-FBV
systsem.

2written here, for example, for a reaction involving one ionic species and one electron
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The device is operated in two regimes — either the current or the voltage at
the cathode is externally controlled. If the voltage at the cathode, v(t), is externally
controlled then the the PNP-FBV system (10)–(11) with boundary conditions (12)–
(14) and (15)–(17) are numerically solved, determining c± and φ. The current is
found a postiori using equation (18). If the current, jext(t), is externally controlled
then equation (18) is part of the PNP-FBV system and the ODE is numerically solved
along with the PDEs, determining c±, φ, and φx(1, t) simultaneously. The voltage
v(t) is then found a postiori.

The companion article [38] presents the numerical scheme in full: spatial dis-
cretization, boundary conditions, splitting scheme, and error control. For reasons
discussed at the end of Section 4, unless noted otherwise, the simulations presented
in the rest of this section and in Section 4 did not use Richardson extrapolation in
the VSSBDF2 adaptive time-stepper. Specifically, un+1 was defined using (4).

Figure 2 considers an initial value problem for the PNP-FBV system (10)–(17)
with constant imposed voltage. The initial data is fixed, as are all the other physical
parameters. Solutions are computed using the VSSBDF2 adaptive time-stepper.

The top figure demonstrates that, after a short transient, the solution initially
decays exponentially quickly to a numerical steady state. However, once the solution
is within (approximately) 10−7 of the steady state solution, this convergence ends and
the computed solution stays about 10−7 away from the steady state. The middle figure
demonstrates that the VSSBDF2 adaptive time-stepper is keeping the (approximate)
local truncation error (3) within the user-specified range of (tol− range, tol+ range).
The bottom figure demonstrates that the time-step size initially increases exponen-
tially fast and after a while it decreases and stabilizes to dt∞. The dashed line in
the bottom figure is the stability threshold found by the linear stability analysis dis-
cussed in Section 4: dt∗. This simulation demonstrates that the VSSBDF2 adaptive
time-stepper appears to eventually stabilize at a time-step size that is precisely the
stability threshold.

The top left plot presents the deviation from the numerical steady state c+,ss.
The numerical steady state, c±,ss and φφφss, satisfies the discretized version of 0 =
c±,xx+z± (c± φx) and (11). The numerical steady state was found by first computing
an initial value problem using the VSSBDF2 adaptive time-stepper and then repeating
the computation using the SBDF2 time-stepper with a (fixed) time-step size that is
less than the value dt∞ found by the adaptive time-stepper. We find that a long
time simulation using fixed time-steps results in a solution that relaxes to a steady
state solution as long as the time-steps are taken to be smaller than dt∞. We use the
solution at a late time as the numerical steady state solution.

4. Numerical Linear Stability. As demonstrated in Figure 2, if the applied
voltage or applied current is constant for a period of time and if the user-specified
maximum time-step dtmax is sufficiently large then the VSSBDF2 adaptive time-
stepper stabilizes to take (nearly) constant time steps dt∞ with dt∞ < dtmax. To
understand this phenomenon, we study the linear stability of the SBDF2 time-stepper;
this will give us insight into what the VSSBDF2 adaptive time-stepper is doing when
it is taking (nearly) constant time-steps.

Consider the SBDF2 scheme (1) applied to the system of ODEs that arises from
spatially discretizing the PDE ut = f(u, ux, uxx, . . . ) + g(u, ux, uxx, . . . )

(19)
1

dt

(
3

2
un+1 − 2un +

1

2
un−1

)
= g(un+1) + 2f(un)− f(un−1).
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Fig. 2: PNP-FBV system (10)–(17) with constant voltage v(t) = 2, ε = .05, and all
other physical parameters set to 1. The initial data is c±(x, 0) = 1 + .1 sin(2πx) and
φx(1, 0) = 0. The simulation parameters (see [38]) are N = 90, L1 = L2 = L3 = 1/3
and the adaptive time-stepping parameters are with tol = 10−6, range = tol/3, and
dtmax = 1. The VSSBDF2 adaptive time-stepper is used. Top plot: Comparison of the
solutions found by the VSSBDF2 adaptive time-stepper to the pre-computed numerical
steady-state solution. Plot is log(‖cn+ − c+,ss‖∞) versus tn. Deviations of c− and φ from
the corresponding steady state profiles behave similarly. Middle plot: The logarithm of the
approximate local truncation error, (3), is plotted versus time. The dashed lines indicate
log(tol ± range). Bottom plot: Time-step size, dt, plotted versus time. The dashed line
indicates the stability threshold dt∗ = 3.1000 × 10−3 computed using the linear stability
analysis presented in Section 4.

A steady state satisfies 0 = g(uss) + f(uss). Linearizing about uss yields

(20)
1

dt

(
3

2
dn+1 − 2dn +

1

2
dn−1

)
= Jg(uss) dn+1 + 2 Jf (uss) dn − Jf (uss) dn−1.

where dm = um − uss are the deviations from the steady state and Jf (uss) and
Jg(uss) are the Jacobian matrices evaluated at uss; e.g. (Jf (uss))ij = ∂fi

∂uj
(uss).

