Partitions of unity allow us to go from local to global, i.e. to build a global object on a manifold by building it on each open set of a cover, smoothly tapering each local piece so it is compactly supported in each open set, and then taking a sum over open sets. This is a very flexible operation which uses the properties of smooth functions—it will not work for complex manifolds, for example. Our main example of such a passage from local to global is to build a global map from a manifold to \mathbb{R}^N which is an embedding, a result first proved by Whitney.

Definition 4.1. A collection of subsets $\{U_\alpha\}$ of the topological space M is called **locally finite** when each point $x \in M$ has a neighbourhood V intersecting only finitely many of the U_α.

Definition 4.2. A covering $\{V_\alpha\}$ is a **refinement** of the covering $\{U_\beta\}$ when each V_α is contained in some U_β.

Lemma 4.3. Any open covering $\{A_\alpha\}$ of a topological manifold has a countable, locally finite refinement $\{(U_i, \varphi_i)\}$ by coordinate charts such that $\varphi_i(U_i) = B(0,3)$ and $\{V_i = \varphi_i^{-1}(B(0,1))\}$ is still a covering of M. We will call such a cover a regular covering. In particular, any topological manifold is paracompact (i.e. every open cover has a locally finite refinement).

Proof. If M is compact, the proof is easy: choosing coordinates around any point $x \in M$, we can translate and rescale to find a covering of M by a refinement of the type desired, and choose a finite subcover, which is obviously locally finite.

For a general manifold, we note that by second countability of M, there is a countable basis of coordinate neighbourhoods and each of these charts is a countable union of open sets P_i with P_i compact. Hence M has a countable basis $\{P_i\}$ such that P_i is compact.

Using these, we may define an increasing sequence of compact sets which exhausts M: let $K_1 = P_1$, and

$$K_{i+1} = P_1 \cup \cdots \cup P_r,$$

where $r > 1$ is the first integer with $K_1 \subset P_1 \cup \cdots \cup P_r$.

Now note that M is the union of ring-shaped sets $K_i \setminus K_{i-1}$, each of which is compact. If $p \in A_\alpha$, then $p \in K_{i+1} \setminus K_i$ for some i. Now choose a coordinate neighbourhood $(U_{p,\alpha}, \varphi_{p,\alpha})$ with $U_{p,\alpha} \subset K_{i+2} \setminus K_{i-1}$ and $\varphi_{p,\alpha}(U_{p,\alpha}) = B(0,3)$ and define $V_{p,\alpha} = \varphi^{-1}(B(0,1))$.

Letting p, α vary, these neighbourhoods cover the compact set $K_{i+1} \setminus K_i$ without leaving the band $K_{i+2} \setminus K_{i-1}$. Choose a finite subcover $V_{i,k}$ for each i. Then $(U_{i,k}, \varphi_{i,k})$ is the desired locally finite refinement.

Definition 4.4. A smooth partition of unity is a collection of smooth non-negative functions $\{f_\alpha : M \to \mathbb{R}\}$ such that

i) $\{\text{supp} f_\alpha = f_\alpha^{-1}(\mathbb{R}\setminus\{0\})\}$ is locally finite,

ii) $\sum_\alpha f_\alpha(x) = 1 \quad \forall x \in M$, hence the name.
A partition of unity is **subordinate** to an open cover \(\{ U_i \} \) when \(\forall x, \text{supp} f_i \subset U_i \) for some \(i \).

Theorem 4.5. Given a regular covering \(\{(U_i, \varphi_i)\} \) of a manifold, there exists a partition of unity \(\{ f_i \} \) subordinate to it with \(f_i > 0 \) on \(V_i \) and \(\text{supp} f_i \subset \varphi_i^{-1}(B(0, 2)) \).

Proof. A bump function is a smooth non-negative real-valued function \(\tilde{g} \) on \(\mathbb{R}^n \) with \(\tilde{g}(x) = 1 \) for \(||x|| \leq 1 \) and \(\tilde{g}(x) = 0 \) for \(||x|| \geq 2 \). For instance, take
\[
\tilde{g}(x) = \frac{h(2 - ||x||)}{h(2 - ||x||) + h(||x|| - 1)},
\]
for \(h(t) \) given by \(e^{-1/t} \) for \(t > 0 \) and 0 for \(t < 0 \).

