1.3 Smooth maps

For topological manifolds \(M, N\) of dimension \(m, n\), the natural notion of morphism from \(M\) to \(N\) is that of a continuous map. A continuous map with continuous inverse is then a homeomorphism from \(M\) to \(N\), which is the natural notion of equivalence for topological manifolds. Since the composition of continuous maps is continuous and associative, we obtain a category \(\mathcal{C}^0\text{-}\text{Man}\) of topological manifolds and continuous maps. Recall that a category is simply a class of objects \(C\) (in our case, topological manifolds) and an associative class of arrows \(\mathcal{A}\) (in our case, continuous maps) with source and target maps \(\mathcal{A} \xrightarrow{s} \mathcal{C}\) and an identity arrow for each object, given by a map \(\text{Id} : \mathcal{C} \rightarrow \mathcal{A}\) (in our case, the identity map of any manifold to itself). Conventionally we write the set of arrows \(\{a \in \mathcal{A} : s(a) = x\text{ and } t(a) = y\}\) as \(\text{Hom}(x, y)\). Also note that the associative composition of arrows mentioned above then becomes a map

\[
\text{Hom}(x, y) \times \text{Hom}(y, z) \rightarrow \text{Hom}(x, z).
\]

So, the category \(\mathcal{C}^0\text{-}\text{Man}\) has objects which are topological manifolds, and \(\text{Hom}(M, N) = \mathcal{C}^0(M, N)\) is the set of continuous maps \(M \rightarrow N\). We now describe the morphisms between smooth manifolds, completing the definition of the category of smooth manifolds.

Definition 4. A map \(f : M \rightarrow N\) is called smooth when for each chart \((U, \varphi)\) for \(M\) and each chart \((V, \psi)\) for \(N\), the composition \(\psi \circ f \circ \varphi^{-1}\) is a smooth map, i.e. \(\psi \circ f \circ \varphi^{-1} \in C^\infty(\varphi(U), \mathbb{R}^n)\). The set of smooth maps (i.e. morphisms) from \(M\) to \(N\) is denoted \(C^\infty(M, N)\). A smooth map with a smooth inverse is called a diffeomorphism.

If \(g : L \rightarrow M\) and \(f : M \rightarrow N\) are smooth maps, then so is the composition \(f \circ g\), since if charts \(\varphi, \chi, \psi\) for \(L, M, N\) are chosen near \(p \in L\), \(g(p) \in M\), and \((fg)(p) \in N\), then \(\psi \circ (f \circ g) \circ \chi^{-1} = (A \circ B)\), for \(A = \psi f\chi^{-1}\) and \(B = \chi g\psi^{-1}\) both smooth mappings \(\mathbb{R}^n \rightarrow \mathbb{R}^n\). By the chain rule, \(A \circ B\) is differentiable at \(p\), with derivative \(D_p(A \circ B) = (D_{g(p)}A)(D_pB)\) (matrix multiplication).

Now we have a new category, which we may call \(C^\infty\text{-}\text{Man}\), the category of smooth manifolds and smooth maps; two manifolds are considered isomorphic when they are diffeomorphic.

Example 1.11. We show that the complex projective line \(\mathbb{CP}^1\) is diffeomorphic to the 2-sphere \(S^2\). Consider the maps \(f_+ : (x_0, x_1, x_2) = [1 + x_0 : x_1 + i x_2]\) and \(f_- : (x_0, x_1, x_2) = [x_1 - i x_2 : 1 - x_0]\). Since \(f_\pm\) is continuous on \(x_0 \neq \pm 1\), and since \(f_\pm = f_\pm\) on \(|x_0| < 1\), the pair \((f_+, f_-)\) defines a continuous map \(f : S^2 \rightarrow \mathbb{CP}^1\). To check smoothness, we compute the compositions

\[
\varphi_0 \circ f_+ \circ \varphi_0^{-1} : (y_1, y_2) \mapsto y_1 + iy_2, \quad (10)
\]

\[
\varphi_1 \circ f_- \circ \varphi_1^{-1} : (y_1, y_2) \mapsto y_1 - iy_2, \quad (11)
\]

both of which are obviously smooth maps.

