3.2 Sard’s theorem

The fundamental idea which allows us to prove that transversality is a generic condition is a theorem of Sard showing that critical values of a smooth map \(f : M \rightarrow N \) (i.e. points \(q \in N \) for which the map \(f \) and the inclusion \(\iota : q \hookrightarrow N \) fail to be transverse maps) are rare. The following proof is taken from Milnor, based on Pontryagin.

The meaning of “rare” will be that the set of critical values is of measure zero, which means, in \(\mathbb{R}^m \), that for any \(\epsilon > 0 \) we can find a sequence of balls in \(\mathbb{R}^m \), containing \(f(C) \) in their union, with total volume less than \(\epsilon \). Some easy facts about sets of measure zero: the countable union of measure zero sets is of measure zero, the complement of a set of measure zero is dense.

We begin with an elementary lemma describing the behaviour of measure-zero sets under differentiable maps.

Lemma 3.15. Let \(I^m = [0, 1]^m \) be the unit cube, and \(f : I^m \rightarrow \mathbb{R}^n \) a \(C^1 \) map. If \(m < n \) then \(f(I^m) \) has measure zero. If \(m = n \) and \(A \subset I^m \) has measure zero, then \(f(A) \) has measure zero.

Proof. If \(f \in C^1 \), its derivative is bounded on \(I^m \), so for all \(x, y \in I^m \) we have
\[
||f(y) - f(x)|| \leq M||y - x||, \tag{59}
\]
for a constant \(M > 0 \) depending only on \(f \). So, the image of a ball of radius \(r \) in \(I^m \) is contained in a ball of radius \(Mr \), which has volume proportional to \(r^n \).

If \(A \subset I^m \) has measure zero, then for each \(\epsilon \) we have a countable covering of \(A \) by balls of radius \(r_k \) with total volume \(c_n \sum_k r_k^m < \epsilon \). We deduce that \(f(A) \) is covered by balls of radius \(Mr_k \) with total volume \(M^n c_n \sum_k r_k^m \); since \(n \geq m \) this goes to zero as \(\epsilon \rightarrow 0 \). We conclude that \(f(A) \) is of measure zero.

If \(m < n \) then \(f \) defines a \(C^1 \) map \(I^m \times I^{n-m} \rightarrow \mathbb{R}^n \) by pre-composing with the projection map to \(I^m \). Since \(I^m \times \{0\} \subset I^m \times I^{n-m} \) clearly has measure zero, its image must also.

Remark 3.16. If we considered the case \(n < m \), the resulting sum of volumes may be larger in \(\mathbb{R}^n \). For example, the projection map \(\mathbb{R}^2 \rightarrow \mathbb{R} \) given by \((x, y) \mapsto x \) clearly takes the set of measure zero \(y = 0 \) to one of positive measure.

A subset \(A \subset M \) of a manifold is said to have measure zero when its image in each chart of an atlas has measure zero. Lemma 3.15, together with the fact that a manifold is second countable, implies that the property is independent of the choice of atlas, and that it is preserved under equidimensional maps:

Corollary 3.17. Let \(f : M \rightarrow N \) be a \(C^1 \) map of manifolds where \(\dim M = \dim N \). Then the image \(f(A) \) of a set \(A \subset M \) of measure zero also has measure zero.

3This is called a Lipschitz constant.
Corollary 3.18 (Baby Sard). Let $f : M \to N$ be a C^1 of manifolds where $\dim M < \dim N$. Then $f(M)$ (i.e. the set of critical values) has measure zero in N.

Remark 3.19. Note that this implies that space-filling curves are not C^1.

Now we investigate the measure of the critical values of a map $f : M \to N$ where $\dim M = \dim N$. The set of critical points need not have measure zero, but we shall see that

The variation of f is constrained along its critical locus since this is where Df drops rank. In fact, the set of critical values has measure zero.

Theorem 3.20 (Equidimensional Sard). Let $f : M \to N$ be a C^1 map of n-manifolds, and let $C \subset M$ be the set of critical points. Then $f(C)$ has measure zero.

Proof. It suffices to show result for the unit cube mapping to Euclidean space. Let $f : I^n \to \mathbb{R}^n$ a C^1 map, and let M be the Lipschitz constant for f on I^n, i.e.

$$||f(x) - f(y)|| \leq M||x - y||, \ \forall x, y \in I^n. \quad (60)$$

Let c be a critical point, so that the image of $Df(c)$ is a proper subspace of \mathbb{R}^n. Choose a hyperplane containing this subspace, translate it to $f(c)$, and call it H. Then

$$d(f(x), H) \leq ||f(x) - (f(c) + Df(c)(x - c))||, \quad (61)$$

but by Taylor’s theorem, this is bounded by $C||x - c||^2$, for a constant C, for all x in the compact set I^n.