For simple problems, Jf and Jg can be determined analytically and evaluated at uss.
Otherwise, one can numerically approximate Jf (uss) and Jg(uss) in a variety of ways.
We used a simple centre difference scheme. For example, the first column of Jf (uss)
is approximated by

f(uss + h e1)− f(uss − h e1)

2h

where e1 is the first standard basis vector in RN : (e1)j = δj1 and h is relatively small.
For the PNP-FBV system (10)–(17), we find that the Jacobians cannot be simul-

taneously diagonalized. As a result, we cannot proceed based on an understanding
of the time-stepper’s behaviour for the ODE y′ = µ y. For this reason, we proceed
with a direct computation of the eigenvalues and eigenvectors of the linearized scheme
(20). One could do significantly more analysis of the stability if the Jacobians could
be simultaneously diagonalized.

We rewrite the scheme (20) as

(21) dn+1 = MnewMnow dn +MnewMold dn−1

where

Mnew =

(
3

2
I − dtJg(uss)

)−1

,Mnow = 2 I + 2 dtJf (uss),Mold = −1

2
I − dtJf (uss).



10 M. C. PUGH, D. YAN, F. P. DAWSON

(21) is a system of N second-order linear difference equations. Solving it requires the
initial deviation, d0, as well as the deviation after one time-step, d1. The system
is rewritten [46, §D.2.1] as 2N first-order linear difference equations in the standard
manner: Dn := [dn−1; dn] ∈ R2N and A is the companion matrix for the difference
equation:

(22) Dn+1 = ADn =

(
0 I

MnewMold MnewMnow

)
Dn.

If (λj ,vj) is an eigenvalue-eigenvector pair of A then the structure of A implies that
vj = [dj ;λj dj ] for some dj ∈ RN . If A has 2N linearly independent eigenvectors, it
follows that the general solution of the linearized problem (20) is

(23) dn =

2N∑
j=1

cj λ
n
j dj

where the 2N coefficients, cj , are determined using d0,d1 ∈ RN .
The connection between the linearized scheme (20) and the nonlinear scheme (19)

is via the stability theory of fixed points for discrete dynamical systems. If Jf and Jg

are continuous in a neighbourhood of uss and if dt is such that ( 3
2 I − dtJg(uss)) is

invertible then the discrete dynamical system

(24) Un+1 = F(Un) :=

(
Un

2(
3
2 I − dtg

)−1
(2Un

2 + 2 dt f(Un
2 )− 1

2Un
1 − dt f(Un

1 ))

)
is defined in a neighbourhood of the fixed point [uss uss]. Defining Un+1 = [un; un+1],
this discrete dynamical system (24) is equivalent to the SBDF2 time-stepping scheme
(19). The companion matrix A is the linearization of (24) at the fixed point [uss uss].
Therefore, if all eigenvalues of A have magnitude less than 1, then [uss uss] is an
asymptotically stable fixed point of (24) and uss is an asymptotically stable fixed
point of the SBDF2 scheme (19).

4.1. Finding the stability threshold dt∗ (if there is one). First, we need to
find the (asymptotically stable) numerical steady state uss. We do this by computing
the initial value problem and finding the long-time limit.

Given a particular PDE (or set of PDEs) and boundary conditions, if the (con-
stant time-step size) SBDF2 time-stepper (19) suggests that solutions of the initial
value problem converge to a steady-state solution(s), one takes the long-time limit of
the initial value problem as the steady-state solution uss. One then computes (or ap-
proximates) the Jacobians about the steady state and constructs the matrix A using
the time-step dt that was used in the SBDF2 time-stepper to find uss. The eigenvalues
of A will have magnitude less than one — otherwise the time-stepper wouldn’t have
found the steady-state solution. To determine if there is a linear stability constraint,
one increases the time-step size, recomputes A and its eigenvalues, and then deter-
mines if any eigenvalues have magnitude greater than one for this new value of dt.
Proceeding in this way, one seeks a time-step size for which an eigenvalue(s) crosses
from magnitude less than one to magnitude greater than one. We then approximate
the critical time-step size, dt∗, using a bisection method.

In practice, we don’t have a priori knowledge of what would be a sufficiently small
value of dt to use in the SBDF2 time-stepper to seek a steady-state solution. For this
reason, we first use the VSSBDF2 adaptive time-stepper and if it yields a solution
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that appears to be “trying” to converge to a steady state and the time-step sizes are
stabilizing while keeping the local truncation error in the user-specified interval, we
take this as evidence of an asymptotically stable steady state. We then repeat the
simulation with the SBDF2 time-stepper, using a (constant) time-step that is smaller
than the threshold value found by the VSSBDF2 adaptive time-stepper, to seek a
steady state and proceed with the above stability study. If the time-steps increase to
the user-specified dtmax, one can repeat the simulation with larger and larger values
of dtmax to see if the adaptive time-stepper stabilizes its timesteps at a value smaller
than dtmax. Or one can compute the numerical steady state uss and perform the
linear stability analysis with larger and larger values of dt in the matrix A to seek a
stability threshold. But if doing either of these does not identify a stability threshold,
this isn’t a proof that the SBDF2 scheme is unconditionally stable near the steady
state; it’s simply suggestive evidence.