Remark 2 (Exotic smooth structures). The topological Poincaré conjecture, now proven, states that any topological manifold homotopic to the \(n\)-sphere is in fact homeomorphic to it. We have now seen how to put a differentiable structure on this \(n\)-sphere. Remarkably, there are other differentiable structures on the \(n\)-sphere which are not diffeomorphic to the standard one we gave; these are called exotic spheres.

Since the connected sum of spheres is homeomorphic to a sphere, and since the connected sum operation is well-defined as a smooth manifold, it follows that the connected sum defines a monoid structure on the set of smooth \(n\)-spheres. In fact, Kervaire and Milnor showed that for \(n \neq 4\), the set of (oriented) diffeomorphism classes of smooth \(n\)-spheres forms a finite abelian group under the connected sum operation. This is not known to be the case in four dimensions. Kervaire and Milnor also compute the order of this group, and the first dimension where there is more than one smooth sphere is \(n = 7\), in which case they show there are 28 smooth spheres, which we will encounter later on.
The situation for spheres may be contrasted with that for the Euclidean spaces: any differentiable manifold homeomorphic to \mathbb{R}^n for $n \neq 4$ must be diffeomorphic to it. On the other hand, by results of Donaldson, Freedman, Taubes, and Kirby, we know that there are uncountably many non-diffeomorphic smooth structures on the topological manifold \mathbb{R}^4; these are called fake \mathbb{R}^4’s.

Example 1.12 (Lie groups). A group is a set G with an associative multiplication $G \times G \xrightarrow{m} G$, an identity element $e \in G$, and an inversion map $\iota : G \to G$, usually written $\iota(g) = g^{-1}$.

If we endow G with a topology for which G is a topological manifold and m, ι are continuous maps, then the resulting structure is called a topological group. If G is a given a smooth structure and m, ι are smooth maps, the result is a Lie group.

The real line (where m is given by addition), the circle (where m is given by complex multiplication), and their cartesian products give simple but important examples of Lie groups. We have also seen the general linear group $GL(n, \mathbb{R})$, which is a Lie group since matrix multiplication and inversion are smooth maps.

Since $m : G \times G \to G$ is a smooth map, we may fix $g, h \in G$ and define smooth maps $L_g : G \to G$ and $R_g : G \to G$ via $(L_g(h))(x) = gh$ and $(R_g(h))(x) = hg$. These are called left multiplication and right multiplication.

Note that the group axioms imply that $R_g L_h = L_h R_g$.

1.4 Manifolds with boundary

The concept of manifold with boundary is important for relating manifolds of different dimension. Our manifolds are defined intrinsically, meaning that they are not defined as subsets of another topological space; therefore, the notion of boundary will differ from the usual boundary of a subset.

To introduce boundaries in our manifolds, we need to change the local model which they are based on. For this reason, we introduce the half-space $H^n = \{ (x_1, \ldots, x_n) \in \mathbb{R}^n : x_n \geq 0 \}$, equip it with the induced topology from \mathbb{R}^n, and model our spaces on this one.

Definition 5. A topological manifold with boundary M is a second countable Hausdorff topological space which is locally homeomorphic to H^n. Its boundary ∂M is the $(n - 1)$ manifold consisting of all points mapped to $x_n = 0$ by a chart, and its interior $\text{Int} M$ is the set of points mapped to $x_n > 0$ by some chart.

A smooth structure on such a manifold with boundary is an equivalence class of smooth atlases, where smoothness is defined below.

Definition 6. Let V, W be finite-dimensional vector spaces, as before. A function $f : A \to W$ from an arbitrary subset $A \subset V$ is smooth when it admits a smooth extension to an open neighbourhood $U_p \subset W$ of every point $p \in A$.

For example, the function $f(x, y) = y$ is smooth on H^2 but $f(x, y) = \sqrt{y}$ is not, since its derivatives do not extend to $y \leq 0$.