If $||x - c|| \leq \epsilon$, then $f(x)$ is within a distance $C\epsilon^2$ from H and within a distance $M\epsilon$ of $f(c)$, so lies within a parallelepiped of volume

$$(2C\epsilon^2)(2M\epsilon)^{n-1}. \quad (62)$$

Now subdivide I^n into h^n cubes of edge length h^{-1} and apply the argument for each small cube, in which $||x - c|| \leq h^{-1}\sqrt{n}$. This gives a total volume for the image less than

$$(2^n CM^{n-1}h^{n-1}(h^n), \quad (63)$$

which is arbitrarily small as $h \to \infty$.

The argument above will not work for $\dim N < \dim M$; we need more control on the function f. In particular, one can find a C^1 function $I^2 \to \mathbb{R}$ which fails to have critical values of measure zero. (Hint: find a C^1 function $f : \mathbb{R} \to \mathbb{R}$ with critical values containing the Cantor set $C \subset [0, 1]$. Compose $f \times f$ with the sum $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and note that $C+C = [0, 2]$.) As a result, Sard’s theorem in general requires more differentiability of f.

Theorem 3.21 (Big Sard’s theorem). Let $f : M \to N$ be a C^k map of manifolds of dimension m, n, respectively. Let C be the set of critical points. Then $f(C)$ has measure zero if $k > \frac{m}{n} - 1$.

27
Proof. As before, it suffices to show for \(f : I^m \to \mathbb{R}^n \). We do an induction on \(m \) – note that the theorem holds for \(m = 0 \).

Define \(C_1 \subset C \) to be the set of points \(x \) for which \(Df(x) = 0 \). Define \(C_i \subset C_{i-1} \) to be the set of points \(x \) for which \(D^i f(x) = 0 \) for all \(j \leq i \). So we have a descending sequence of closed sets:

\[
C \supset C_1 \supset C_2 \supset \cdots \supset C_k. \tag{64}
\]

We will show that \(f(C) \) has measure zero by showing

1. \(f(C_k) \) has measure zero,
2. each successive difference \(f(C_i \setminus C_{i+1}) \) has measure zero for \(i \geq 1 \),
3. \(f(C \setminus C_1) \) has measure zero.

Step 1: For \(x \in C_k \), Taylor’s theorem gives the estimate

\[
\|f(x + t) - f(x)\| \leq c\|t\|^{k+1}, \tag{65}
\]

where \(c \) depends only on \(I^m \) and \(f \).

Subdivide \(I^m \) into \(h^m \) small cubes with edge \(h^{-1} \); then any point in the small cube \(I_0 \) containing \(x \) may be written as \(x + t \) with \(\|t\| \leq h^{-1}\sqrt{m} \). As a result, \(f(I_0) \) is contained by a cube of edge \(ah^{-(k+1)} \), with \(a = 2cm^{(k+1)/2} \) independent of the small cube size. At most \(h^m \) cubes are necessary to cover \(C_k \), and their images have total volume less than

\[
h^m (ah^{-(k+1)})^n = a^n h^{m-(k+1)n}. \tag{66}
\]

Assuming that \(k > \frac{m}{n} - 1 \), this tends to 0 as we increase the number of cubes.

Step 2: For each \(x \in C_i \setminus C_{i+1} \), \(i \geq 1 \), there is a \(i + 1^{th} \) partial, say wlog \(\partial^{i+1} f_1 / \partial x_1 \cdots \partial x_{i+1} \), which is nonzero at \(x \). Therefore the function

\[
w(x) = \partial^{i+1} f_1 / \partial x_2 \cdots \partial x_{i+1} \tag{67}
\]

vanishes on \(C_i \) but its partial derivative \(\partial w / \partial x_1 \) is nonvanishing near \(x \). Then

\[
(w(x), x_2, \ldots, x_m) \tag{68}
\]

forms an alternate coordinate system in a neighbourhood \(V \) around \(x \) by the inverse function theorem (the change of coordinates is of class \(C^k \)), and we have trapped \(C_i \) inside a hyperplane. The restriction of \(f \) to \(w = 0 \) in \(V \) is clearly critical on \(C_i \cap V \) and so by induction on \(m \) we have that \(f(C_i \cap V) \) has measure zero. Cover \(C_i \setminus C_{i+1} \) by countably many such neighbourhoods \(V \).