Turning to the PNP-FBV system (10)–(17), for a fixed voltage and ε, we use
the (constant time-step) SBDF2 time-stepper to find the steady state solution c+,ss,
c−,ss, and φφφss. The steady states of the evolution equation (10) are concatenated into
one steady state uss := [c+,ss, c−,ss]. The right-hand sides of the evolution equations
are similarly concatenated: f is the spatial discretization of [(c+ φx)x, (c− φx)x] and g
is the discretization of [c+,xx, c−,xx]. We then approximate the Jacobians Jf (uss) and
Jg(uss). If there are N mesh points then uss ∈ R2N and the Jacobians are 2N × 2N
matrices. A value of dt is chosen and the 4N × 4N matrix A in (22) is constructed
and its eigenvalues and eigenvectors are computed. The value of dt is then increased
and the process is repeated.

Figure 3 presents results for a small value of ε with constant applied voltage. In
the left figure, the magnitudes of all eigenvalues are plotted — we see that for small
values of dt, all eigenvalues have magnitude less than one and that, as dt is increased,
one branch goes unstable. We follow this branch to find the time-step size at which
the eigenvalue’s magnitude first equals 1: the stability threshold dt∗. For the ε of
Figure 3, we find that one eigenvalue crosses the unit circle, crossing at value −1. In
the top plot in the right figure, we plot the steady states c±,ss and in the bottom plot
in the right figure we plot the eigenfunctions at the stability threshold dt∗.

Figure 2 presents the results of applying the VSSBDF2 adaptive time-stepper
to an initial value problem with ε = .05. To demonstrate that the “barely stable”
eigenvalue-eigenvector pair is the cause of the failure to converge to the steady state
shown in the top plot of Figure 2, we took the computed solutions for c+ and c− at a
late time (t = 100) and computed the corresponding deviations from the steady state
d+ and d−. These are presented in the top-right plot of Figure 3. In the bottom-right
plot of Figure 3, the normalized deviations are plotted with open circles — note that
they closely fit the critical eigenfunctions.

To see why it’s unsurprising that the adaptive time-stepper should stabilize at the
stability threshold, we first look at the local truncation error for the SBDF2 scheme,
applied to the ODE ut = f(u) + g(u), close to a steady state uss:

LTE = un+1 − u(tn+1) = dn+1 − d(tn+1)

=

(
2

3
d′′′(tn)− g′′(u(tn)) d′(tn)2 − g′(u(tn)) d′′(tn)

)
dt3 +O(dt4)

where u(tn) = un, d(tn+1) = u(tn+1) − uss, and dn+1 = un+1 − uss. If the steady
state is asymptotically stable then we assume the deviation is decaying exponentially
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Fig. 3: PNP-FBV system (10)–(17) with constant voltage v(t) = 2. ε = .05 and all
other physical parameters equal 1. The mesh is uniform: dx = 1/90. Left plot: The
magnitudes of the 364 eigenvalues are plotted versus dt. The largest magnitude branch
crosses at dt∗ = .003094. Top plot on right: The steady state profiles — the solid line
is cp,ss and the dashed line is cm,ss. Bottom plot on right: One real-valued eigenvalue
goes unstable (λ = −1). The corresponding eigenvectors are plotted — the solid line
is the unstable eigenvector for cp and the dashed line is the unstable eigenvector for cm.
Both eigenvectors have been chosen to have l−2 norm 1. The open circles denote late-time
deviations from the steady states, as computed using the VSSBDF2 adaptive time-stepper.
The deviations have been normalized to have l2 norm 1; only a third of the N = 91 data
points are plotted for tidiness.

in time: d(t) = C exp(−λt). The local truncation error can be bounded

|C|α e−λtndt3 +O(dt4) ≤ |LTE| ≤ |C|β e−λtndt3 +O(dt4)

where α and β are determined by λ and uniform bounds on g′ and g′′ near uss. For
this reason, if dt is held fixed the LTE will decay to zero. If the LTE is required to be
greater than tol − range then dt must grow exponentially to satisfy this. The above
argument is predicated on the solution’s decaying according to the underlying ODE;
specifically d(tn) = C exp(−λ tn)→ 0.

For a system of ODEs, one would consider the spectral radius of the linearized
scheme. If dt is such that |λ(dt)|max < 1 then the LTE for the SBDF2 scheme will
go to zero exponentially fast as n → ∞. Similarly, if |λ(dt)|max > 1 then the LTE
will diverge. Our simulations with the VSSBDF2 adaptive time-stepper are taking
essentially-constant time-steps, dt∞, and the LTE is staying in [tol−range, tol+range]
where tol − range > 0. This behaviour can only happen if |λ(dt∞)|max = 1; i.e.,
dt∞ = dt∗.

4.2. Dependence of the stability domain on ε. We now consider the sta-
bility properties of the PNP-FBV system (10)–(17) for a range of values of ε, holding
the voltage fixed. We find that for ε ∈ (0.107764, 0.134504) the instability takes the
form of a pair of complex eigenvalue crossing the unit circle; for all other values we
considered it was a single eigenvalue crossing at −1. Figure 4 is the analogue of Figure
3 but for a value of ε that results in two complex eigenvalues crossing the unit circle.

