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1 Introduction.

The celebrated Riemann Mapping Theorem states that every nonempty simply connected strict
open subset U of C is conformally equivalent to D. We call the biholomorphism ϕ : D → U
a Riemann mapping. Unfortunately however, it is not true in general that ϕ extends to a bi-
holomorphism ϕ : D→ U (where the bar is taken to mean the closure rather than the complex
conjugate). To this end, there is another celebrated result (of Carathéodory) that states ϕ is
extendable to S1 = ∂D if and only if ∂U is locally connected. Then wee see that the issue of
local connectedness of certain subsets of C is of the utmost importance.

The interior of the Mandelbrot set M has been shown to be simply connected, hence (by the
Riemann Mapping theorem) is conformally equivalent to D, but it is an open problem whether
M is locally connected.

2 The Mandelbrot Set.

2.1 Definition.

For w ∈ C we define fw(z) = z2+w. From this we define a sequence w1 = fw(0), w2 = fw(fw(0)),
wn = (fw ◦ · · · ◦ fw)(0) where there are n terms in the composition. We then define the Man-
delbrot set M by:

M = {w ∈ C : |wn| ≤ C, C ∈ R}

2.2 Basic Properties.

a) M is compact.

Proof. Suppose |w| > 4. We will show that w /∈ M . First we claim that |wn| ≥ 3n−1|w|.
Proceeding by induction:

|w1| = |w| = 30|w|.

Now assume the claim holds for 1 ≤ k ≤ n. Then:
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|wn+1| = |w2
n+w| ≥ |wn|2−|w| ≥ (3n−1|w|)2−|w| = |w|(32n−2|w|−1) ≥ |w|(32n−2 ·4−1) ≥ 3n|w|

Then M ⊂ 4D hence M is bounded. Now suppose |w| < 4 but |wN | > 4 for some N . Then:

|wN+1| = |w2
N + w| ≥ |wN |2 − |w| > 4|wN | − 4

hence limn→∞ |wn| → ∞. Thus we see that w ∈ m if and only if |wn| never exceeds 4 (in
fact more is true, |wn| never exceeds 2, but we don’t need this fact here). Let Cn = {z ∈ C :
|zn| < 4}. Then by what was shown above we have that:

M =

∞⋂
n=1

Cn

Define a sequence of functions f1(w) = w, f2(w) = w2 + 2, fn(w) = (fn−1(w))2 + w. Then
we see that:

Cn = f−1n ([0, 4])

so each Cn is closed. Finally we conclude that since W is the intersection of closed sets it is
closed, hence M is compact.

b) (Douady and Hubbard) M is connected. We sketch a proof of this fact below.

Proof. Define ϕ : Ĉ \M → Ĉ by:

ϕ(z) = lim
n→∞

(fnw(w))
1
2n

First note by the Bottcher-Fatou lemma, ϕ is analytic on Ĉ \M , hence it is an open map.
Moreover ϕ is proper (this follows immediately from the fact that the Green functions Gc(z)
of the filled in Julia sets for fc are continuous). Then since ϕ is proper and open it is also closed.

Now we see that ϕ is surjective onto Ĉ \D because the interior of Ĉ \M gets mapped to an
open subset of Ĉ \ D and the boundary of ϕ(Ĉ \D) coincides with the boundary of D.

But ϕ is also injective. This follows from applying the argument principle:

kz|{ϕ−1(z)}| =
1

2πi

∫
γ

ϕ′(α)

ϕ(α)− z
dα.

Choosing γ to contain all z with |z| < M , we see that since ϕ−1(∞) =∞ and kz is locally
constant it must be that in fact kz is identically 1 hence ϕ is injective.

Finally by Goursat’s theorem since ϕ is injective analytic and open ϕ−1 is analytic. Then
we have found a biholomorphism of Ĉ \M with Ĉ \D so Ĉ \M is simply connected in Ĉ hence
M is connected.
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c) M is ”simply connected”. Simply connected is in quotation marks because simply con-
nected is only defined on spaces that are path connected, which is currently still an open question
for M . M is ”simply connected” in that it is full.

d) (Shishikura) ∂M has Hausdorff dimension 2.

2.3 The MLC (Mandelbrot local connectivity) conjecture.

M is locally connected.

