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1300Y Geometry and Topology

1 Manifolds

A manifold is a space which looks like Rn at small scales (i.e. “locally”), but which may be very different
from this at large scales (i.e. “globally”). In other words, manifolds are made up by gluing pieces of Rn
together to make a more complicated whole. We would like to make this precise.

1.1 Topological manifolds

Definition 1. A real, n-dimensional topological manifold is a Hausdorff, second countable topological space
which is locally homeomorphic to Rn.

Note: “Locally homeomorphic to Rn” simply means that each point p has an open neighbourhood U for
which we can find a homeomorphism ϕ : U −→ V to an open subset V ∈ Rn. Such a homeomorphism ϕ is
called a coordinate chart around p. A collection of charts which cover the manifold, i.e. whose union is the
whole space, is called an atlas.

We now give a bunch of examples of topological manifolds. The simplest is, technically, the empty set.
More simple examples include a countable set of points (with the discrete topology), and Rn itself, but there
are more:

Example 1.1 (Circle). Define the circle S1 = {z ∈ C : |z| = 1}. Then for any fixed point z ∈ S1, write it
as z = e2πic for a unique real number 0 ≤ c < 1, and define the map

νz : t 7→ e2πit. (1)

We note that νz maps the interval Ic = (c− 1
2 , c+ 1

2 ) to the neighbourhood of z given by S1\{−z}, and it is
a homeomorphism. Then ϕz = νz|−1

Ic
is a local coordinate chart near z.

By taking products of coordinate charts, we obtain charts for the Cartesian product of manifolds. Hence
the Cartesian product is a manifold.

Example 1.2 (n-torus). S1 × · · · × S1 is a topological manifold (of dimension given by the number n of
factors), with charts {ϕz1 × · · · × ϕzn : zi ∈ S1}.

Example 1.3 (open subsets). Any open subset U ⊂ M of a topological manifold is also a topological
manifold, where the charts are simply restrictions ϕ|U of charts ϕ for M .

For example, the real n × n matrices Mat(n,R) form a vector space isomorphic to Rn2
, and contain an

open subset
GL(n,R) = {A ∈ Mat(n,R) : detA 6= 0}, (2)

known as the general linear group, which therefore forms a topological manifold.

Example 1.4 (Spheres). The n-sphere is defined as the subspace of unit vectors in Rn+1:

Sn = {(x0, . . . , xn) ∈ Rn+1 :
∑

x2
i = 1}.

Let N = (1, 0, . . . , 0) be the North pole and let S = (−1, 0, . . . , 0) be the South pole in Sn. Then we may
write Sn as the union Sn = UN ∪ US, where UN = Sn\{S} and US = Sn\{N} are equipped with coordinate
charts ϕN , ϕS into Rn, given by the “stereographic projections” from the points S,N respectively

ϕN : (x0, ~x) 7→ (1 + x0)−1~x, (3)

ϕS : (x0, ~x) 7→ (1− x0)−1~x. (4)

We have endowed the sphere Sn with a certain topology, but is it possible for another topological manifold
S̃n to be homotopic to Sn without being homeomorphic to it? The answer is no, and this is known as the
topological Poincaré conjecture, and is usually stated as follows: any homotopy n-sphere is homeomorphic
to the n-sphere. It was proven for n > 4 by Smale, for n = 4 by Freedman, and for n = 3 is equivalent
to the smooth Poincaré conjecture which was proved by Hamilton-Perelman. In dimensions n = 1, 2 it is a
consequence of the (easy) classification of topological 1- and 2-manifolds.
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1.1 Topological manifolds 1300Y Geometry and Topology

Example 1.5 (Projective spaces). Let K = R or C (or even H). Then KPn is defined to be the space of
lines through {0} in Kn+1, and is called the projective space over K of dimension n.

More precisely, let X = Kn+1\{0} and define an equivalence relation on X via x ∼ y iff ∃λ ∈ K∗ = K\{0}
such that λx = y, i.e. x, y lie on the same line through the origin. Then

KPn = X/ ∼,

and it is equipped with the quotient topology.
The projection map π : X −→ KPn is an open map, since if U ⊂ X is open, then tU is also open

∀t ∈ K∗, implying that ∪t∈K∗tU = π−1(π(U)) is open, implying π(U) is open. This immediately shows, by
the way, that KPn is second countable.

To show KPn is Hausdorff (which we must do, since Hausdorff is preserved by subspaces and products,
but not quotients), we show that the graph of the equivalence relation is closed in X ×X (this, together with
the openness of π, gives us the Hausdorff property for KPn). This graph is simply

Γ∼ = {(x, y) ∈ X ×X : x ∼ y},

and we notice that Γ∼ is actually the common zero set of the following continuous functions

fij(x, y) = (xiyj − xjyi) i 6= j.

(Does this work for H? How can it be fixed?)
An atlas for KPn is given by the open sets Ui = π(Ũi), where

Ũi = {(x0, . . . , xn) ∈ X : xi 6= 0},

and these are equipped with charts to Kn given by

ϕi([x0, . . . , xn]) = x−1
i (x0, . . . , xi−1, xi+1, . . . , xn), (5)

which are indeed invertible by (y1, . . . , yn) 7→ (y1, . . . , yi, 1, yi+1, . . . , yn).
Sometimes one finds it useful to simply use the “coordinates” (x0, . . . , xn) for KPn, with the understand-

ing that the xi are well-defined only up to overall rescaling. This is called using “projective coordinates” and
in this case a point in KPn is denoted by [x0 : · · · : xn].

Example 1.6 (Connected sum). Let p ∈M and q ∈ N be points in topological manifolds and let (U,ϕ) and
(V, ψ) be charts around p, q such that ϕ(p) = 0 and ψ(q) = 0.

Choose ε small enough so that B(0, 2ε) ⊂ ϕ(U) and B(0, 2ε) ⊂ ϕ(V ), and define the map of annuli

φ :B(0, 2ε)\B(0, ε) −→ B(0, 2ε)\B(0, ε) (6)

x 7→ 2ε2

|x|2x. (7)

This is a homeomorphism of the annulus to itself, exchanging the boundaries. Now we define a new topological
manifold, called the connected sum M]N , as the quotient X/ ∼, where

X = (M\ϕ−1(B(0, ε))) t (N\ψ−1(B(0, ε))),

and we define an identification x ∼ ψ−1φϕ(x) for x ∈ ϕ−1(B(0, 2ε)). If AM and AN are atlases for M,N
respectively, then a new atlas for the connect sum is simply

AM |M\ϕ−1(B(0,ε))
∪ AN |N\ψ−1(B(0,ε))

Two important remarks concerning the connect sum: first, the connect sum of a sphere with itself is
homeomorphic to the same sphere:

Sn]Sn ∼= Sn.

Second, by taking repeated connect sums of T 2 and RP 2, we may obtain all compact 2-dimensional manifolds.
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1.2 Smooth manifolds 1300Y Geometry and Topology

Example 1.7 (General gluing construction). To construct a topological manifold “from scratch”, we should
be able to glue pieces of Rn together, as long as the gluing is consistent and by homeomorphisms. The
following is a method for doing so, tailor-made so that all the requirements are satisfied.

Begin with a countable collection of open subsets of Rn: A = {Ui}. Then for each i, we choose finitely
many open subsets Uij ⊂ Ui and gluing maps

Uij
ϕij // Uji , (8)

which we require to satisfy ϕijϕji = IdUji , and such that ϕij(Uij ∩ Uik) = Uji ∩ Ujk for all k, and most
important of all, ϕij must be homeomorphisms.

Next, we want the pairwise gluings to be consistent (transitive) and so we require that ϕkiϕjkϕij =
IdUij∩Ujk for all i, j, k.

Second countability of the glued manifold will be guaranteed since we started with a countable collection
of opens, but the Hausdorff property is not necessarily satisfied without a further assumption: we require that
∀p ∈ ∂Uij ⊂ Ui and ∀q ∈ ∂Uji ⊂ Uj, there exist neighbourhoods Vp ⊂ Ui and Vq ⊂ Uj of p, q respectively
with ϕij(Vp ∩ Uij) ∩ Vq = ∅.

The final glued topological manifold is then

M =
⊔
Ui
∼

, (9)

for the equivalence relation x ∼ ϕij(x) for x ∈ Uij. This space naturally comes with an atlas A, where the
charts are simply the inclusions of the Ui in Rn.

As an exercise, you may show that any topological manifold is homeomorphic to one constructed in this
way.

1.2 Smooth manifolds

Given coordinate charts (Ui, ϕi) and (Uj , ϕj) on a topological manifold, if we compare coordinates on the
intersection Uij = Ui ∩ Uj , we see that the map

ϕj ◦ ϕ−1
i |ϕi(Uij) : ϕi(Uij) −→ ϕj(Uij)

is a homeomorphism, simply because it is a composition of homeomorphisms. We can say this another way:
topological manifolds are glued together by homeomorphisms.

This means that we may be able to differentiate a function in one coordinate chart but not in another,
i.e. there is no way to make sense of calculus on topological manifolds. This is why we introduce smooth
manifolds, which is simply a topological manifold where the gluing maps are required to be smooth.

First we recall the notion of a smooth map of finite-dimensional vector spaces.

Remark 1 (Aside on smooth maps of vector spaces). Let U ⊂ V be an open set in a finite-dimensional
vector space, and let f : U −→ W be a function with values in another vector space W . The function f is
said to be differentiable at p ∈ U if there exists a linear map Df(p) : V −→W such that

||f(p+ x)− f(p)−Df(p)(x)|| = o(||x||),

where o : R+ −→ R is continuous at 0 and limt→0 o(t)/t = 0, and we choose any inner product on V,W ,
defining the norm || · ||. For infinite-dimensional vector spaces, the topology is highly sensitive to which norm
is chosen, but we will work in finite dimensions.

Given linear coordinates (x1, . . . , xn) on V , and (y1, . . . , ym) on W , we may express f in terms of its
m components fj = yj ◦ f , and then the linear map Df(p) may be written as an m × n matrix, called the
Jacobian matrix of f at p.