For each ε, we find the stability threshold dt∗. The left plot of Figure 5 presents
dt∗ as a function of ε. The open circles indicate the interval of ε values for which a
pair of complex conjugate eigenvalues cross the unit circle. The stability threshold
dt∗ is a continuous function of ε except for a jump at ε ≈ 0.134504. Also, dt∗ appears
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Fig. 4: PNP-FBV system (10)–(17) with constant voltage v(t) = 2, ε = .12 and all other
physical parameters equal 1. The mesh is uniform: dx = 1/90. Left plot: the magnitudes
of the 364 eigenvalues are plotted versus dt; the vertical range has been truncated for a
tidier plot. The largest magnitude branch crosses at dt∗ = .02271. Top plot on right: The
steady state profiles — solid line is c+,ss and dashed line is c−,ss. Bottom plot on right:
A pair of complex-valued eigenvalues go unstable (−0.9797± 0.2008 i). The corresponding
eigenvectors are plotted — the solid lines are the unstable eigenvectors for cp and the
dashed line are the unstable eigenvectors for cm.

to be a smooth function of ε except at ε ≈ 0.134504 where there’s a jump in dt∗ and
at ε ≈ 0.107764 where there’s a jump in the first derivative of dt∗.

The jump in dt∗ is striking — if one were using an SBDF2 time-stepper with
dt = .025 then this would yield a stable simulation for ε is close to, but slightly
smaller than, the critical value of ε ≈ 0.134504 but the simulation would be unstable
simulation for ε that is close to, but slightly larger than, this critical value. The
stability of the SBDF2 simulation is not a continuous function of the parameter ε.

The right plot of Figure 5 compares dt∞ as found from the VSSBDF2 adaptive
time-stepper to dt∗ as found from the linear stability study of the steady state. The
solid line plots dt∗ versus ε; the circles plot dt∞. The circles align closely with the
solid lines, providing compelling evidence that it is the numerical instability of the
scheme near the steady state which is causing the VSSBDF2 adaptive time-stepper
to stabilize its time-steps.

Figure 6 addresses the cause of the corner in the graph of dt∗(ε) at ε ≈ .107764.
The top left figure presents a closer view of dt∗ versus ε; there’s clearly a corner in
the graph. The bottom left figure presents the magnitude of the imaginary part of
the eigenvalue(s) that is crossing the unit circle. For ε close to, but smaller than,
ε = .107764 the instability arises when a single real-valued eigenvalue crosses the unit
circle through the point −1. For ε close to, but larger than, ε = .107764 the instability
arises when a complex conjugate pair of eigenvalues with nonzero imaginary part cross
the unit circle. The figures to the right present the magnitudes of the eigenvalues as
a function of dt for two values of ε close to ε = .107764. The top figure is for an ε
that is close to, but smaller than, ε = .107764 and the top figure is for an ε value
that is slightly larger than this critical value of ε. In both figures, there’s a branch
which denoted with a dot-dash line. This branch corresponds to a pair of complex
conjugate eigenvalues; following this branch leftward and downward in the figure, one
sees that it arose from the collision of two real-valued eigenvalues (there’s a triple
junction). In the top (ε = .107) figure, the branch is to the right of the branch
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Fig. 5: PNP-FBV system (10)–(17) with parameters as for Figures 3 and 4 except for
ε which varies. Left figure: Solid line: dt∗ versus ε where dt∗ is found from the linear
stability analysis. Open circles denote ε values for which the instability involved a pair of
complex eigenvalues crossing the unit circle: ε ∈ (0.107764, 0.134504). Right figure: Solid
line: dt∗ versus ε where dt∗ is found from the linear stability analysis. Open circles: dt∞
as found by the time-step size stabilizing in the VSSBDF2 adaptive time-stepper.

with one real eigenvalue: the complex pair of eigenvalues are not the cause of the
stability threshold that corresponded to the first-crossing of the unit circle. In the
bottom (ε = .109) figure, the two branches have exchanged positions. If one views a
sequence of these figures as ε increases from .107 to .109, one sees that both branches
are moving rightward but that the branch that carries the single real eigenvalue is
moving rightward at a slightly faster speed; as a result it overtakes the branch that
carries the complex pair of eigenvalues.
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Fig. 6: PNP-FBV system (10)–(17) with parameters as for Figures 3 and 4. Left figure:
Top plot presents dt∗ versus ε where dt∗ is found from the linear stability analysis. There’s
a corner in the graph at approximately ε = .107764. Bottom plot presents the magnitude
of the imaginary part of the eigenvalue(s) that is crossing the unit circle. There’s a jump
at approximately ε = 0.107764. Right figure: Top plot presents the magnitude of the
eigenvalues of the linearized problem versus dt versus for ε = .107. Top plot presents the
magnitude of the eigenvalues of the linearized problem versus dt versus for ε = .109.