2.4 Remark.

If the MLC were proved true, the theorem of Caratheodory would give us an extension of the
Riemann map ϕ : D → Int(M) to S1, giving a conformal equivalence of M with D. Given the
fractal nature of M , this would be a very surprising result.

3 The Density of Hyperbolicity Conjecture.

3.1 Definitions.

Let ϕ : Ĉ → Ĉ be a rational function. We say w is a periodic point for ϕ with period n if
ϕn(w) = w (if n = 1 this is a fixed point). In this case we call {w,ϕ(w), ..., ϕn−1(w)} a cycle.

If w is a periodic point for ϕ with period n, the multiplier of w is defined to be:

λw = (ϕn)′(w).

If |λw| < 1 then we say w is attractive. If |λϕj(w)| < 1 for all 1 ≤ j ≤ n, we call

{w,ϕ(w), ..., ϕn−1(w)} an attractive cycle.Finally we define:

Hn = {w ∈ C | fw has an attractive n-cycle}

3.2 Proposition.

H1 = {w =
1

4
(1− reiθ) : r = 2(1 + cos θ)}

Proof. If fw(z) = z2 + w has a 1-cycle (a fixed point), z2 + w = z. Then:

z =
1±
√

1− 4w

2

Let 1 − 4w = reiθ (r > 0, θ ∈ [0, 2π)). Equivalently w = 1
4(1 − reiθ). Then z =

1/2(1±
√
reiθ/2). If z is attractive then 1 > |f ′w(z)| = |2(1/2(1±

√
reiθ/2)) = 1±

√
reiθ/2. Hence:

1 > |(1 +
√
r cos(

θ

2
)± i
√
r sin(

θ

2
)|
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ie:

1 > (1±
√
r cos(

θ

2
))2 + r sin2(

θ

2
) = 1± 2

√
r cos(

θ

2
) + r

hence 0 < r < ±2
√
r cos( θ2). Thus r2 < 4r cos2( θ2) = 2r(1 + cos(θ)) so r < 2(1 + cos(θ)) as

claimed.

3.3 Proposition.

H2 = {w ∈ C : |w + 1| < 1

4
}

Proof. If fw has a 2-cycle then:

fw(fw(z)) = z4 + 2wz2 + w2 + w = z

so:

z4 + 2wz2 + z + w2 + w = 0

ie:

(z2 − z + w)(z2 + z + w + 1) = 0.

But z2 − z + w = 0 means fw(z) = z so these form the 1-cycles, so we conclude that
z2 + z + w + 1 = 0. Now:

(fw ◦ fw)′(z) = 4z3 + 4wz = 4z(z2 + w) = 4zfw(z)

and using that z2 + z + w + 1 = 0 we get fw(z) = z2 + w = −z − 1 hence:

(fw ◦ fw)′(z) = 4z(−z − 1) = −4(z2 + z) = 4(w + 1)

Finally if z is an attractive point:

1 > |(fw ◦ fw)′(z)| = |4(w + 1)|

so |w + 1| < 1/4 as claimed.
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3.4 Definition.

We say that fw(z) is renormalizable if there exists an open U ⊂ C containing 0 and n ∈ Z \ {0}
such that one connected component V of f−nw (U) is relatively compact in U , and fnw|V is
polynomial-like of degree 2, ie. for all z ∈ U , #{(fnw)|−1V (z)} = 2, and:

{z ∈ V | (fnw|V )k(z) ∈ V for all k ≥ 0}

is connected. In the case that f−nw |V is renormalizable, we say that fw twice or 2 times
renormalizable. Then it makes sense to define in the natural way what it means to be m-times
renormalizable. If fw is m-times renormalizable for all m > 0 we say that fw is infinitely renor-
malizable, else it is finitely renormalizable.

These lead us to an important conjecture in Complex dynamics:

3.5 Density of Hyperbolicity Conjecture (DHC).

H = {w ∈ C : fw has an attractive cycle} is dense in M

3.6 Remark.

To this end, there are two key results. The first is by Douady and Hubbard from 1981-1982,
and the second complementary theorem is due to Yoccoz (1989):

3.7 Theorem.

If M is locally connected then H is dense in M .

3.8 Theorem.

M is locally connected at every w ∈M such that fw is finitely renormalizable.
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