Df(p) =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

 (10)
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1.2 Smooth manifolds 1300Y Geometry and Topology

We say that f is differentiable on U when it is differentiable at all p ∈ U and we say it is continuously
differentiable when

Df : U −→ Hom(V,W )

is continuous. The vector space of continuously differentiable functions on U with values in W is called
C1(U,W ).

The first derivative Df is also a map from U to a vector space (Hom(V,W )), therefore if its derivative
exists, we obtain a map

D2f : U −→ Hom(V,Hom(V,W )),

and so on. The vector space of k times continuously differentiable functions on U with values in W is called
Ck(U,W ). We are most interested in C∞ or “smooth” maps, all of whose derivatives exist; the space of
these is denoted C∞(U,W ), and hence we have

C∞(U,W ) =
⋂
k

Ck(U,W ).

Note: for a C2 function, D2f actually has values in a smaller subspace of V ∗ ⊗ V ∗ ⊗W , namely in
S2V ∗ ⊗W , since “mixed partials are equal”.

After this aside, we can define a smooth manifold.

Definition 2. A smooth manifold is a topological manifold equipped with an equivalence class of smooth
atlases, explained below.

Definition 3. An atlas A = {Ui, ϕi} for a topological manifold is called smooth when all gluing maps

ϕj ◦ ϕ−1
i |ϕi(Uij) : ϕi(Uij) −→ ϕj(Uij)

are smooth maps, i.e. lie in C∞(ϕi(Uij),Rn). Two atlases A,A′ are equivalent if A ∪ A′ is itself a smooth
atlas.

Note: Instead of requiring an atlas to be smooth, we could ask for it to be Ck, or real-analytic, or even
holomorphic (this makes sense for a 2n-dimensional topological manifold when we identify R2n ∼= Cn.

We may now verify that all the examples from section 1.1 are actually smooth manifolds:

Example 1.8 (Circle). For Example 1.1, only two charts, e.g. ϕ±1, suffice to define an atlas, and we have

ϕ−1 ◦ ϕ−1
1 =

{
t+ 1 − 1

2 < t < 0
t 0 < t < 1

2 ,

which is clearly C∞. In fact all the charts ϕz are smoothly compatible. Hence the circle is a smooth manifold.

The Cartesian product of smooth manifolds inherits a natural smooth structure from taking the Carte-
sian product of smooth atlases. Hence the n-torus, for example, equipped with the atlas we described in
Example 1.2, is smooth. Example 1.3 is clearly defining a smooth manifold, since the restriction of a smooth
map to an open set is always smooth.

Example 1.9 (Spheres). The charts for the n-sphere given in Example 1.4 form a smooth atlas, since

ϕN ◦ ϕ−1
S : ~z 7→ 1−x0

1+x0
~z = (1−x0)2

|~x|2 ~z = |~z|−2~z,

which is smooth on Rn\{0}, as required.

Example 1.10 (Projective spaces). The charts for projective spaces given in Example 1.5 form a smooth
atlas, since

ϕ1 ◦ ϕ−1
0 (z1, . . . , zn) = (z−1

1 , z−1
1 z2, . . . , z

−1
1 zn), (11)

which is smooth on Rn\{z1 = 0}, as required, and similarly for all ϕi, ϕj.

The two remaining examples were constructed by gluing: the connected sum in Example 1.6 is clearly
smooth since φ was chosen to be a smooth map, and any topological manifold from Example 1.7 will be
endowed with a natural smooth atlas as long as the gluing maps ϕij are chosen to be C∞.
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1.3 Manifolds with boundary

The concept of manifold with boundary is important for relating manifolds of different dimension. Our
manifolds are defined intrinsically, meaning that they are not defined as subsets of another topological space;
therefore, the notion of boundary will differ from the usual boundary of a subset.

To introduce boundaries in our manifolds, we need to change the local model which they are based on.
For this reason, we introduce the half-space Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}, equip it with the induced
topology from Rn, and model our spaces on this one.

Definition 4. A topological manifold with boundary M is a second countable Hausdorff topological space
which is locally homeomorphic to Hn. Its boundary ∂M is the (n − 1) manifold consisting of all points
mapped to xn = 0 by a chart, and its interior IntM is the set of points mapped to xn > 0 by some chart.
We shall see later that M = ∂M t IntM .

A smooth structure on such a manifold with boundary is an equivalence class of smooth atlases, in the
sense below.

Definition 5. Let V,W be finite-dimensional vector spaces, as before. A function f : A −→ W from an
arbitrary subset A ⊂ V is smooth when it admits a smooth extension to an open neighbourhood Up ⊂W of
every point p ∈ A.

For example, the function f(x, y) = y is smooth on H2 but f(x, y) =
√
y is not, since its derivatives do

not extend to y ≤ 0.
Note the important fact that if M is an n-manifold with boundary, IntM is a usual n-manifold, without

boundary. Also, even more importantly, ∂M is an n− 1-manifold without boundary, i.e. ∂(∂M) = ∅. This
is sometimes phrased as the equation

∂2 = 0.

Example 1.11 (Möbius strip). The mobius strip E is a compact 2-manifold with boundary. As a topological
space it is the quotient of R× [0, 1] by the identification (x, y) ∼ (x+ 1, 1− y). The map π : [(x, y)] 7→ e2πix

is a continuous surjective map to S1, called a projection map. We may choose charts [(x, y)] 7→ ex+iπy for
x ∈ (x0 − ε, x0 + ε), and for any ε < 1

2 .
Note that ∂E is diffeomorphic to S1. This actually provides us with our first example of a non-trivial

fiber bundle, as we shall see. In this case, E is a bundle of intervals over a circle.

1.4 Cobordism

(n + 1)-Manifolds with boundary provide us with a natural equivalence relation on n-manifolds, called
cobordism.

Definition 6. n-manifolds M1,M2 are cobordant when there exists a n+ 1-manifold with boundary N such
that ∂N is diffeomorphic to M1 tM2. The class of manifolds cobordant to M is called the cobordism class
of M .

Note that while the Cartesian product of manifolds is a manifold, the Cartesian product of two manifolds
with boundary is not a manifold with boundary. On the other hand, the Cartesian product of manifolds
only one of which has boundary, is a manifold with boundary (why?)

Cobordism classes of manifolds inherit two natural operations, as follows: If [M1], [M2] are cobordism
classes, then the operation [M1] · [M2] = [M1×M2] is well-defined. Furthermore [M1] + [M2] = [M1 tM2] is
well-defined, and the two operations satisfy the axioms defining a commutative ring. The ring of cobordism
classes of compact manifolds is called the cobordism ring and is denoted Ω•. The subset of classes of
k-dimensional manifolds is denoted Ωk ⊂ Ω•.

Proposition 1.12. The cobordism ring is 2-torsion, i.e. x+ x = 0 ∀x.
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Proof. The zero element of the ring is [∅] and the multiplicative unit is [∗], the class of the one-point manifold.
For any manifold M , the manifold with boundary M×[0, 1] has boundary MtM . Hence [M ]+[M ] = [∅] = 0,
as required.

Example 1.13. The n-sphere Sn is null-cobordant (i.e. cobordant to ∅), since ∂Bn+1(0, 1) ∼= Sn, where
Bn+1(0, 1) denotes the unit ball in Rn+1.

Example 1.14. Any oriented compact 2-manifold Σg is null-cobordant , since we may embed it in R3 and
the “inside” is a 3-manifold with boundary given by Σg.

We would like to state an amazing theorem of Thom, which is a complete characterization of the cobordism
ring.

Theorem 1.15. The cobordism ring is a (countably generated) polynomial ring over F2 with generators in
every dimension n 6= 2k − 1, i.e.

Ω• = F2[x2, x4, x5, x6, x8, . . .].

This theorem implies that there are 3 cobordism classes in dimension 4, namely x2
2, x4, and x2

2 + x4.
Can you find 4-manifolds representing these classes? Can you find connected representatives?

1.5 Smooth maps

For topological manifolds M,N of dimension m,n, the natural notion of morphism from M to N is that of a
continuous map. A continuous map with continuous inverse is then a homeomorphism from M to N , which
is the natural notion of equivalence for topological manifolds. Since the composition of continuous maps is
continuous and associative, we obtain a category C0-Man of topological manifolds and continuous maps.
Recall that a category is simply a class of objects C (in our case, topological manifolds) and an associative

class of arrows A (in our case, continuous maps) with source and target maps A
s

((

t

66 C and an identity

arrow for each object, given by a map Id : C −→ A (in our case, the identity map of any manifold to itself).
Conventionally we write the set of arrows {a ∈ A : s(a) = x and t(a) = y} as Hom(x, y). Also note that
the associative composition of arrows mentioned above then becomes a map

Hom(x, y)×Hom(y, z) −→ Hom(x, z).

If M,N are smooth manifolds, the right notion of morphism from M to N is that of a smooth map
f : M −→ N .

Definition 7. A map f : M −→ N is called smooth when for each chart (U,ϕ) for M and each chart (V, ψ)
for N , the composition ψ ◦ f ◦ ϕ−1 is a smooth map, i.e. ψ ◦ f ◦ ϕ−1 ∈ C∞(ϕ(U),Rn). The set of smooth
maps (i.e. morphisms) from M to N is denoted C∞(M,N). A smooth map with a smooth inverse is called
a diffeomorphism.

If g : L −→ M and f : M −→ N are smooth maps, then so is the composition f ◦ g, since if charts
ϕ, χ, ψ for L,M,N are chosen near p ∈ L, g(p) ∈ M , and (fg)(p) ∈ N , then ψ ◦ (f ◦ g) ◦ ϕ−1 = A ◦ B, for
A = ψfχ−1 and B = χgϕ−1 both smooth mappings Rn −→ Rn. By the chain rule, A ◦ B is differentiable
at p, with derivative Dp(A ◦B) = (Dg(p)A)(DpB) (matrix multiplication).

Now we have a new category, which we may call C∞-Man, the category of smooth manifolds and smooth
maps; two manifolds are considered isomorphic when they are diffeomorphic. In fact, the definitions above
carry over, word for word, to the setting of manifolds with boundary. Hence we have defined another category,
C∞-Man∂ , the category of smooth manifolds with boundary.