Figure 7 is the analogue of Figure 6; it addresses the cause of the jump in the
graph of dt∗(ε) at ε ≈ 0.134504. From the figure in the left, we see that there’s a
jump in the stability threshold dt∗ and that the eigenvalues switch from a complex
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conjugate pair to a single real eigenvalue as ε increases through the critical value.
The upper right plot presents the magnitude of the eigenvalues for a value of ε that
is slightly smaller than the critical value and the bottom right plot presents them for
a value that is slightly larger. In both plots, we see that the triple point, where the
branch carrying the complex pair of eigenvalues emerges from the intersection of two
branches carrying single real eigenvalues, is close to the dashed line at height 1. In
the upper plot, we see that the upper branch (before the triple point) is below the
dashed line — the first eigenvalues to cross the unit circle are the complex pair, for
a larger value of dt∗. However, as ε increases, this upper branch (before the triple
point) moves upwards and it reaches the dashed line when ε ≈ 0.134504; at this value
of ε the stability threshold dt∗ jumps downwards. After this critical value of ε, the
stability threshold is due to a single real eigenvalue crossing the unit circle at −1.

0.1342 0.1343 0.1344 0.1345 0.1346 0.1347 0.1348

0.025

0.026

0.027

0.028

dt
*

ε

0.1342 0.1343 0.1344 0.1345 0.1346 0.1347 0.1348

0

0.02

0.04

0.06

0.08

ε

Im
(λ
cr
it)

0.005 0.01 0.015 0.02 0.025 0.03 0.035
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

dt

|λ
k|

(dt*,1)

0.005 0.01 0.015 0.02 0.025 0.03 0.035
0.5

0.6

0.7

0.8

0.9

1

1.1

dt

|λ
k|

(dt*,1)

Fig. 7: PNP-FBV system (10)–(17) with parameters as for Figures 3 and 4. Left figure: Top
plot presents dt∗ versus ε where dt∗ is found from the linear stability analysis. There’s a
jump at approximately ε ≈ .134504. Bottom plot presents the magnitude of the imaginary
part of the eigenvalue(s) that is crossing the unit circle. Right figure: Top plot presents the
magnitude of the eigenvalues of the linearized problem versus dt versus for ε = .134. Top
plot presents the magnitude of the eigenvalues of the linearized problem versus dt versus
for ε = .135.

4.3. Dependence of stability domain on spatial discretization. We next
consider the effect of the mesh on the stability threshold. Before considering the PNP-
FBV model, we first consider two simple examples. Consider the diffusion equation

ut = D1 uxx +D2 uxx, with D1 +D2 > 0

subject to homogeneous Dirichlet boundary conditions: u(0, t) = u(1, t) = 0. This
can be time-stepped using SBDF2 (1) with D1uxx handled implicitly and D2uxx
handled explicitly. Using the linear stability analysis presented in Appendix A, if
D1 < 3D2 then there is a stability threshold on the time-step, the scheme is stable
if dt < dt∗ = 4/(|λN |(3D2 − D1)) and unstable otherwise. Here, λN is the most-

negative eigenvalue of the matrix that approximates ∂2

∂x2 with homogeneous Dirichlet
boundary conditions: Dxx. For a uniform mesh, λN → −∞ like N2 and so the
stability constraint, dt∗, decays to zero like 1/N2. If the time-step violates the stability
constraint, the fastest growing eigenvector is the one that approximates the highest-
frequency resolvable eigenfunction: sin((N − 2)πx). On the other hand, consider the
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diffusion equation with a sink

ut = D1 uxx −
1

ε2
u, with D1 > 0

subject to homogeneous Dirichlet boundary conditions: u(0, t) = u(1, t) = 0. This
can be time-stepped using SBDF2 (1) with D1uxx handled implicitly and u/ε2 han-
dled explicitly. The linear stability analysis presented in Appendix A implies that
if ε2D1|λ1| < 3 then there is a stability threshold on the time-step; the scheme is
stable if dt < dt∗ = 4/(D1λ1 + 3/ε2) and unstable otherwise. Here, λ1 is the largest
nonzero eigenvalue of Dxx. For a uniform mesh, λ1 → −π2 as N → ∞. From this,
we see that the stability constraint, dt∗, does depend on the mesh but it does so in
a gentle manner: it converges to a positive number as the mesh is refined. If the
time-step violates the stability constraint, the fastest growing mode is the eigenvector
that approximates the low frequency eigenfunction sin(πx).