Step 3: Let \(x \in C \setminus C_1 \). Note that we won’t necessarily be able to trap \(C \) in a hypersurface. But, since there is some partial derivative, wlog \(\partial f_1 / \partial x_1 \), which is nonzero at \(x \), so defining \(w = f_1 \), we have that

\[
(w(x), x_2, \ldots, x_m) \tag{69}
\]

is an alternative coordinate system in some neighbourhood \(V \) of \(x \) (the coordinate change is a diffeomorphism of class \(C^k \)). In these coordinates, the hyperplanes \(w = t \) in the domain are sent into hyperplanes \(y_1 = t \) in the codomain, and so \(f \) can be described as a family of maps \(f_t \) whose
Corollary 3.23. Let M be a compact manifold with boundary. There is no smooth map $f : M \to \partial M$ leaving ∂M pointwise fixed. Such a map is called a smooth retraction of M onto its boundary.

Proof. Such a map f must have a regular value by Sard’s theorem, let this value be $y \in \partial M$. Then y is obviously a regular value for $f|_{\partial M} = \text{Id}$ as well, so that $f^{-1}(y)$ must be a compact 1-manifold with boundary given by $f^{-1}(y) \cap \partial M$, which is simply the point y itself. Since there is no compact 1-manifold with a single boundary point, we have a contradiction. \hfill \Box

For example, this shows that the identity map $S^n \to S^n$ may not be extended to a smooth map $f : B(0,1) \to S^n$.

3.3 Brouwer’s fixed point theorem

Remark 3.22. Note that $f(C)$ is measurable, since it is the countable union of compact subsets (the set of critical values is not necessarily closed, but the set of critical points is closed and hence a countable union of compact subsets, which implies the same of the critical values.)

To show the consequence of Fubini’s theorem directly, we can use the following argument. First note that for any covering of $[a, b]$ by intervals, we may extract a finite subcovering of intervals whose total length is $\leq 2|b - a|$. To see this, first choose a minimal subcovering $\{I_1, \ldots, I_p\}$, numbered according to their left endpoints. Then the total overlap is at most the length of $[a, b]$. Therefore the total length is at most $2|b - a|$. Now let $B \subset \mathbb{R}^n$ be compact, so that we may assume $B \subset \mathbb{R}^{n-1} \times [a, b]$. We prove that if $B \cap P_c$ has measure zero in the hyperplane $P_c = \{x^n = c\}$, for any constant $c \in [a, b]$, then it has measure zero in \mathbb{R}^n.

If $B \cap P_c$ has measure zero, we can find a covering by open sets $R^c_i \subset P_c$ with total volume $< \epsilon$. For sufficiently small α, the sets $R^c_i \times [c - \alpha, c + \alpha]$ cover $B \cap \bigcup_{\epsilon \in [c - \alpha, c + \alpha]} P_\epsilon$ (since B is compact). As we vary c, the sets $[c - \alpha, c + \alpha]$ form a covering of $[a, b]$, and we extract a finite subcover $\{I_i\}$ of total length $\leq 2|b - a|$. Let R^c_i be the set R^c_i for $I_i = [c - \alpha, c + \alpha]$. Then the sets $R^c_i \times I_i$ form a cover of B with total volume $\leq 2|b - a|$. We can make this arbitrarily small, so that B has measure zero.
Lemma 3.24. Every smooth map of the closed n-ball to itself has a fixed point.

Proof. Let $D^n = \overline{B(0,1)}$. If $g : D^n \rightarrow D^n$ had no fixed points, then define the function $f : D^n \rightarrow S^{n-1}$ as follows: let $f(x)$ be the point in S^{n-1} nearer to x on the line joining x and $g(x)$.

This map is smooth, since $f(x) = x + tu$, where

$$u = \|x - g(x)\|^{-1}(x - g(x)),$$

(71)

and t is the positive solution to the quadratic equation $(x+tu) \cdot (x+tu) = 1$, which has positive discriminant $b^2 - 4ac = 4(1 - |x|^2 + (x \cdot u)^2)$. Such a smooth map is therefore impossible by the previous corollary. □

Theorem 3.25 (Brouwer fixed point theorem). Any continuous self-map of D^n has a fixed point.