In defining the arrows for the category C∞-Man∂ , we may choose to consider all smooth maps, or only
those smooth maps M −→ N such that ∂M is sent to ∂N , i.e. boundary-preserving maps. Call the resulting
category in the latter case C∞∂ -Man∂ .
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Note that the boundary map, ∂, maps the objects of C∞∂ -Man∂ to objects in C∞-Man, and similarly
for arrows, and such that the following square commutes:

M
ψ //

∂

��

M ′

∂

��
∂M

ψ|∂M
// ∂M ′

(12)

This is precisely what it means for ∂ to be a (covariant) functor, from the category of manifolds with
boundary and boundary-preserving smooth maps, to the category of manifolds without boundary.

Fix a smooth manifold N and consider the class of pairs (M,ϕ) where M is a smooth manifold with
boundary and ϕ is a smooth map ϕ : M −→ N . Define a category where these maps are the objects. How
does the boundary operator act on this category?

Example 1.16. We show that the complex projective line CP 1 is diffeomorphic to the 2-sphere S2. Consider
the maps f+(x0, x1, x2) = [1 + x0 : x1 + ix2] and f−(x0, x1, x2) = [x1 − ix2 : 1− x0]. Since f± is continuous
on x0 6= ±1, and since f− = f+ on |x0| < 1, the pair (f−, f+) defines a continuous map f : S2 −→ CP 1. To
check smoothness, we compute the compositions

ϕ0 ◦ f+ ◦ ϕ−1
N : (y1, y2) 7→ y1 + iy2, (13)

ϕ1 ◦ f− ◦ ϕ−1
S : (y1, y2) 7→ y1 − iy2, (14)

both of which are obviously smooth maps.

Remark 2 (Exotic smooth structures). The topological Poincaré conjecture, now proven, states that any
topological manifold homotopic to the n-sphere is in fact homeomorphic to it. We have now seen how to
put a differentiable structure on this n-sphere. Remarkably, there are other differentiable structures on the
n-sphere which are not diffeomorphic to the standard one we gave; these are called exotic spheres.

Since the connected sum of spheres is homeomorphic to a sphere, and since the connected sum operation is
well-defined as a smooth manifold, it follows that the connected sum defines a monoid structure on the set of
smooth n-spheres. In fact, Kervaire and Milnor showed that for n 6= 4, the set of (oriented) diffeomorphism
classes of smooth n-spheres forms a finite abelian group under the connected sum operation. This is not
known to be the case in four dimensions. Kervaire and Milnor also compute the order of this group, and the
first dimension where there is more than one smooth sphere is n = 7, in which case they show there are 28
smooth spheres, which we will encounter later on.

The situation for spheres may be contrasted with that for the Euclidean spaces: any differentiable manifold
homeomorphic to Rn for n 6= 4 must be diffeomorphic to it. On the other hand, by results of Donaldson,
Freedman, Taubes, and Kirby, we know that there are uncountably many non-diffeomorphic smooth structures
on the topological manifold R4; these are called fake R4s.

Example 1.17 (Lie groups). A group is a set G with an associative multiplication G×G m // G , an
identity element e ∈ G, and an inversion map ι : G −→ G, usually written ι(g) = g−1.

If we endow G with a topology for which G is a topological manifold and m, ι are continuous maps, then
the resulting structure is called a topological group. If G is a given a smooth structure and m, ι are smooth
maps, the result is a Lie group.

The real line (where m is given by addition), the circle (where m is given by complex multiplication), and
their cartesian products give simple but important examples of Lie groups. We have also seen the general
linear group GL(n,R), which is a Lie group since matrix multiplication and inversion are smooth maps.

Since m : G × G −→ G is a smooth map, we may fix g ∈ G and define smooth maps Lg : G −→ G and
Rg : G −→ G via Lg(h) = gh and Rg(h) = hg. These are called left multiplication and right multiplication.
Note that the group axioms imply that RgLh = LhRg.

8



1.6 Local structure of smooth maps 1300Y Geometry and Topology

1.6 Local structure of smooth maps

In some ways, smooth manifolds are easier to produce or find than general topological manifolds, because
of the fact that smooth maps have linear approximations. Therefore smooth maps often behave like linear
maps of vector spaces, and we may gain inspiration from vector space constructions (e.g. subspace, kernel,
image, cokernel) to produce new examples of manifolds.

In charts (U,ϕ), (V, ψ) for the smooth manifolds M,N , a smooth map f : M −→ N is represented by a
smooth map ψ ◦ f ◦ϕ−1 ∈ C∞(ϕ(U),Rn). We shall give a general local classification of such maps, based on
the behaviour of the derivative. The fundamental result which provides information about the map based
on its derivative is the inverse function theorem.

Theorem 1.18 (Inverse function theorem). Let U ⊂ Rm an open set and f : U −→ Rm a smooth map such
that Df(p) is an invertible linear operator. Then there is a neighbourhood V ⊂ U of p such that f(V ) is
open and f : V −→ f(V ) is a diffeomorphism. furthermore, D(f−1)(f(p)) = (Df(p))−1.

Proof. Without loss of generality, assume that U contains the origin, that f(0) = 0 and that Df(p) = Id
(for this, replace f by (Df(0))−1 ◦ f . We are trying to invert f , so solve the equation y = f(x) uniquely for
x. Define g so that f(x) = x+ g(x). Hence g(x) is the nonlinear part of f .

The claim is that if y is in a sufficiently small neighbourhood of the origin, then the map hy : x 7→ y−g(x)
is a contraction mapping on some closed ball; it then has a unique fixed point φ(y), and so y−g(φ(y)) = φ(y),
i.e. φ is an inverse for f .

Why is hy a contraction mapping? Note that Dhy(0) = 0 and hence there is a ball B(0, r) where
||Dhy|| ≤ 1

2 . This then implies (mean value theorem) that for x, x′ ∈ B(0, r),

||hy(x)− hy(x′)|| ≤ 1
2 ||x− x

′||.

Therefore hy does look like a contraction, we just have to make sure it’s operating on a complete metric
space. Let’s estimate the size of hy(x):

||hy(x)|| ≤ ||hy(x)− hy(0)||+ ||hy(0)|| ≤ 1
2 ||x||+ ||y||.

Therefore by taking y ∈ B(0, r2 ), the map hy is a contraction mapping on B(0, r). Let φ(y) be the unique
fixed point of hy guaranteed by the contraction mapping theorem.

To see that φ is continuous (and hence f is a homeomorphism), we compute

||φ(y)− φ(y′)|| = ||hy(φ(y))− hy′(φ(y′))||
≤ ||g(φ(y))− g(φ(y′))||+ ||y − y′||
≤ 1

2 ||φ(y)− φ(y′)||+ ||y − y′||,

so that we have ||φ(y)− φ(y′)|| ≤ 2||y − y′′||, as required.
To see that φ is differentiable, we guess the derivative (Df)−1 and compute. Let x = φ(y) and x′ = φ(y′).

For this to make sense we must have chosen r small enough so that Df is nonsingular on B(0, r), which is
not a problem.

||φ(y)− φ(y′)− (Df(x))−1(y − y′)|| = ||x− x′ − (Df(x))−1(f(x)− f(x′))||
≤ ||(Df(x))−1||||(Df(x))(x− x′)− (f(x)− f(x′))||
≤ o(||x− x′||), using differentiability of f
≤ o(||y − y′||), using continuity of φ.

Now that we have shown φ is differentiable with derivative (Df)−1, we use the fact that Df is C∞ and
inversion is C∞, implying that Dφ is C∞ and hence φ also.

This theorem immediately provides us with a local normal form for a smooth map with Df(p) invertible:
we may choose coordinates on sufficiently small neighbourhoods of p, f(p) so that f is represented by the
identity map Rn −→ Rn.

9
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In fact, the inverse function theorem leads to a normal form theorem for a more general class of maps:

Theorem 1.19 (Constant rank theorem). Let V,W be m,n-dimensional vector spaces and U ⊂ V an open
set. If f : U −→ W is a smooth map such that Df has constant rank k in U , then for each point p ∈ U
there are charts (U,ϕ) and (V, ψ) containing p, f(p) such that

ψ ◦ f ◦ ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0).

Proof. since rk (f) = k at p, there is a k × k minor of Df(p) with nonzero determinant. Reorder the
coordinates on Rm and Rn so that this minor is top left, and translate coordinates so that f(0) = 0. label
the coordinates (x1, . . . , xk, y1, . . . ym−k) on V and (u1, . . . uk, v1, . . . , vn−k) on W .

Then we may write f(x, y) = (Q(x, y), R(x, y)), where Q is the projection to u = (u1, . . . , uk) and R is
the projection to v. with ∂Q

∂x nonsingular. First we wish to put Q into normal form. Consider the map
φ(x, y) = (Q(x, y), y), which has derivative

Dφ =
( ∂Q

∂x
∂Q
∂y

0 1

)
As a result we see Dφ(0) is nonsingular and hence there exists a local inverse φ−1(x, y) = (A(x, y), B(x, y)).
Since it’s an inverse this means (x, y) = φ(φ−1(x, y)) = (Q(A,B), B), which implies that B(x, y) = y.

Then f ◦ φ−1 : (x, y) 7→ (x, R̃ = R(A, y)), and must still be of rank k. Since its derivative is

D(f ◦ φ−1) =

(
Ik×k 0
∂R̃
∂x

∂R̃
∂y

)

we conclude that ∂R̃
∂y = 0, meaning that

f ◦ φ−1 : (x, y) 7→ (x, S(x)).

We now postcompose by the diffeomorphism σ : (u, v) 7→ (u, v − s(u)), to obtain

σ ◦ f ◦ φ−1 : (x, y) 7→ (x, 0),

as required.

As we shall see, these theorems have many uses. One of the most straightforward uses is for defining
submanifolds.

Definition 8. A regular submanifold of dimension k in an n-manifold M is a subspace S ⊂ M such that
∀s ∈ S, there exists a chart (U,ϕ) for M , containing s, and with

S ∩ U = ϕ−1(xk+1 = · · · = xn = 0).

In other words, the inclusion S ⊂M is locally isomorphic to the vector space inclusion Rk ⊂ Rn.

Of course, the remaining coordinates {x1, . . . , xk} define a smooth manifold structure on S itself, justifying
the terminology.