Returning to the PNP-FBV system, the plot in the left of Figure 8 presents
stability thresholds for four different meshes: one uniform mesh and three piecewise
uniform meshes that have a finer mesh near x = 0, 1. The stability threshold depends
on the mesh in a mild manner. This is not surprising given that the critical eigenmodes
of the linearized scheme presented in the bottom right plots of Figures 3 and 4 do not
appear to have structures that need significant spatial resolution.
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Fig. 8: PNP-FBV system (10)–(17) with constant voltage (v(t) = 2) ε varies, all other
physical parameters set to 1. Left plot: For four different meshes, dt∗ is computed and
plotted against ε. Solid line: uniform mesh with dx = 1/90. Dot-dashed line: piecewise
uniform mesh with dx = 1/150 in [0, 1/10] and [9/10, 1] and dx = 4/75 elsewhere. Dashed
line: piecewise uniform mesh with dx = 1/300 in [0, 1/10] and [9/10, 1] and dx = 2/75
elsewhere. Dotted line: piecewise uniform mesh with dx = 1/450 in [0, 1/10] and [9/10, 1]
and dx = 4/225 elsewhere. Right plot: The parameters are as in Figure 5. Solid line: dt∗

versus ε where dt∗ is found from the linear stability analysis. Open circles: dt∞ as found by
the time-step size stabilizing in the VSSBDF2 adaptive time-stepper with no Richardson
extrapolation step. X-marks: dt∞ as found by the VSSBDF2 adaptive time-stepper with
a Richardson extrapolation step.

4.4. Effect of Richardson Extrapolation. Richardson extrapolation is com-
monly used to increase the accuracy of time-stepping, however we have found much
discussion of its possible effect on the stability of the scheme. In [25], the authors
present an analysis of forward Euler time-stepping for a problem of interest. They
demonstrate analytically how Richardson extrapolation affects the stability threshold
between conditionally stable and unconditionally stable. Below, we computationally
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study the effect of Richardson extrapolation on the conditional stability for the PNP-
FBV system. We also present an analytical and computational study of the effect of
Richardson extrapolation on SBDF2 simulations of the heat equation.

As described in Section 2, the adaptive time-stepper computes two approxima-
tions of the solution at time tn+1 — the “coarse” approximation (un+1

c ) and the “fine”
approximation (un+1

f ) — and uses these to approximate the local truncation error.

The solution at time tn+1 is then either taken to equal un+1
c (see (4)) or Richardson

extrapolation is used to blend un+1
c and un+1

f (see (5)). In the simulations presented

up to this point, we did not use Richardson extrapolation in defining un+1. That
said, we find that when using the VSSBDF2 adpative time-stepper with Richardson
extrapolation (5) on the PNP-FBV system, the observed behaviour is like that when
Richardson extrapolation was not used: the time-steps stabilized at a value dt∞.

Both un+1
c and un+1

f both satisfy time-stepping equations like (2) and (19) but

un+1 doesn’t. Our linear stability analysis is built upon the solutions satisfying
(19) and so its predictions only apply to the VSSBDF2 adaptive time-stepper when
Richardson extrapolation is not used. We haven’t found an analogue of (2) that
un+1 = αun+1

c +βun+1
f satisfies. Given such an analogue, we could perform the linear

stability analysis to determine a stability threshold dt∗ to compare to the dt∞ found
by the VSSBDF2 adaptive time-stepper when Richardson extrapolation is used. Be-
cause dt∞ and dt∗ agree closely when Richardson extrapolation isn’t used; we use
dt∞ as a proxy for the stability threshold dt∗ when Richardson extrapolation is used.

The plot in the right of Figure 8 presents dt∗ and dt∞ where dt∞ is found us-
ing two different implementations of the VSSBDF2 adaptive time-stepper. The open
circles denote dt∞ as found by the VSSBDF2 adaptive time-stepper with no Richard-
son extrapolation (4). The crosses denote dt∞ as found by the VSSBDF2 adaptive
time-stepper with Richardson extrapolation (5). We see that when Richardson ex-
trapolation is used dt∞ is larger than dt∗, sometimes markedly so, and for this reason
the simulations finish more quickly when Richardson extrapolation is used. It’s also
striking that the plot of dt∞ versus ε when Richardson extrapolation is used has a
very similar shape to the plot of the data when it isn’t used.

For the PNP-FBV system, we found that using Richardson extrapolation as part
of the adaptive time-stepper leads to greater stability. However, this is problem
dependent. We found that if one repeats this experiment for the diffusion equa-
tion ut = D1uxx + D2uxx, with solutions simulated as described in §§4.3, then for
some choices of D1 and D2 using Richardson extrapolation in the VSSBDF2 adap-
tive time-stepper leads to less stability: for some parameter choices dt∞ is smaller
when Richardson extrapolation is used. There are even parameter choices for which
the SBDF2 time-stepper is unconditionally stable (and so the VSSBDF2 adaptive
time-stepper would with no Richardson extrapolation will have dt increase to dtmax)
but if one uses Richardson extrapolation in the adaptive time-stepper then a limiting
step size dt∞ is observed. This suggests that for such parameter choices, Richardson
extrapolation has changed the underlying time-stepping scheme from unconditionally
stable to conditionally stable.