Proof. The Weierstrass approximation theorem says that any continuous function on $[0,1]$ can be uniformly approximated by a polynomial function in the supremum norm $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$. In other words, the polynomials are dense in the continuous functions with respect to the supremum norm. The Stone-Weierstrass is a generalization, stating that for any compact Hausdorff space X, if A is a subalgebra of $C^0(X,R)$ such that A separates points $(\forall x,y, \exists f \in A : f(x) \neq f(y))$ and contains a nonzero constant function, then A is dense in C^0.

Given this result, approximate a given continuous self-map g of D^n by a polynomial function p' so that $||p' - g||_{\infty} < \epsilon$ on D^n. To ensure p' sends D^n into itself, rescale it via

$$p = (1 + \epsilon)^{-1}p'.$$

(72)

Then clearly p is a D^n self-map while $||p - g||_{\infty} < 2\epsilon$. If g had no fixed point, then $|g(x) - x|$ must have a minimum value μ on D^n, and by choosing $2\epsilon = \mu$ we guarantee that for each x,

$$|p(x) - x| \geq |g(x) - x| - |g(x) - p(x)| > \mu - \mu = 0.$$

(73)

Hence p has no fixed point. Such a smooth function can’t exist and hence we obtain the result. □

3.4 Generici

Theorem 3.26 (Transversality theorem). Let $F : X \times S \rightarrow Y$ and $g : Z \rightarrow Y$ be smooth maps of manifolds where only X has boundary. Suppose that F and ∂F are transverse to g. Then for almost every $s \in S$, $f_s = F(\cdot,s)$ and ∂f_s are transverse to g.

Proof. Due to the transversality, the fiber product $W = (X \times S) \times_Y Z$ is a submanifold (with boundary) of $X \times S \times Z$ and projects to S via the usual projection map π. We show that any $s \in S$ which is a regular value for both the projection map $\pi : W \rightarrow S$ and its boundary map $\partial \pi$ gives rise to a f_s which is transverse to g. Then by Sard’s theorem the s which fail to be regular in this way form a set of measure zero.
Suppose that \(s \in S \) is a regular value for \(\pi \). Suppose that \(f_s(x) = g(z) = y \) and we now show that \(f_s \) is transverse to \(g \) there. Since \(F(x, s) = g(z) \) and \(F \) is transverse to \(g \), we know that

\[
\text{im} DF(x, s) + \text{im} Dg_s = T_y Y.
\]

Therefore, for any \(a \in T_y Y \), there exists \(b = (w, e) \in T(X \times S) \) with \(DF(x, s)b - a \) in the image of \(Dg_s \). But since \(D\pi \) is surjective, there exists \((w', e, c') \in T(x, y; z)W \). Hence we observe that

\[
(Df_s)(w - w') - a = DF(x, s)[(w, e) - (w', e)] - a = (DF(x, s)b - a) - DF(x, s)(w', e),
\]

where both terms on the right hand side lie in \(\text{im} Dg_s \), since \((w', e, c') \in T(x, y; z)W \) means \(Dg_s(c') = DF(x, y)(w', e) \).

Precisely the same argument (with \(X \) replaced with \(\partial X \) and \(F \) replaced with \(\partial F \)) shows that if \(s \) is regular for \(\partial \pi \) then \(\partial f_s \) is transverse to \(g \). This gives the result.

The previous result immediately shows that transversal maps to \(\mathbb{R}^n \) are generic, since for any smooth map \(f : M \to \mathbb{R}^n \) we may produce a family of maps

\[
F : M \times \mathbb{R}^n \to \mathbb{R}^n
\]

via \(F(x, s) = f(x) + s \). This new map \(F \) is clearly a submersion and hence is transverse to any smooth map \(g : Z \to \mathbb{R}^n \). For arbitrary target manifolds, we will imitate this argument, but we will require a (weak) version of Whitney’s embedding theorem for manifolds into \(\mathbb{R}^n \).

In the next section we will show that any manifold \(Y \) can be embedded via \(\iota : Y \to \mathbb{R}^N \) in some large Euclidean space, and in such a way that the image has a “tubular neighbourhood” \(U \subset \mathbb{R}^N \) of radius \(\epsilon(y) \) (for a positive real-valued function \(\epsilon : Y \to \mathbb{R} \) equipped with a projection \(\pi : U \to Y \) such that \(\pi\iota = \text{id}_Y \).

Corollary 3.27. Let \(X \) be a manifold with boundary and \(f : X \to Y \) be a smooth map to a manifold \(Y \). Then there is an open ball \(S = B(0,1) \subset \mathbb{R}^N \) and a smooth map \(F : X \times S \to Y \) such that \(F(x, 0) = f(x) \) and for fixed \(x \), the map \(f_x : s \to F(x, s) \) is a submersion \(S \to Y \).