Proposition 1.20. If f : M −→ N is a smooth map of manifolds, and if Df(p) has constant rank on M ,
then for any q ∈ f(M), the inverse image f−1(q) ⊂M is a regular submanifold.

Proof. Let x ∈ f−1(q). Then there exist charts ψ,ϕ such that ψ◦f◦ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0)
and f−1(q) ∩ U = {x1 = · · · = xk = 0}. Hence we obtain that f−1(q) is a codimension k regular submani-
fold.

10



1.6 Local structure of smooth maps 1300Y Geometry and Topology

Example 1.21. Let f : Rn −→ R be given by (x1, . . . , xn) 7→
∑
x2
i . Then Df(x) = (2x1, . . . , 2xn), which

has rank 1 at all points in Rn\{0}. Hence since f−1(q) contains {0} iff q = 0, we see that f−1(q) is a regular
submanifold for all q 6= 0. Exercise: show that this manifold structure is compatible with that obtained in
Example 1.9.

The previous example leads to an observation of the following special case of the previous corollary.

Proposition 1.22. If f : M −→ N is a smooth map of manifolds and Df(p) has rank equal to dimN along
f−1(q), then this subset f−1(q) is an embedded submanifold of M .

Proof. Since the rank is maximal along f−1(q), it must be maximal in an open neighbourhood U ⊂ M
containing f−1(q), and hence f : U −→ N is of constant rank.

Definition 9. If f : M −→ N is a smooth map such that Df(p) is surjective, then p is called a regular
point. Otherwise p is called a critical point. If all points in the level set f−1(q) are regular points, then q is
called a regular value, otherwise q is called a critical value. In particular, if f−1(q) = ∅, then q is regular.

It is often useful to highlight two classes of smooth maps; those for which Df is everywhere injective, or,
on the other hand surjective.

Definition 10. A smooth map f : M −→ N is called a submersion when Df(p) is surjective at all points
p ∈M , and is called an immersion when Df(p) is injective at all points p ∈M . If f is an injective immersion
which is a homeomorphism onto its image (when the image is equipped with subspace topology), then we
call f an embedding

Proposition 1.23. If f : M −→ N is an embedding, then f(M) is a regular submanifold.

Proof. Let f : M −→ N be an embedding. Then for all m ∈ M , we have charts (U,ϕ), (V, ψ) where
ψ ◦f ◦ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0). If f(U) = f(M)∩V , we’re done. To make sure that some
other piece of M doesn’t get sent into the neighbourhood, use the fact that F (U) is open in the subspace
topology. This means we can find a smaller open set V ′ ⊂ V such that V ′ ∩ f(M) = f(U). Then we can
restrict the charts (V ′, ψ|V ′), (U ′ = f−1(V ′), ϕU ′) so that we see the embedding.

Having the constant rank theorem in hand, we may also apply it to study manifolds with boundary. The
following two results illustrate how this may easily be done.

Proposition 1.24. Let M be a smooth n-manifold and f : M −→ R a smooth real-valued function, and let
a, b, with a < b, be regular values of f . Then f−1([a, b]) is a cobordism between the n− 1-manifolds f−1(a)
and f−1(b).

Proof. The pre-image f−1((a, b)) is an open subset of M and hence a submanifold of M . Since p is regular
for all p ∈ f−1(a), we may (by the constant rank theorem) find charts such that f is given near p by the
linear map

(x1, . . . , xm) 7→ xm.

Possibly replacing xm by −xm, we therefore obtain a chart near p for f−1([a, b]) into Hm, as required.
Proceed similarly for p ∈ f−1(b).

Example 1.25. Using f : Rn −→ R given by (x1, . . . , xn) 7→
∑
x2
i , this gives a simple proof for the fact

that the closed unit ball B(0, 1) = f−1([−1, 1]) is a manifold with boundary.

Example 1.26. Consider the C∞ function f : R3 −→ R given by (x, y, z) 7→ x2 + y2− z2. Both +1 and −1
are regular values for this map, with pre-images given by 1- and 2-sheeted hyperboloids, respectively. Hence
f−1([−1, 1]) is a cobordism between hyperboloids of 1 and 2 sheets. In other words, it defines a cobordism
between the disjoint union of two closed disks and the closed cylinder (each of which has boundary S1 t S1).
Does this cobordism tell us something about the cobordism class of a connected sum?

11
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Proposition 1.27. Let f : M −→ N be a smooth map from a manifold with boundary to the manifold
N . Suppose that q ∈ N is a regular value of f and also of f |∂M . Then the pre-image f−1(q) is a regular
submanifold with boundary (i.e. locally modeled on Rk ⊂ Rn or the inclusion Hk ⊂ Hn given by (x1, . . . xk) 7→
(0, . . . , 0, x1, . . . xk).) Furthermore, the boundary of f−1(q) is simply its intersection with ∂M .

Proof. If p ∈ f−1(q) is not in ∂M , then as before f−1(q) is a regular submanifold in a neighbourhood of
p. Therefore suppose p ∈ ∂M ∩ f−1(q). Pick charts ϕ,ψ so that ϕ(p) = 0 and ψ(q) = 0, and ψfϕ−1 is a
map U ⊂ Hm −→ Rn. Extend this to a smooth function f̃ defined in an open set Ũ ⊂ Rm containing U .
Shrinking Ũ if necessary, we may assume f̃ is regular on Ũ . Hence f̃−1(0) is a regular submanifold of Rm of
dimension m− n.

Now consider the real-valued function π : f̃−1(0) −→ R given by the restriction of (x1, . . . , xm) 7→ xm.
0 ∈ R must be a regular value of π, since if not, then the tangent space to f̃−1(0) at 0 would lie completely
in xm = 0, which contradicts the fact that q is a regular point for f |∂M .

Hence, by Proposition 1.24, we have expressed f−1(q), in a neighbourhood of p, as a regular submanifold
with boundary given by {ϕ−1(x) : x ∈ f̃−1(0) and π(x) ≥ 0}, as required.

12
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2 Transversality

We shall now continue to use the inverse and constant rank theorems to produce more manifolds, except now
these shall be cut out only locally by functions. We shall ask when the intersection of two submanifolds yields
a submanifold. You should think that intersecting a given submanifold with another is the local imposing
of a certain number of constraints.

Two subspaces K,L ⊂ V of a vector space V are called transversal when K + L = V , i.e. every vector
in V may be written as a (possibly non-unique) linear combination of vectors in K and L. In this situation
one can easily see that

dimV = dimK + dimL− dimK ∩ L.
We may apply this to submanifolds as follows:

Definition 11. Let K,L ⊂M be regular submanifolds such that every point p ∈ K ∩ L satisfies

TpK + TpL = TpM.

Then K,L are said to be transverse submanifolds and we write K ∩| L.

Note: at this point, we have not defined the tangent bundle of a manifold, but we may understand tangent
spaces locally, in each chart. We may make sense of this as follows: Let k : K −→ M and l : L −→ M be
the inclusion maps. Then we may consider TpK,TpL to be the images of the derivatives of k and l, in charts
for K,L,M . Transversality then requires that these images span Rm, where m = dimM .

Proposition 2.1. If K,L ⊂M are transverse regular submanifolds then K∩L is also a regular submanifold,
of dimension dimK + dimL− dimM .

Proof. Let p ∈ K ∩L. Then there is a neighbourhood U of p for which K ∩U = f−1(0) for 0 a regular value
of a function f : U −→ Rm−k and L ∩ U = g−1(0) for 0 a regular value of a function g : L ∩ U −→ Rm−l.

Then p must be a regular point for (f, g) : L∩M ∩U −→ R2m−k−l by the assumption on tangent spaces,
and hence will be regular in a neighbourhood Ũ of p. Therefore (f, g)|−1

Ũ
(0, 0) = f−1(0)∩g−1(0) = K∩L∩ Ũ

is a regular submanifold.

Example 2.2 (Exotic spheres). Consider the following intersections in C5\0:

S7
k = {z2

1 + z2
2 + z2

3 + z3
4 + z6k−1

5 = 0} ∩ {|z1|2 + |z2|2 + |z3|2 + |z4|2 + |z5|2 = 1}.

This is a transverse intersection, and for k = 1, . . . , 28 the intersection is a smooth manifold homeomorphic
to S7. These exotic 7-spheres were constructed by Brieskorn and represent each of the 28 diffeomorphism
classes on S7.

We may choose to phrase the previous transversality result in a slightly different way, in terms of the
embedding maps k, l for K,L in M . Specifically, we say the maps k, l are transverse in the sense that
∀a ∈ K, b ∈ L such that k(a) = l(b) = p, we have im(Dk(a)) + im(Dl(b)) = TpM . The advantage of this
approach is that it makes sense for any maps, not necessarily embeddings.

Definition 12. Two maps f : K −→M , g : L −→M of manifolds are called transverse when im(Df(a)) +
im(Dg(b)) = TpM for all a, b, p such that f(a) = g(b) = p.

Proposition 2.3. If f : K −→ M , g : L −→ M are transverse smooth maps, then K ×M L = {(a, b) ∈
K × L : f(a) = g(b)} is naturally a smooth manifold equipped with commuting maps

K × L
p2

**UUUUUUUUUUUUUUUUUUUU

p1

��:
::

::
::

::
::

::
::

::

K ×M L

i

eeLLLLLLLLLL

��

//

f∩g

$$IIIIIIIII L

g

��
K

f
// M
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where i is the inclusion and f ∩ g : (a, b) 7→ f(a) = g(b).

The manifold K ×M L of the previous proposition is called the fiber product of K with L over M , and is
a generalization of the intersection product.