Having this bump function, we can produce non-negative bump functions on the manifold \(g_i = \tilde{g} \circ \varphi_i \), which have support \(\text{supp} g_i \subset \varphi_i^{-1}(B(0, 2)) \) and take the value +1 on \(V_i \). Finally we define our partition of unity via
\[
f_i = \frac{g_i}{\sum_j g_j}, \quad i = 1, 2, \ldots
\]
\(\square \)

4.1 Whitney embedding

We now investigate the embedding of arbitrary smooth manifolds as regular submanifolds of \(\mathbb{R}^k \).

Theorem 4.6 (Compact Whitney embedding in \(\mathbb{R}^N \)). Any compact manifold may be embedded in \(\mathbb{R}^N \) for sufficiently large \(N \).

Proof. Let \(\{(U_i \supset V_i, \varphi_i)\}_{i=1}^k \) be a finite regular covering, which exists by compactness. Choose a partition of unity \(\{f_1, \ldots, f_k\} \) as in Theorem 4.5 and define the following “zoom-in” maps \(M \rightarrow \mathbb{R}^{\dim M} \):
\[
\tilde{\varphi}_i(x) = \begin{cases} f_i(x) \varphi_i(x) & x \in U_i, \\ 0 & x \notin U_i. \end{cases}
\]
Then define a map \(\Phi : M \rightarrow \mathbb{R}^{k(\dim M + 1)} \) which zooms simultaneously into all neighbourhoods, with extra information to guarantee injectivity:
\[
\Phi(x) = (\tilde{\varphi}_1(x), \ldots, \tilde{\varphi}_k(x), f_1(x), \ldots, f_k(x)).
\]
Note that \(\Phi(x) = \Phi(x') \) implies that for some \(i, f_i(x) = f_i(x') \neq 0 \) and hence \(x, x' \in U_i \). This then implies that \(\varphi_i(x) = \varphi_i(x') \), implying \(x = x' \). Hence \(\Phi \) is injective.

We now check that \(D\Phi \) is injective, which will show that it is an injective immersion. At any point \(x \) the differential sends \(v \in T_x M \) to the following vector in \(\mathbb{R}^{\dim M} \times \cdots \times \mathbb{R}^{\dim M} \times \mathbb{R} \times \cdots \times \mathbb{R} \):
\[
(Df_1(v)\varphi_1(x) + f_1(x)D\varphi_1(v), \ldots, Df_k(v)\varphi_k(x) + f_k(x)D\varphi_k(v), Df_1(v), \ldots, Df_k(v))
\]
But this vector cannot be zero. Hence we see that \(\Phi \) is an immersion.

But an injective immersion from a compact space must be an embedding: view \(\Phi \) as a bijection onto its image. We must show that \(\Phi^{-1} \) is
continuous, i.e. that \(\Phi \) takes closed sets to closed sets. If \(K \subseteq M \) is closed, it is also compact and hence \(\Phi(K) \) must be compact, hence closed (since the target is Hausdorff).

Theorem 4.7 (Compact Whitney embedding in \(\mathbb{R}^{2n+1} \)). Any compact \(n \)-manifold may be embedded in \(\mathbb{R}^{2n+1} \).

Proof. Begin with an embedding \(\Phi : M \rightarrow \mathbb{R}^N \) and assume \(N > 2n + 1 \). We then show that by projecting onto a hyperplane it is possible to obtain an embedding to \(\mathbb{R}^{N-1} \).

A vector \(v \in S^{N-1} \subseteq \mathbb{R}^N \) defines a hyperplane (the orthogonal complement) and let \(P_v : \mathbb{R}^N \rightarrow \mathbb{R}^{N-1} \) be the orthogonal projection to this hyperplane. We show that the set of \(v \) for which \(\Phi_v = P_v \circ \Phi \) fails to be an embedding is a set of measure zero, hence that it is possible to choose \(v \) for which \(\Phi_v \) is an embedding.