We performed a range of simulations in which D1 and N were held fixed and
D2 was varied while keeping 3D2 > D1 so that the SBDF2 scheme is conditionally
stable. Each simulation was run sufficiently long that dt∞ could be identified. In
Figure 9, 1/dt∞ is plotted against D2; the open circles indicate 1/dt∞ when no
Richardson extrapolation (4) is used in the adaptive time-stepper and the X-marks
indicate 1/dt∞ when Richardson extrapolation is used (5). The solid line is the
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Fig. 9: ut = D1uxx + D2uxx with initial data sin(πx) and boundary conditions u(0, t) =
u(1, t) = 0 is simulated on [0, 1] using VSSBDF2 adaptive time-stepper. N = 20, tol =
10−6 and range = tol/3. D1 is held fixed D1 = 2 and D2 takes values between 1.05D1/3
and 2D1/3. Circles: 1/dt∞ where dt∞ is the limiting time-step size found by the VSSBDF2
adaptive time-stepper with no Richardson Extrapolation (4). Line: 1/dt∗ versus D2 where
dt∗ = 4/(|λN |(3D2−D1)). There is no stability constraint if D2 ≤ D1/3. X-marks: 1/dt∞
where dt∞ is the limiting time-step size found by the VSSBDF2 adaptive time-stepper with
Richardson Extrapolation (5). Linear fit to X-marks: |λN |(.4124D2 − .1130D1); there is
no stability constraint if D2 < .2739D1.

plot of 1/dt∗ = |λN |(3D2 − D1)/4. Fitting the X-marks using least squares, we
find that 1/dt∞ ≈ |λN |(.41D2 − .11D1). Without Richardson Extrapolation, the
scheme is has no stability constraints if D2 ≤ D1/3. With Richardson Extrapolation,
this unconditional stability is for a smaller range: if D2 . .27D1. For D2 in the
(approximate) interval (.27D1, .41D1) the Richardson Extrapolation is destabilizing:
either it introduces a stability constraint or both schemes have a stability constraint
and dt∞ is smaller when Richardson Extrapolation is used. For D2 & .41D1, the
Richardson Extrapolation has a stabilizing effect: dt∞ is larger when Richardson
Extrapolation is used.

4.5. Dependence of stability domain on applied voltage and on the
singular perturbation parameter. We next studied how the stability threshold,
dt∗, depends on the applied voltage. For this, we imposed constant voltages, with
values ranging between 0 and 3. The left plot of Figure 10 presents the stability
threshold, dt∗, versus ε for the four voltages. We see that for smaller values of ε, dt∗

does not appear to be affected as much by the applied voltage compared to larger
values of ε. The vertical dashed line in the upper left plot indicates ε = .5; this
was the ε used in the time-dependent voltage simulation presented in Figure 4 of the
companion article [38]. The four intersection points of the dashed line with the graphs
of dt∗ are the values marked with dotted lines in Figure 4 of the companion article
[38]. The lower left plot of Figure 10 suggests that dt∗ may be proportional to a power
of ε for small values of ε. The right plot of Figure 10 presents ln(dt∗) versus ln(ε). The
four graphs appear to be roughly linear but don’t appear to have the same slopes.
All four plots correspond to dt∗ decreasing to zero slightly faster than ε2, consistent
with Table 2 in the companion article [38].

5. Conclusions and Future Work. In this work, we considered the Poisson-
Nernst-Planck equations with generalized Frumkin-Butler-Volmer reaction kinetics
at the electrodes. When the VSSBDF2 adaptive time-stepper is being used to study
scenarios in which the voltage or the current are (nearly) constant for long periods
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Fig. 10: PNP-FBV system (10)–(17) with parameters as for Figures 3 and 4. Four values
of (constant) voltage are considered: v(t) = 0, 1, 2, and 3. Left figure: The threshold
time-step dt∗ versus ε for v(t) = 0 (solid), v(t) = 1 (dashed), v(t) = 2 (dot-dashed), and
v(t) = 3 (dotted). Right figure: Here, log(dt∗) is plotted versus log(ε) for the same voltage
values and line notations. The decay is roughly like ε2; fitting the data yields exponents
2.0677, 2.1145, 2.1540, and 2.1813 for constant voltages v(t) = 0, 1, 2, and 3 respectively.

of time, the time-step sizes stabilize to a limiting value and the computed solutions
nearly converge to a steady state, but fail to do so. This behaviour is understood
by linearizing the numerical scheme about the steady state. The linearized scheme
is found to be conditionally stable, with a stability threshold that agrees with the
time-step at which that the adaptive time-stepper stabilized. The stability domain
is studied numerically and is found to have a corner and a jump discontinuity. The
eigenfunctions corresponding to the critical eigenvalues are studied; the conditional
stability is not related to a high-frequency instability. Using a Richardson extrapola-
tion step in the adaptive time-stepper appears to stabilize the problem somewhat in
that the limiting time-step is larger. However other systems are presented in which
Richardson extrapolation can destabilize the scheme.

It would be interesting to see if one can modify the conditional stability by using
information about the structure of the steady state. For example, [20] created an
unconditionally stable scheme for a nonlinear diffusion equation by using bounds on
the solution, although the instability being controlled was due to high frequencies.

Our methods are not restricted to the PNP-FBV system or to the VSSBDF2
adaptive time-stepper. If one is using linear multi-step method to study a system
that has asymptotically stable steady states, our approach is relevant. We expect
that it would generalize in a natural manner to Runge-Kutta methods as well. A
natural next step would be to study the stability properties of IMEX schemes beyond
steady states by considering problems that have orbitally stable special solutions,
such as travelling waves, or by considering problems that have asymptotically stable
special solutions, such as self-similar solutions.