Proof. Consider the graphs Γf ⊂ K ×M and Γg ⊂ L×M . Then we show that the following intersection of
regular submanifolds is transverse:

Γf∩g = (Γf × Γg) ∩ (K × L×∆M ),

where ∆M = {(p, p) ∈ M ×M : p ∈ M} is the diagonal. To show this, let f(k) = g(l) = m so that
x = (k, l,m,m) ∈ X, and note that

Tx(Γf × Γg) = {((v,Df(v)), (w,Dg(w))), v ∈ TkK, w ∈ TlL} (15)

whereas we also have

Tx(K × L×∆M ) = {((v,m), (w,m)) : v ∈ TkK, w ∈ TlL, m ∈ TpM} (16)

By transversality of f, g, any tangent vector mi ∈ TpM may be written as Df(vi)+Dg(wi) for some (vi, wi),
i = 1, 2. In particular, we may decompose a general tangent vector to M ×M as

(m1,m2) = (Df(v2), Df(v2)) + (Dg(w1), Dg(w1)) + (Df(v1 − v2), Dg(w2 − w1)),

leading directly to the transversality of the spaces (15), (16). This shows that Γf∩g is a regular submanifold
of K × L × M × M . Actually since it sits inside K × L × ∆M , we may compose with the projection
diffeomorphism to view it as a regular submanifold in K ×L×∆M . Then we observe that the restriction of
the projection onto K × L to the submanifold Γf∩g is an embedding with image exactly X. Hence X is a
smooth regular submanifold and Γf∩g may then be viewed as the graph of a smooth map f ∩ g : X −→ M
which must make the diagram above commute by definition.

Example 2.4. If K1 = M × Z1 and K2 = M × Z2, we may view both Ki as “fibering” over M with fibers
Zi. If pi are the projections to M , then K1 ×M K2 = M × Z1 × Z2, hence the name “fiber product”.

Example 2.5. Consider the Hopf map p : S3 −→ S2 given by composing the embedding S3 ⊂ C2\{0} with
the projection π : C2\{0} −→ CP 1 ∼= S2. Then for any point q ∈ S2, p−1(q) ∼= S1. Since p is a submersion,
it is obviously transverse to itself, hence we may form the fiber product

S3 ×S2 S3,

which is a smooth 4-manifold equipped with a map p ∩ p to S2 with fibers (p ∩ p)−1(q) ∼= S1 × S1.
These are our first examples of nontrivial fiber bundles, which we shall explore later.

The following result is an exercise: just as we may take the product of a manifold with boundary K with
a manifold without boundary L to obtain a manifold with boundary K×L, we have a similar result for fiber
products.

Proposition 2.6. Let K be a manifold with boundary where L,M are without boundary. Assume that
f : K −→M and g : L −→M are smooth maps such that both f and ∂f are transverse to g. Then the fiber
product K ×M L is a manifold with boundary equal to ∂K ×M L.

14
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2.1 Stability

We wish to understand the intuitive notion that “transversality is a stable condition”, which in some sense
means that if true, it remains so under small perturbations (of the submanifolds or maps involved). After
this, we will go much further using Sard’s theorem, and show that not only is it stable, it is actually generic,
meaning that even if it is not true, it can be made true by a small perturbation. In this sense, stability says
that transversal maps form an open set, and genericity says that this open set is dense in the space of maps.
To make this precise, we would introduce a topology on the space of maps, something which we leave for
another course.

A property of a smooth map f0 : M −→ N is stable under perturbations when for any smooth homotopy
ft of f0, i.e. a smooth map f : [0, 1]×M −→ N with f |{0}×M = f0, the property holds for all ft = f |{t}×M
with t < ε for some ε > 0.

Proposition 2.7. Let M be a compact manifold and f0 : M −→ N a smooth map. Then the property of being
an immersion or submersion are each stable under perturbations. If M ′ is compact, then the transversality
of f0 : M −→ N , g0 : M ′ −→ N is also stable under perturbations of f0, g0.

As an exercise, show that local diffeomorphisms, diffeomorphisms, and embeddings are also stable.

Proof. Let ft, t ∈ [0, 1] be a smooth homotopy of f0, and suppose that f0 is an immersion. This means that at
each point p ∈M , the jacobian of f0 in some chart has a m×m submatrix with nonvanishing determinant, for
m = dimM . By continuity, this m×m submatrix must have nonvanishing determinant in a neighbourhood
around (0, p) ∈ [0, 1]×M . {0} ×M may be covered by a finite number of such neighbourhoods, since M is
compact. Choose ε such that [0, ε)×M is contained in the union of these intervals, giving the result.

The proof for submersions is identical. The condition that f0 be transversal to g0 is equivalent to the
fact that Γf0 × Γg0 is transversal to C = M × Z ×∆N . Choosing coordinate charts adapted to C, we may
express this locally as a submersion condition. Hence by the previous result we have stability.

2.2 Genericity of transversality

The fundamental idea which allows us to prove that transversality is a generic condition is a the theorem of
Sard showing that critical values of a smooth map f : M −→ N (i.e. points q ∈ N for which the map f and
the inclusion ι : q ↪→ N fail to be transverse maps) are rare. The following proof is taken from Milnor, based
on Pontryagin.

The meaning of “rare” will be that the set of critical values is of measure zero, which means, in Rm, that
for any ε > 0 we can find a sequence of balls in Rm, containing f(C) in their union, with total volume less
than ε. Some easy facts about sets of measure zero: the countable union of measure zero sets is of measure
zero, the complement of a set of measure zero is dense.

We begin with an elementary lemma describing the behaviour of measure-zero sets under differentiable
maps.

Lemma 2.8. Let Im = [0, 1]m be the unit cube, and f : Im −→ Rn a C1 map. If m < n then f(Im) has
measure zero. If m = n and A ⊂ Im has measure zero, then f(A) has measure zero.

Proof. Since f is C1, we have the mean value theorem stating for all x, y ∈ Im

f(y)− f(x) = Df(z)(y − x)

for some z one the line from x to y. The derivative Df has an upper bound on the compact Im and we
conclude |f(x) − f(y)| ≤ a|x − y| for some constant a > 0 depending only on Im and f (this is called a
Lipschitz constant). Then the image of a ball of radius r contained in K would be contained in a ball of
radius at most ar, which would have volume proportional to rn, n ≥ m.

A is of measure zero, hence for each ε we have a countable covering of A by balls of radius rk with
total volume cn

∑
k r

m
k < ε. We deduce that f(Ai) is covered by balls of radius ark with total volume

≤ ancn
∑
k r

n
k and since n ≥ m this is certainly arbitrarily small. We conclude that f(A) is of measure zero.
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If m < n then f defines a C1 map Im × In−m −→ Rn by pre-composing with the projection map to Im.
Since Im × {0} ⊂ Im × In−m clearly has measure zero, its image must also.

Remark 3. If we considered the case n < m, the resulting sum of volumes may be larger in Rn. For
example, the projection map R2 −→ R given by (x, y) 7→ x clearly takes the set of measure zero y = 0 to one
of positive measure.

A subset A ⊂ M of a manifold is said to have measure zero when its image in any coordinate chart
has measure zero. Since manifolds are second countable and we may choose a countable basis Vi such that
V i ⊂ Ui are compact subsets of coordinate charts (any coordinate neighbourhood is a countable union of
closed balls), it follows that a subset A ⊂ M of measure zero may be expressed as a countable union of
subsets Ak ⊂ V i with ϕi(Ak) satisfying the Lemma. We therefore obtain

Proposition 2.9. Let f : M −→ N be a C1 map of manifolds where dimM = dimN . Then the image
f(A) of a set A ⊂M of measure zero also has measure zero.

Corollary 2.10 (Baby Sard). Let f : M −→ N be a C1 of manifolds where dimM < dimN . Then f(M)
(i.e. the set of critical values) has measure zero in N .

16
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Now we investigate the measure of the critical values of a map f : M −→ N where dimM = dimN . Of
course the set of critical points need not have measure zero, but we shall see that because the values of f on
the critical set do not vary much, the set of critical values will have measure zero.

Theorem 2.11 (Equidimensional Sard). Let f : M −→ N be a C1 map of n-manifolds, and let C ⊂ M be
the set of critical points. Then f(C) has measure zero.

Proof. It suffices to show result for the unit cube. Let f : In −→ Rn a C1 map and let C ⊂ In be the set of
critical points.

Let a be the Lipschitz constant for f, In, obtained from the mean value equation

f(y)− f(x) = Df(z)(y − x), (17)

and let Tx be the affine map approximating f at x, i.e.

Tx(y) = f(x) +Df(x)(y − x). (18)

Then subtracting equations (17),(18), we obtain

f(y)− Tx(y) = (Df(z)−Df(x))(y − x). (19)

Since Df is continuous, there is a positive function b(ε) with b→ 0 as ε→ 0 such that

||f(y)− Tx(y)|| ≤ b(|y − x|)||y − x||.

If x is a critical point, then Tx has vanishing determinant, meaning that it maps Rn into a hyperplane
Px ⊂ Rn (i.e. of dimension n − 1). If ||y − x|| < ε, then ||f(y) − f(x)|| < aε, and by (19), the distance of
f(y) from Px is less than εb(ε).

Therefore f(y) lies in the cube centered at f(x) of edge aε, but only εbε in distance from the plane Px.
Choose the cube to have a face parallel to Px, and we conclude f(y) is in a region of volume (aε)n−12εb(ε).

Now partition In into hn cubes each of edge h−1. Any such cube containing a critical point x is certainly
contained in a ball around x of radius r = h−1

√
n. The image of this ball then has volume ≤ (ar)n−12rb(r) =

Arnb(r) for A = 2an−1. The total volume of all the images is then less than

hnArnb(r) = Ann/2b(r).

Note that A and n are fixed, while r = h−1
√
n is determined by the number h of cubes. By increasing the

number of cubes, we may decrease their radius arbitrarily, and hence the above total volume, as required.

The argument above will not work for dimN < dimM ; we need more control on the function f . In
particular, one can find a C1 function from I2 −→ R which fails to have critical values of measure zero
(hint: C + C = [0, 2] where C is the Cantor set). As a result, Sard’s theorem in general requires more
differentiability of f .

Theorem 2.12 (Big Sard’s theorem). Let f : M −→ N be a Ck map of manifolds of dimension m, n,
respectively. Let C be the set of critical points, i.e. points x ∈ U with

rank Df(x) < n.

Then f(C) has measure zero if k > m
n − 1.

Proof. As before, it suffices to show for f : Im −→ Rn.
Define C1 ⊂ C to be the set of points x for which Df(x) = 0. Define Ci ⊂ Ci−1 to be the set of points x

for which Djf(x) = 0 for all j ≤ i. So we have a descending sequence of closed sets:

C ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck.