\(\Phi_v \) fails to be an embedding exactly when \(\Phi_v \) is not injective or \(D\Phi_v \) is not injective at some point. Let us consider the two failures separately:

If \(v \) is in the image of the map \(\beta_1 : (M \times M) \setminus \Delta_M \rightarrow S^{N-1} \) given by

\[
\beta_1(p_1, p_2) = \frac{\Phi(p_2) - \Phi(p_1)}{||\Phi(p_2) - \Phi(p_1)||},
\]

then \(\Phi_v \) will fail to be injective. Note however that \(\beta_1 \) maps a \(2n \)-dimensional manifold to a \(N-1 \)-manifold, and if \(N > 2n + 1 \) then baby Sard’s theorem implies the image has measure zero.

The immersion condition is a local one, which we may analyze in a chart \((U, \varphi)\). \(\Phi_v \) will fail to be an immersion in \(U \) precisely when \(v \) coincides with a vector in the normalized image of \(D(\Phi \circ \varphi^{-1}) \) where

\[
\Phi \circ \varphi^{-1} : \varphi(U) \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^N.
\]

Hence we have a map (letting \(N(w) = ||w|| \))

\[
\frac{D(\Phi \circ \varphi^{-1})}{N \circ D(\Phi \circ \varphi^{-1})} : U \times S^{n-1} \rightarrow S^{N-1}.
\]

The image has measure zero as long as \(2n - 1 < N - 1 \), which is certainly true since \(2n < N - 1 \). Taking union over countably many charts, we see that immersion fails on a set of measure zero in \(S^{N-1} \).

Hence we see that \(\Phi_v \) fails to be an embedding for a set of \(v \in S^{N-1} \) of measure zero. Hence we may reduce \(N \) all the way to \(N = 2n + 1 \).

Corollary 4.8. We see from the proof that if we do not require injectivity but only that the manifold be immersed in \(\mathbb{R}^N \), then we can take \(N = 2n \) instead of \(2n + 1 \).

We now use Whitney embedding to prove the existence of tubular neighbourhoods for submanifolds of \(\mathbb{R}^N \), a key point in proving genericity of transversality. Tubular neighbourhoods also exist for submanifolds of any manifold, but we leave this corollary for the reader.

If \(Y \subseteq \mathbb{R}^N \) is an embedded submanifold, the normal space at \(y \in Y \) is defined by \(N_y Y = \{ v \in \mathbb{R}^N : \langle v, T_y Y \rangle = 0 \} \). The collection of all normal spaces of all points in \(Y \) is called the normal bundle:

\[
NY = \{(y, v) \in Y \times \mathbb{R}^N : v \in N_y Y \}.
\]
Proposition 4.9. \(NY \subset \mathbb{R}^N \times \mathbb{R}^N \) is an embedded submanifold of dimension \(N \).

Proof. Given \(y \in Y \), choose coordinates \((u^1, \ldots, u^N)\) in a neighbourhood \(U \subset \mathbb{R}^N \) of \(y \) so that \(Y \cap U = \{u^{N+1} = \cdots = u^N = 0\} \). Define \(\Phi : U \times \mathbb{R}^N \rightarrow \mathbb{R}^{N-n} \times \mathbb{R}^n \) via

\[
\Phi(x, v) = (u^{N+1}(x), \ldots, u^N(x), (v, \frac{\partial}{\partial u^1}(x)), \ldots, (v, \frac{\partial}{\partial u^n}(x))),
\]

so that \(\Phi^{-1}(0) \) is precisely \(NY \cap (U \times \mathbb{R}^N) \). We then show that 0 is a regular value: observe that, writing \(v \) in terms of its components \(v^j \frac{\partial}{\partial x^j} \)

in the standard basis for \(\mathbb{R}^N \),

\[
\langle v, \frac{\partial}{\partial v^i} \rangle = \langle v^j \frac{\partial}{\partial x^j}(u(x)) \frac{\partial}{\partial x^i}(u(x)) \rangle = \sum_{j=1}^N v^j \frac{\partial u^j}{\partial x^i}(u(x))
\]

Therefore the Jacobian of \(\Phi \) is the \(((N-n) + n) \times (N + N)\) matrix

\[
D\Phi(x) = \begin{pmatrix}
\frac{\partial u^i}{\partial x^j}(x) & 0 \\
* & \frac{\partial u^i}{\partial x^j}(u(x))
\end{pmatrix}
\]

The \(N \) rows of this matrix are linearly independent, proving \(\Phi \) is a submersion. \(\square \)

The normal bundle \(NY \) contains \(Y \cong Y \times \{0\} \) as a regular submanifold, and is equipped with a smooth map \(\pi : NY \rightarrow Y \) sending \((y, v) \mapsto y \). The map \(\pi \) is a surjective submersion and is the bundle projection. The vector spaces \(\pi^{-1}(y) \) for \(y \in Y \) are called the fibers of the bundle and \(NY \) is an example of a vector bundle.