Appendix A. Stability for an SBDF2 scheme.
In this section, we consider time-stepping the ODE

ut = (λ+ α)u = λu+ αu with α, λ 6= 0,

using the SBDF2 scheme (1) with f(u) = αu and g(u) = λu.
Solutions of the ODE decay to the steady-state solution u∞(t) = 0 as t→∞. The
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numerical stability question is: under what conditions do solutions of the numerical
scheme decay to 0 as n→∞? The general solution of (1) is un = c1ρ

n
+ + c2ρ

n
− where

(25) ρ±(dt) =
−2− 2αdt±

√
1 + 2 dt(1 + 2αdt) (α+ λ)

−3 + 2 dt λ
.

One can verify that ρ−(dt) is the essential root and ρ+(dt) is the spurious root:
ρ+(dt)→ 1/3 and ρ−(dt)→ 1 as dt→ 0. Also, ρ′−(0) = λ+ α < 0 and so ρ−(dt) < 1
for dt close to 0. By continuity of ρ±, it follows that −1 < ρ±(dt) < 1 for small dt.

If dt is such that |ρ+(dt)| > 1 or |ρ−(dt)| > 1, then the scheme will be numerically
unstable for that time-step size.

First, we assume that ρ±(dt) are real-valued and seek solutions of ρ±(dt) = 1.
Doing this, we find that ρ±(dt) = 1 is impossible for dt > 0. If 3α < λ then
ρ+(dt∗) = −1, where dt∗ = 4/(λ− 3α), and ρ−(dt) = −1 has no solutions on (0,∞).
If 3α ≥ λ then ρ±(dt) = −1 has no solutions on (0,∞).

If, on the other hand, ρ±(dt) are complex valued then they are complex conju-
gates. A short calculation for complex-valued ρ±(dt) yields

|ρ±(dt)|2 =
1 + 2αdt

3− 2λ dt
= 1 ⇐⇒ dt =

1

λ+ α
.

By assumption, λ+α < 0 and so there is no dt > 0 such that ρ±(dt) is complex-valued
and |ρ±(dt)| = 1.

The parameters α and λ determine whether the roots ρ± are real or complex
valued; the roots of the discriminant in (25) are

(26) dt± = − 1

4α

(
1±

√
1− 4α

λ+ α

)
.

We consider the following four cases for the numerical stability study:

Case 1: α > 0 The roots ρ± are real-valued on [0, dt−] and are complex-valued on
(dt−,∞). Because λ + α < 0, it’s impossible to have both α > 0 and 3α < λ.
It follows that ρ±(dt) = −1 has no solutions on (0, dt−]. We already know that
ρ±(dt) = 1 has no solutions on (0, dt−] and that there are no solutions of |ρ±(dt)| = 1
on (dt−,∞). The roots ρ±(dt) are continuous on [0,∞); it follows that |ρ±(dt)| < 1
on [0,∞). Indeed, −1 < ρ±(dt) < 1 for small values of dt and it would be impossible
for |ρ−(dt)| > 1 or |ρ+(dt)| > 1 for any subsequent value because, by continuity, this
would require |ρ−| or |ρ+| to equal 1 at some prior value.

Case 2: α < 0 and 3α > λ The roots ρ± are real-valued on [0, dt−], complex-valued
on (dt−, dt+), and real-valued on [dt+,∞). Because λ < 3α, ρ±(dt) = −1 has no
solutions on (0, dt−]∪ [dt+,∞). We already know that ρ±(dt) = 1 has no solutions on
(0, dt−] ∪ [dt+,∞) and that there are no solutions of |ρ±(dt)| = 1 on (dt−, dt+). By
the same continuity arguments as in Case 1, it follows that |ρ±(dt)| < 1 on [0,∞).

Case 3: α < 0 and 3α = λ The roots ρ±(k) simplify to 1/3 and (−3−6αk)/(−3+6αk).
They are continuous on R and take values in (−1, 1).

Case 4: α < 0, 3α < λ, and λ < 0 The roots ρ± are real-valued and continuous on
[0,∞). There are no solutions of ρ−(dt) = −1 or ρ±(dt) = 1. There is exactly one
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solution of ρ+(dt) = −1; at dt∗ = 4/(λ − 3α). By the same continuity arguments as
in Case 1, it follows that −1 ≤ ρ±(dt) < 1 on (0, dt∗] and ρ+(dt) < −1 on (dt∗,∞).

Case 5: α < 0, 3α < λ, and λ > 0 The roots ρ± are real-valued and continuous on
[0, 3/(2λ)). As dt increases to 3/(2λ), ρ+(dt) diverges to −∞. By the same argu-
ments as in Case 3, −1 ≤ ρ±(dt) < 1 on (0, dt∗] and ρ+(dt) < −1 on (dt∗, 3/(2λ)).

In summation, a numerical instability is only possible in Cases 4 and 5: if α < 0
and 3α < λ. In this case, dt∗ = 4/(λ− 3α) is the time-step limit.

Appendix B. Acknowledgements. We thank Greg Lewis, Keith Promislow,
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