We will show that f(C) has measure zero by showing

17
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1. f(Ck) has measure zero,

2. each successive difference f(Ci\Ci+1) has measure zero for i ≥ 1,

3. f(C\C1) has measure zero.

Step 1: For x ∈ Ck, Taylor’s theorem gives the estimate

f(x+ t) = f(x) +R(x, t), with ||R(x, t)|| ≤ c||t||k+1,

where c depends only on Im and f , and t sufficiently small.
If we now subdivide Im into hm cubes with edge h−1, suppose that x sits in a specific cube I1. Then any

point in I1 may be written as x + t with ||t|| ≤ h−1
√
m. As a result, f(I1) lies in a cube of edge ah−(k+1),

where a = 2cm(k+1)/2 is independent of the cube size. There are at most hm such cubes, with total volume
less than

hm(ah−(k+1))n = anhm−(k+1)n.

Assuming that k > m
n − 1, this tends to 0 as we increase the number of cubes.

Step 2: For each x ∈ Ci\Ci+1, i ≥ 1, there is a i+ 1th partial ∂i+1fj/∂xs1 · · · ∂xsi+1 which is nonzero at x.
Therefore the function

w(x) = ∂kfj/∂xs2 · · · ∂xsi+1

vanishes at x but its partial derivative ∂w/∂xs1 does not. WLOG suppose s1 = 1, the first coordinate. Then
the map

h(x) = (w(x), x2, . . . , xm)

is a local diffeomorphism by the inverse function theorem (of class Ck) which sends a neighbourhood V of
x to an open set V ′. Note that h(Ci ∩ V ) ⊂ {0} × Rm−1. Now if we restrict f ◦ h−1 to {0} × Rm−1 ∩ V ′,
we obtain a map g whose critical points include h(Ci ∩ V ). Hence we may prove by induction on m that
g(h(Ci ∩ V )) = f(Ci ∩ V ) has measure zero. Cover by countably many such neighbourhoods V .
Step 3: Let x ∈ C\C1. Then there is some partial derivative, wlog ∂f1/∂x1, which is nonzero at x. the
map

h(x) = (f1(x), x2, . . . , xm)

is a local diffeomorphism from a neighbourhood V of x to an open set V ′ (of class Ck). Then g = f ◦ h−1

has critical points h(V ∩C), and has critical values f(V ∩C). The map g sends hyperplanes {t} ×Rm−1 to
hyperplanes {t} ×Rn−1, call the restriction map gt. A point in {t} ×Rm−1 is critical for gt if and only if it
is critical for g, since the Jacobian of g is (

1 0
∗ ∂git

∂xj

)
By induction on m, the set of critical values for gt has measure zero in {t}×Rn−1. By Fubini, the whole set
g(C ′) (which is measurable, since it is the countable union of compact subsets (critical values not necessarily
closed, but critical points are closed and hence a countable union of compact subsets, which implies the same
of the critical values.) is then measure zero. To show this consequence of Fubini directly, use the following
argument:

First note that for any covering of [a, b] by intervals, we may extract a finite subcovering of intervals
whose total length is ≤ 2|b−a|. Why? First choose a minimal subcovering {I1, . . . , Ip}, numbered according
to their left endpoints. Then the total overlap is at most the length of [a, b]. Therefore the total length is at
most 2|b− a|.

Now let B ⊂ Rn be compact, so that we may assume B ⊂ Rn−1 × [a, b]. We prove that if B ∩ Pc has
measure zero in the hyperplane Pc = {xn = c}, for any constant c ∈ [a, b], then it has measure zero in Rn.

If B ∩ Pc has measure zero, we can find a covering by open sets Ric ⊂ Pc with total volume < ε. For
sufficiently small αc, the sets Ric × [c− αc, c+ αc] cover B ∩

⋃
z∈[c−αc,c+αc] Pz (since B is compact). As we
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vary c, the sets [c− αc, c+ αc] form a covering of [a, b], and we extract a finite subcover {Ij} of total length
≤ 2|b− a|.

Let Rij be the set Ric for Ij = [c−αc, c+αc]. Then the sets Rij × Ij form a cover of B with total volume
≤ 2ε|b− a|. We can make this arbitrarily small, so that B has measure zero.

Corollary 2.13. Let M be a compact manifold with boundary. There is no smooth map f : M −→ ∂M
leaving ∂M pointwise fixed. Such a map is called a smooth retraction of M onto its boundary.

Proof. Such a map f must have a regular value by Sard’s theorem, let this value be y ∈ ∂M . Then y is
obviously a regular value for f |∂M = Id as well, so that f−1(y) must be a compact 1-manifold with boundary
given by f−1(y)∩ ∂M , which is simply the point y itself. Since there is no compact 1-manifold with a single
boundary point, we have a contradiction.

For example, this shows that the identity map Sn −→ Sn may not be extended to a smooth map
f : B(0, 1) −→ Sn.

Lemma 2.14. Every smooth map of the closed n-ball to itself has a fixed point.

Proof. Let Dn = B(0, 1). If g : Dn −→ Dn had no fixed points, then define the function f : Dn −→ Sn−1

as follows: let f(x) be the point nearer to x on the line joining x and g(x).
This map is smooth, since f(x) = x+ tu, where

u = ||x− g(x)||−1(x− g(x)),

and t is the positive solution to the quadratic equation (x+ tu) · (x+ tu) = 1, which has positive discriminant
b2 − 4ac = 4(1− |x|2 + (x · u)2). Such a smooth map is therefore impossible by the previous corollary.

Theorem 2.15 (Brouwer fixed point theorem). Any continuous self-map of Dn has a fixed point.

Proof. The Weierstrass approximation theorem says that any continuous function on [0, 1] can be uniformly
approximated by a polynomial function in the supremum norm ||f ||∞ = supx∈[0,1] |f(x)|. In other words,
the polynomials are dense in the continuous functions with respect to the supremum norm. The Stone-
Weierstrass is a generalization, stating that for any compact Hausdorff space X, if A is a subalgebra of
C0(X,R) such that A separates points (∀x, y,∃f ∈ A : f(x) 6= f(y)) and contains a nonzero constant
function, then A is dense in C0.

Given this result, approximate a given continuous self-map g of Dn by a polynomial function p′ so that
||p′ − g||∞ < ε on Dn. To ensure p′ sends Dn into itself, rescale it via

p = (1 + ε)−1p′.

Then clearly p is a Dn self-map while ||p− g||∞ < 2ε. If g had no fixed point, then |g(x)− x| must have a
minimum value µ on Dn, and by choosing 2ε = µ we guarantee that for each x,

|p(x)− x| ≥ |g(x)− x| − |g(x)− p(x)| > µ− µ = 0.

Hence p has no fixed point. Such a smooth function can’t exist and hence we obtain the result.
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We now proceed with the first step towards showing that transversality is generic.

Theorem 2.16 (Transversality theorem). Let F : X × S −→ Y and g : Z −→ Y be smooth maps of
manifolds where only X has boundary. Suppose that F and ∂F are transverse to g. Then for almost every
s ∈ S, fs = F (·, s) and ∂fs are transverse to g.

Proof. The fiber product W = (X × S) ×Y Z is a regular submanifold (with boundary) of X × S × Z and
projects to S via the usual projection map π. We show that any s ∈ S which is a regular value for both the
projection map π : W −→ S and its boundary map ∂π gives rise to a fs which is transverse to g. Then by
Sard’s theorem the s which fail to be regular in this way form a set of measure zero.

Suppose that s ∈ S is a regular value for π. Suppose that fs(x) = g(z) = y and we now show that fs is
transverse to g there. Since F (x, s) = g(z) and F is transverse to g, we know that

imDF(x,s) + imDgz = TyY.

Therefore, for any a ∈ TyY , there exists b = (w, e) ∈ T (X × S) with DF(x,s)b− a in the image of Dgz. But
since Dπ is surjective, there exists (w′, e, c′) ∈ T(x,y,z)W . Hence we observe that

(Dfs)(w − w′)− a = DF(x,s)[(w, e)− (w′, e)]− a = (DF(x,s)b− a)−DF(x,s)(w′, e),

where both terms on the right hand side lie in imDgz.
Precisely the same argument (with X replaced with ∂X and F replaced with ∂F ) shows that if s is

regular for ∂π then ∂fs is transverse to g. This gives the result.

The previous result immediately shows that transversal maps to Rn are generic, since for any smooth
map f : M −→ Rn we may produce a family of maps

F : M × Rn −→ Rn

via F (x, s) = f(x) + s. This new map F is clearly a submersion and hence is transverse to any smooth map
g : Z −→ Rn. For arbitrary target manifolds, we will imitate this argument, but we will require a (weak)
version of Whitney’s embedding theorem for manifolds into Rn.

2.3 Partitions of unity and Whitney embedding

In this section we develop the tool of partition of unity, which will allow us to go from local to global, i.e. to
glue together objects which are defined locally, creating objects with global meaning. As a particular case of
this, to define a global map to RN which is an embedding, thereby proving Whitney’s embedding theorem.

Definition 13. A collection of subsets {Uα} of the topological space M is called locally finite when each
point x ∈M has a neighbourhood V intersecting only finitely many of the Uα.

Definition 14. A covering {Vα} is a refinement of the covering {Uβ} when each Vα is contained in some
Uβ .

Lemma 2.17. Any open covering {Aα} of a topological manifold has a countable, locally finite refinement
{(Ui, ϕi)} by coordinate charts such that ϕi(Ui) = B(0, 3) and {Vi = ϕ−1

i (B(0, 1))} is still a covering of M .
We will call such a cover a regular covering. In particular, any topological manifold is paracompact (i.e.
every open cover has a locally finite refinement)

Proof. If M is compact, the proof is easy: choosing coordinates around any point x ∈ M , we can translate
and rescale to find a covering of M by a refinement of the type desired, and choose a finite subcover, which
is obviously locally finite.