We may take advantage of the embedding in \(\mathbb{R}^N \) to define a smooth map \(E : NY \rightarrow \mathbb{R}^N \) via

\[
E(x, v) = x + v.
\]

Definition 4.10. A tubular neighbourhood of the embedded submanifold \(Y \subset \mathbb{R}^N \) is a neighbourhood \(U \) of \(Y \) in \(\mathbb{R}^N \) that is the diffeomorphic image under \(E \) of an open subset \(V \subset NY \) of the form

\[
V = \{(y, v) \in NY : |v| < \delta(y)\},
\]

for some positive continuous function \(\delta : M \rightarrow \mathbb{R} \).

If \(U \subset \mathbb{R}^N \) is such a tubular neighbourhood of \(Y \), then there does exist a positive continuous function \(\epsilon : Y \rightarrow \mathbb{R} \) such that \(U_\epsilon = \{x \in \mathbb{R}^N : \exists y \in Y \text{ with } |x - y| < \epsilon(y)\} \) is contained in \(U \). This is simply

\[
\epsilon(y) = \sup\{r \mid B(y, r) \subset U\},
\]

which is continuous since \(\forall \epsilon > 0, \exists x \in U \) for which \(\epsilon(y) \leq |x - y| + \epsilon \). For any other \(y' \in Y \), this is \(\leq |y - y'| + |x - y'| + \epsilon \). Since \(|x - y'| \leq \epsilon(y') \), we have \(|\epsilon(y) - \epsilon(y')| \leq |y - y'| + \epsilon \).

Theorem 4.11 (Tubular neighbourhood theorem). Every regular submanifold of \(\mathbb{R}^N \) has a tubular neighbourhood.

41
Proof. First we show that E is a local diffeomorphism near $y \in Y \subset NY$.
If ι is the embedding of Y in \mathbb{R}^N, and $\iota' : Y \to NY$ is the embedding in
the normal bundle, then $E \circ \iota' = \iota$, hence we have $DE \circ D\iota' = D\iota$, showing
that the image of $DE(y)$ contains T_yY. Now if ι is the embedding of N_yY
in \mathbb{R}^N, and $\iota' : N_yY \to NY$ is the embedding in the normal bundle,
then $E \circ \iota' = \iota$. Hence we see that the image of $DE(y)$ contains N_yY, and
hence the image is all of $T_y\mathbb{R}^N$. Hence E is a diffeomorphism on some
neighbourhood

$$V_\delta(y) = \{(y',v') \in NY : |y' - y| < \delta, |v'| < \delta\}, \quad \delta > 0.$$

Now for $y \in Y$ let $r(y) = \sup \{\delta : E|_{V_\delta(y)} \text{ is a diffeomorphism} \}$ if this is
≤ 1 and let $r(y) = 1$ otherwise. The function $r(y)$ is continuous, since if
$|y - y'| < r(y)$, then $V_\delta(y') \subset V_{r(y)}(y)$ for $\delta = r(y) - |y - y'|$. This means
that $r(y') \geq \delta$, i.e. $r(y) - r(y') \leq |y - y'|$. Switching y and y', this remains
true, hence $|r(y) - r(y')| \leq |y - y'|$, yielding continuity.

Finally, let $V = \{(y,v) \in NY : |v| < \frac{1}{2} r(y)\}$. We show that E
is injective on V. Suppose $(y,v), (y',v') \in V$ are such that $E(y,v) = E(y',v')$, and suppose wlog $r(y') \leq r(y)$. Then since $y + v = y' + v'$, we have

$$|y - y'| = |v - v'| \leq |v| + |v'| \leq \frac{1}{2} r(y) + \frac{1}{2} r(y') \leq r(y).$$

Hence y, y' are in $V_{r(y)}(y)$, on which E is a diffeomorphism. The required
neighbourhood is then $U = E(V)$. \qed