In particular, \(F \) and \(\partial F \) are submersions, so are transverse to any \(g : Z \to Y \).

Proof. Use the embedding of \(\iota : Y \to \mathbb{R}^N \) and the tubular neighbourhood \(\pi : U \to Y \) to define

\[
F(x, s) = \pi(\iota(f(x)) + \epsilon(y)s).
\]

The transversality theorem then guarantees that given any smooth \(g : Z \to Y \), for almost all \(s \in S \) the maps \(f_s, \partial f_s \) are transverse to \(g \). We improve this slightly to show that \(f_s \) may be chosen to be homotopic to \(f \).
Corollary 3.28 (Transversality homotopy theorem). Given any smooth maps \(f_0 : X \to Y \), \(g : Z \to Y \), where only \(X \) has boundary, there exists a smooth map \(f_1 : X \to Y \) homotopic to \(f_0 \) with \(f_1, \partial f_1 \) both transverse to \(g \).

Proof. Let \(S, F \) be as in the previous corollary. Away from a set of measure zero in \(S \), the functions \(f_s, \partial f_s \) are transverse to \(g \), by the transversality theorem. But these \(f_s \) are all homotopic to \(f \) via the homotopy \(X \times [0, 1] \to Y \) given by

\[
(x, t) \mapsto F(x, ts),
\]

(76)

The last theorem we shall prove concerning transversality is a very useful extension result which is essential for intersection theory:

Theorem 3.29 (Homotopic transverse extension of boundary map). Let \(X \) be a manifold with boundary and \(f_0 : X \to Y \) a smooth map to a manifold \(Y \). Suppose that \(\partial f_0 \) is transverse to the closed map \(g : Z \to Y \). Then there exists a map \(f_1 : X \to Y \), homotopic to \(f \) and with \(\partial f_1 = \partial f_0 \), such that \(f_1 \) is transverse to \(g \).

Proof. First observe that since \(\partial f_0 \) is transverse to \(g \) on \(\partial X \), \(f_0 \) is also transverse to \(g \) there, and furthermore since \(g \) is closed, \(f_0 \) is transverse to \(g \) in a neighbourhood \(U \) of \(\partial X \). (for example, if \(x \in \partial X \) but \(x \) not in \(f_0^{-1}(g(Z)) \) then since the latter set is closed, we obtain a neighbourhood of \(x \) for which \(f_0 \) is transverse to \(g \).)

Now choose a smooth function \(\gamma : X \to [0, 1] \) which is 1 outside \(U \) but 0 on a neighbourhood of \(\partial X \). (why does \(\gamma \) exist? exercise.) Then set \(\tau = \gamma^2 \), so that \(d\tau(x) = 0 \) wherever \(\tau(x) = 0 \). Recall the map \(F : X \times S \to Y \) we used in proving the transversality homotopy theorem and modify it via

\[
G(x, s) = F(x, \tau(x)s).
\]

(77)

The claim is that \(G \) and \(\partial G \) are transverse to \(g \). This is clear for \(x \) such that \(\tau(x) \neq 0 \). But if \(\tau(x) = 0 \),

\[
TG_{(x,s)}(v,w) = TF_{(x,0)}(v,0) = T(f_0)_x(v),
\]

(78)

but \(\tau(x) = 0 \) means that \(x \in U \), in which \(f \) is transverse to \(g \).

Since transversality holds, there exists \(s \) such that \(f_1 : x \mapsto G(x, s) \) and \(\partial f_1 \) are transverse to \(g \) (and homotopic to \(f_0 \), as before). Finally, if \(x \) is in the neighbourhood of \(\partial X \) for which \(\tau = 0 \), then \(f_1(x) = F(x,0) = f_0(x) \).

Corollary 3.30. If \(f_0 : X \to Y \) and \(f_1 : X \to Y \) are homotopic smooth maps of manifolds, each transverse to the closed map \(g : Z \to Y \), then the fiber products \(W_0 = X_{f_0} \times g Z \) and \(W_1 = X_{f_1} \times g Z \) are cobordant.

Proof. If \(F : X \times [0,1] \to Y \) is the homotopy between \(f_0, f_1 \), then by the previous theorem, we may find a (homotopic) homotopy \(G : X \times [0,1] \to Y \) which is transverse to \(g \), without changing \(F \) on the boundary. Hence the fiber product \(U = (X \times [0,1])G \times g Z \) is a cobordism with boundary \(W \sqcup W' \).