For a general manifold, we note that by second countability of M , there is a countable basis of coordinate
neighbourhoods and each of these charts is a countable union of open sets Pi with Pi compact. Hence M
has a countable basis {Pi} such that Pi is compact.
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Using these, we may define an increasing sequence of compact sets which exhausts M : let K1 = P 1, and

Ki+1 = P1 ∪ · · · ∪ Pr,

where r > 1 is the first integer with Ki ⊂ P1 ∪ · · · ∪ Pr.
Now note that M is the union of ring-shaped sets Ki\K◦i−1, each of which is compact. If p ∈ Aα, then

p ∈ Ki+2\K◦i−1 for some i. Now choose a coordinate neighbourhood (Up,α, ϕp,α) with Up,α ⊂ Ki+2\K◦i−1

and ϕp,α(Up,α) = B(0, 3) and define Vp,α = ϕ−1(B(0, 1)).
Letting p, α vary, these neighbourhoods cover the compact set Ki+1\K◦i without leaving the band

Ki+2\K◦i−1. Choose a finite subcover Vi,k for each i. Then (Ui,k, ϕi,k) is the desired locally finite re-
finement.

Definition 15. A smooth partition of unity is a collection of smooth non-negative functions {fα : M −→ R}
such that

i) {suppfα = f−1
α (R\{0})} is locally finite,

ii)
∑
α fα(x) = 1 ∀x ∈M , hence the name.

A partition of unity is subordinate to an open cover {Ui} when ∀α, suppfα ⊂ Ui for some i.

Theorem 2.18. Given a regular covering {(Ui, ϕi)} of a manifold, there exists a partition of unity {fi}
subordinate to it with fi > 0 on Vi and suppfi ⊂ ϕ−1

i (B(0, 2)).

Proof. A bump function is a smooth non-negative real-valued function g̃ on Rn with g̃(x) = 1 for ||x|| ≤ 1
and g̃(x) = 0 for ||x|| ≥ 2. For instance, take

g̃(x) =
h(2− ||x||)

h(2− ||x||) + h(||x||+ 1)
,

for h(t) given by e−1/t for t > 0 and 0 for t < 0.
Having this bump function, we can produce non-negative bump functions on the manifold gi = g̃ ◦ ϕi

which have support suppgi ⊂ ϕ−1
i (B(0, 2)) and take the value +1 on Vi. Finally we define our partition of

unity via
fi =

gi∑
j gj

, i = 1, 2, . . . .

We now investigate the embedding of arbitrary smooth manifolds as regular submanifolds of Rk. We shall
first show by a straightforward argument that any smooth manifold may be embedded in some RN for some
sufficiently large N . We will then explain how to cut down on N and approach the optimal N = 2 dimM
which Whitney showed (we shall reach 2 dimM+1 and possibly at the end of the course, show N = 2 dimM .)

Theorem 2.19 (Compact Whitney embedding in RN ). Any compact manifold may be embedded in RN for
sufficiently large N .

Proof. Let {(Ui ⊃ Vi, ϕi)}ki=1 be a finite regular covering, which exists by compactness. Choose a partition
of unity {f1, . . . , fk} as in Theorem 2.18 and define the following “zoom-in” maps M −→ RdimM :

ϕ̃i(x) =

{
fi(x)ϕi(x) x ∈ Ui,
0 x /∈ Ui.

Then define a map Φ : M −→ Rk(dimM+1) which zooms simultaneously into all neighbourhoods, with extra
information to guarantee injectivity:

Φ(x) = (ϕ̃1(x), . . . , ϕ̃k(x), f1(x), . . . , fk(x)).
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Note that Φ(x) = Φ(x′) implies that for some i, fi(x) = fi(x′) 6= 0 and hence x, x′ ∈ Ui. This then implies
that ϕi(x) = ϕi(x′), implying x = x′. Hence Φ is injective.

We now check that DΦ is injective, which will show that it is an injective immersion. At any point x the
differential sends v ∈ TxM to the following vector in RdimM × · · · × RdimM × R× · · · × R.

(Df1(v)ϕ1(x) + f1(x)Dϕ1(v), . . . , Dfk(v)ϕk(x) + fk(x)Dϕ1(v), Df1(v), . . . , Dfk(v)

But this vector cannot be zero. Hence we see that Φ is an immersion.
But an injective immersion from a compact space must be an embedding: view Φ as a bijection onto

its image. We must show that Φ−1 is continuous, i.e. that Φ takes closed sets to closed sets. If K ⊂ M is
closed, it is also compact and hence Φ(K) must be compact, hence closed (since the target is Hausdorff).

Theorem 2.20 (Compact Whitney embedding in R2n+1). Any compact n-manifold may be embedded in
R2n+1.

Proof. Begin with an embedding Φ : M −→ RN and assume N > 2n+ 1. We then show that by projecting
onto a hyperplane it is possible to obtain an embedding to RN−1.

A vector v ∈ SN−1 ⊂ RN defines a hyperplane (the orthogonal complement) and let Pv : RN −→ RN−1

be the orthogonal projection to this hyperplane. We show that the set of v for which Φv = Pv ◦Φ fails to be
an embedding is a set of measure zero, hence that it is possible to choose v for which Φv is an embedding.

Φv fails to be an embedding exactly when Φv is not injective or DΦv is not injective at some point. Let
us consider the two failures separately:

If v is in the image of the map β1 : (M ×M)\∆M −→ SN−1 given by

β1(p1, p2) =
Φ(p2)− Φ(p1)
||Φ(p2)− Φ(p1)||

,

then Φv will fail to be injective. Note however that β1 maps a 2n-dimensional manifold to a N −1-manifold,
and if N > 2n+ 1 then baby Sard’s theorem implies the image has measure zero.

The immersion condition is a local one, which we may analyze in a chart (U,ϕ). Φv will fail to be an
immersion in U precisely when v coincides with a vector in the normalized image of D(Φ ◦ ϕ−1) where

Φ ◦ ϕ−1 : ϕ(U) ⊂ Rn −→ RN .

Hence we have a map (letting N(w) = ||w||)

D(Φ ◦ ϕ−1)
N ◦D(Φ ◦ ϕ−1)

: U × Sn−1 −→ SN−1.

The image has measure zero as long as 2n − 1 < N − 1, which is certainly true since 2n < N − 1. Taking
union over countably many charts, we see that immersion fails on a set of measure zero in SN−1.

Hence we see that Φv fails to be an embedding for a set of v ∈ SN−1 of measure zero. Hence we may
reduce N all the way to N = 2n+ 1.

Corollary 2.21. We see from the proof that if we do not require injectivity but only that the manifold be
immersed in RN , then we can take N = 2n instead of 2n+ 1.
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Theorem 2.22 (noncompact Whitney embedding in R2n+1). Any smooth n-manifold may be embedded in
R2n+1 (or immersed in R2n).

Proof. We saw that any manifold may be written as a countable union of increasing compact sets M = ∪Ki,
and that a regular covering {(Ui,k ⊃ Vi,k, ϕi,k)} of M can be chosen so that for fixed i, {Vi,k}k is a finite
cover of Ki+1\K◦i and each Ui,k is contained in Ki+2\K◦i−1.

This means that we can express M as the union of 3 open sets W0,W1,W2, where

Wj =
⋃

i≡j(mod3)

(∪kUi,k).

Each of the sets Ri = ∪kUi,k may be injectively immersed in R2n+1 by the argument for compact manifolds,
since they have a finite regular cover. Call these injective immersions Φi : Ri −→ R2n+1. The image Φi(Ri)
is bounded since all the charts are, by some radius ri. The open sets Ri, i ≡ j(mod3) for fixed j are disjoint,
and by translating each Φi, i ≡ j(mod3) by an appropriate constant, we can ensure that their images in
R2n+1 are disjoint as well.

Let Φ′i = Φi + (2(ri−1 + ri−2 + · · · ) + ri)−→e 1. Then Ψj = ∪i≡j(mod3)Φ′i : Wj −→ R2n+1 is an embedding.
Now that we have injective immersions Ψ0,Ψ1,Ψ2 of W0,W1,W2 in R2n+1, we may use the original

argument for compact manifolds: Take the partition of unity subordinate to Ui,k and resum it, obtaining a
3-element partition of unity {f1, f2, f3}, with fj =

∑
i≡j(mod3)

∑
k fi,k. Then the map

Ψ = (f1Ψ1, f2Ψ2, f3Ψ3, f1, f2, f3)

is an injective immersion of M into R6n+3. To see that it is in fact an embedding, note that any closed set
C ⊂ M may be written as a union of closed sets C = C1 ∪ C2 ∪ C3, where Cj = ∪i≡j(mod3)(C ∩Ki+1\K◦i )
is a disjoint union of compact sets. Ψ is injective, hence Cj is mapped to a disjoint union of compact sets,
hence a closed set. Then Ψ(C) is a union of 3 closed sets, hence closed, as required.

Using projection to hyperplanes we may again reduce to R2n+1, but if we exclude all hyperplanes perpen-
dicular to Span((e1, 0, 0, 0, 0, 0), (0, e1, 0, 0, 0, 0), (0, 0, e1, 0, 0, 0)), we obtain an injective immersion Ψ′ which
is proper, meaning that inverse images of compact sets are compact. This space of forbidden planes has
measure zero as long as N − 1 > 3, so that we may reduce to 2n+ 1 for n > 1. We leave as an exercise the
n = 1 case (or see Bredon for a slightly different proof).

The fact that the resulting injective immersion Ψ′ is proper implies that it is an embedding, by the closed
map lemma, as follows.

Lemma 2.23 (Closed map lemma for proper maps). Let f : X −→ Y be a proper continuous map of
topological manifolds. Then f is a closed map.

Proof. Let K ⊂ X be closed; we show that f(K) contains all its limit points and hence is closed. Let y ∈ Y
be a limit point for f(K). Choose a precompact neighbourhood U of y, so that y is also a limit point of
f(K) ∩ U . Since f is proper, f−1(U) is compact, and hence K ∩ f−1(U) is compact as well. But then by
continuity, f(K ∩ f−1(U)) = f(K) ∩ U is compact, implying it is closed. Hence y ∈ f(K) ∩ U ⊂ f(K), as
required.

We now use Whitney embedding to extend our understanding of the genericity of transversality. First we
need an understanding of the immediate neighbourhood of an embedded submanifold in RN . For this, we
introduce a new manifold associated to an embedded submanifold: its normal bundle (for now we assume
the manifold is embedded in RN ).