Note the important fact that if M is an n-manifold with boundary, $\text{Int} M$ is a usual n-manifold, without boundary. Also, even more importantly, ∂M is an $n - 1$-manifold without boundary, i.e. $\partial(\partial M) = \emptyset$. This is sometimes phrased as the equation

$$\partial^2 = 0.$$

Example 1.13 (Möbius strip). The moebius strip E is a compact 2-manifold with boundary. As a topological space it is the quotient of $\mathbb{R} \times [0, 1]$ by the identification $(x, y) \sim (x + 1, 1 - y)$. The map $\pi : \{(x, y)\} \mapsto e^{2\pi i x}$ is a continuous surjective map to S^1, called a projection map. We may choose charts $\{(x, y)\} \mapsto e^{i + \pi y}$ for $x \in (x_0 - \epsilon, x_0 + \epsilon)$, and for any $\epsilon < \frac{1}{2}$.

Note that ∂E is diffeomorphic to S^1. This actually provides us with our first example of a non-trivial fiber bundle. In this case, E is a bundle of intervals over a circle. It is nontrivial, since the trivial fiber bundle $S^1 \times [0, 1]$ has boundary $S^1 \sqcup S^1$.
1.5 Cobordism

(n+1)-Manifolds with boundary provide us with a natural equivalence relation on n-manifolds, called cobordism.

Definition 7. Compact n-manifolds M_1, M_2 are cobordant when there exists a compact n+1-manifold with boundary N such that ∂N is diffeomorphic to $M_1 \sqcup M_2$. If N is cobordant to M, then we say that M, N are in the same cobordism class.

- We use compact manifolds since any manifold M is the boundary of a noncompact manifold with boundary $M \times [0, 1)$.
- The set of cobordism classes of k-dimensional manifolds is called Ω_k, and forms an abelian group under the operation $[M_1] + [M_2] = [M_1 \sqcup M_2]$. The additive identity element is $0 = [\emptyset]$. Note that \emptyset is a manifold of dimension k for all k.
- The direct sum $\Omega_* = \bigoplus_{k \geq 0} \Omega_k$ then forms a commutative ring called the Cobordism ring, where the product is

 \[[M_1] \cdot [M_2] = [M_1 \times M_2]. \]

Note that while the Cartesian product of manifolds is a manifold, the Cartesian product of two manifolds with boundary is not a manifold with boundary. On the other hand, the Cartesian product of manifolds only one of which has boundary, is a manifold with boundary (why?)

Note that the 1-point space $[\ast]$ is not null-cobordant, meaning it is not the boundary of a compact 1-manifold. Compact 0-dimensional manifolds are boundaries only if they consist of an even number of points. This shows that there are compact manifolds which are not boundaries.

Proposition 1.14. The cobordism ring is 2-torsion, i.e. $x + x = 0 \ \forall x$.

Proof. The zero element of the ring is $[\emptyset]$ and the multiplicative unit is $[\ast]$, the class of the one-point manifold. For any manifold M, the manifold with boundary $M \times [0, 1]$ has boundary $M \sqcup M$. Hence $[M] + [M] = [\emptyset] = 0$, as required.

Example 1.15. The n-sphere S^n is null-cobordant (i.e. cobordant to \emptyset), since $\partial B_{n+1}(0, 1) \cong S^n$, where $B_{n+1}(0, 1)$ denotes the unit ball in \mathbb{R}^{n+1}.

Example 1.16. Any oriented compact 2-manifold Σ_g is null-cobordant, since we may embed it in \mathbb{R}^3 and the "inside" is a 3-manifold with boundary given by Σ_g.

We would like to state an amazing theorem of Thom, which is a complete characterization of the cobordism ring.

Theorem 1.17 (René Thom 1954). The cobordism ring is a (countably generated) polynomial ring over \mathbb{F}_2 with generators in every dimension $n \neq 2^k - 1$, i.e.

\[\Omega^* = \mathbb{F}_2[x_2, x_4, x_5, x_6, x_8, \ldots]. \]

This theorem implies that there are 3 nonzero cobordism classes in dimension 4, namely x_2^2, x_4, and $x_5^2 + x_4$. Can you find 4-manifolds representing these classes? Can you find connected representatives? What is the abelian group structure on Ω_4? In fact, there is a finite set of numbers associated to each manifold, called the Stiefel-Whitney characteristic numbers, which completely determine whether two manifolds are cobordant.