If Y ⊂ RN is an embedded submanifold, the normal space at y ∈ Y is defined by NyY = {v ∈ RN :
v⊥TyY }. The collection of all normal spaces of all points in Y is called the normal bundle:

NY = {(y, v) ∈ Y × RN : v ∈ NyY }.

Proposition 2.24. NY ⊂ RN × RN is an embedded submanifold of dimension N .
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Proof. Given y ∈ Y , choose coordinates (u1, . . . uN ) in a neighbourhood U ⊂ RN of y so that Y ∩ U =
{un+1 = · · · = uN = 0}. Define Φ : U × RN −→ RN−n × Rn via

Φ(x, v) = (un+1(x), . . . , uN (x), 〈v, ∂
∂u1 |x〉, . . . , 〈v, ∂

∂un |x〉),

so that Φ−1(0) is precisely NY ∩ (U ×RN ). We then show that 0 is a regular value: observe that, writing v
in terms of its components vj ∂

∂xj in the standard basis for RN ,

〈v, ∂
∂ui |x〉 = 〈vj ∂

∂xj ,
∂xk

∂ui (u(x)) ∂
∂xk
|x〉 =

N∑
j=1

vj ∂x
j

∂ui (u(x))

Therefore the Jacobian of Φ is the ((N − n) + n)× (N +N) matrix

DΦ(x) =

(
∂uj

∂xi (x) 0
∗ ∂xj

∂ui (u(x))

)
The N rows of this matrix are linearly independent, proving Φ is a submersion.

The normal bundle NY contains Y ∼= Y × {0} as a regular submanifold, and is equipped with a smooth
map π : NY −→ Y sending (y, v) 7→ y. The map π is a surjective submersion and is known as the bundle
projection. The vector spaces π−1(y) for y ∈ Y are called the fibers of the bundle and we shall see later that
NY is an example of a vector bundle.

We may take advantage of the embedding in RN to define a smooth map E : NY −→ RN via

E(x, v) = x+ v.

Definition 16. A tubular neighbourhood of the embedded submanifold Y ⊂ RN is a neighbourhood U of
Y in RN that is the diffeomorphic image under E of an open subset V ⊂ NY of the form

V = {(y, v) ∈ NY : |v| < δ(y)},

for some positive continuous function δ : M −→ R.

If U ⊂ RN is such a tubular neighbourhood of Y , then there does exist a positive continuous function
ε : Y −→ R such that Uε = {x ∈ RN : ∃y ∈ Y with |x− y| < ε(y)} is contained in U . This is simply

ε(y) = sup{r : B(y, r) ⊂ U},

which is continuous since ∀ε > 0,∃x ∈ U for which ε(y) ≤ |x − y| + ε. For any other y′ ∈ Y , this is
≤ |y − y′|+ |x− y′|+ ε. Since |x− y′| ≤ ε(y′), we have |ε(y)− ε(y′)| ≤ |y − y′|+ ε.

Theorem 2.25 (Tubular neighbourhood theorem). Every regular submanifold of RN has a tubular neigh-
bourhood. Postpone proof briefly.

Corollary 2.26. Let X be a manifold with boundary and f : X −→ Y be a smooth map to a manifold Y .
Then there is an open ball S = B(0, 1) ⊂ RN and a smooth map F : X × S −→ Y such that F (x, 0) = f(x)
and for fixed x, the map fx : s 7→ F (x, s) is a submersion S −→ Y . In particular, F and ∂F are submersions.

Proof. Embed Y in RN , and let S = B(0, 1) ⊂ RN . Then use the tubular neighbourhood to define

F (y, s) = (π ◦ E−1)(f(y) + ε(y)s),

The transversality theorem then guarantees that given any smooth g : Z −→ Y , for almost all s ∈ S the
maps fs, ∂fs are transverse to g. We improve this slightly to show that fs may be chosen to be homotopic
to f .
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Corollary 2.27 (Transversality homotopy theorem). Given any smooth maps f : X −→ Y , g : Z −→ Y ,
where only X has boundary, there exists a smooth map f ′ : X −→ Y homotopic to f with f ′, ∂f ′ both
transverse to g.

Proof. Let S, F be as in the previous corollary. Away from a set of measure zero in S, the functions fs, ∂fs
are transverse to g, by the transversality theorem. But these fs are all homotopic to f via the homotopy
X × [0, 1] −→ Y given by

(x, t) 7→ F (x, ts).

Proof, tubular neighbourhoood theorem. First we show that E is a local diffeomorphism near y ∈ Y ⊂ NY .
if ι is the embedding of Y in RN , and ι′ : Y −→ NY is the embedding in the normal bundle, then E ◦ ι′ = ι,
hence we have DE ◦Dι′ = Dι, showing that the image of DE(y) contains TyY . Now if ι is the embedding
of NyY in RN , and ι′ : NyY −→ NY is the embedding in the normal bundle, then E ◦ ι′ = ι. Hence we see
that the image of DE(y) contains NyY , and hence the image is all of TyRN . Hence E is a diffeomorphism
on some neighbourhood

Vδ(y) = {(y′, v′) ∈ NY : |y′ − y| < δ, |v′| < δ}, δ > 0.

Now for y ∈ Y let r(y) = sup{δ : E|Vδ(y) is a diffeomorphism} if this is ≤ 1 and let r(y) = 1 otherwise. The
function r(y) is continuous, since if |y− y′| < r(y), then Vδ(y′) ⊂ Vr(y)(y) for δ = r(y)− |y− y′|. This means
that r(y′) ≥ δ, i.e. r(y)−r(y′) ≤ |y−y′|. Switching y and y′, this remains true, hence |r(y)−r(y′)| ≤ |y−y′|,
yielding continuity.

Finally, let V = {(y, v) ∈ NY : |v| < 1
2r(y)}. We show that E is injective on V . Suppose (y, v), (y′, v′) ∈

V are such that E(y, v) = E(y′, v′), and suppose wlog r(y′) ≤ r(y). Then since y + v = y′ + v′, we have

|y − y′| = |v − v′| ≤ |v|+ |v′| ≤ 1
2r(y) + 1

2r(y
′) ≤ r(y).

Hence y, y′ are in Vr(y)(y), on which E is a diffeomorphism. The required tubular neighbourhood is then
U = E(V ).

The last theorem we shall prove concerning transversality is a very useful extension result which is
essential for intersection theory:

Theorem 2.28 (Homotopic transverse extension of boundary map). Let X be a manifold with boundary and
f : X −→ Y a smooth map to a manifold Y . Suppose that ∂f is transverse to the closed map g : Z −→ Y .
Then there exists a map f ′ : X −→ Y , homotopic to f and with ∂f ′ = ∂f , such that f ′ is transverse to g.

Proof. First observe that since ∂f is transverse to g on ∂X, f is also transverse to g there, and furthermore
since g is closed, f is transverse to g in a neighbourhood U of ∂X. (for example, if x ∈ ∂X but x not in
f−1(g(Z)) then since the latter set is closed, we obtain a neighbourhood of x for which f is transverse to g.)

Now choose a smooth function γ : X −→ [0, 1] which is 1 outside U but 0 on a neighbourhood of ∂X.
(why does γ exist? exercise.) Then set τ = γ2, so that dτ(x) = 0 wherever τ(x) = 0. Recall the map
F : X × S −→ Y we used in proving the transversality homotopy theorem 2.27 and modify it via

F ′(x, s) = F (x, τ(x)s).

Then F ′ and ∂F ′ are transverse to g, and we can pick s so that f ′ : x 7→ F ′(x, s) and ∂f ′ are transverse to
g. Finally, if x is in the neighbourhood of ∂X for which τ = 0, then f ′(x) = F (x, 0) = f(x).

Corollary 2.29. if f : X −→ Y and f ′ : X −→ Y are homotopic smooth maps of manifolds, each transverse
to the closed map g : Z −→ Y , then the fiber products W = Xf×gZ and W ′ = Xf ′×gZ are cobordant.

Proof. if F : X × [0, 1] −→ Y is the homotopy between {f, f ′}, then by the previous theorem, we may
find a (homotopic) homotopy F ′ : X × [0, 1] −→ Y which is transverse to g. Hence the fiber product
U = (X × [0, 1])F ′×gZ is the cobordism with boundary W tW ′.
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2.4 Intersection theory

The previous corollary allows us to make the following definition:

Definition 17. Let f : X −→ Y and g : Z −→ Y be smooth maps with X compact, g closed, and
dimX + dimZ = dimY . Then we define the (mod 2) intersection number of f and g to be

I2(f, g) = ](Xf ′ ×g Z) (mod 2),

where f ′ : X −→ Y is any smooth map smoothly homotopic to f but transverse to g, and where we assume
the fiber product to consist of a finite number of points (this is always guaranteed, e.g. if g is proper, or if
g is a closed embedding).

Example 2.30. If C1, C2 are two distinct great circles on S2 then they have two transverse intersection
points, so I2(C1, C2) = 0 in Z2. Of course we can shrink one of the circles to get a homotopic one which
does not intersect the other at all. This corresponds to the standard cobordism from two points to the empty
set.

Example 2.31. If (e1, e2, e3) is a basis for R3 we can consider the following two embeddings of S1 = R/2πZ
into RP 2: ι1 : θ 7→ 〈cos(θ/2)e1 + sin(θ/2)e2〉 and ι2 : θ 7→ 〈cos(θ/2)e2 + sin(θ/2)e3〉. These two embedded
submanifolds intersect transversally in a single point 〈e2〉, and hence I2(ι1, ι2) = 1 in Z2. As a result, there
is no way to deform ιi so that they intersect transversally in zero points.

Example 2.32. Given a smooth map f : X −→ Y for X compact and dimY = 2 dimX, we may consider
the self-intersection I2(f, f). In the previous examples we may check I2(C1, C1) = 0 and I2(ι1, ι1) = 1.
Any embedded S1 in an oriented surface has no self-intersection. If the surface is nonorientable, the self-
intersection may be nonzero.

Example 2.33. Let p ∈ S1. Then the identity map Id : S1 −→ S1 is transverse to the inclusion ι : p −→ S1

with one point of intersection. Hence the identity map is not (smoothly) homotopic to a constant map, which
would be transverse to ι with zero intersection. Using smooth approximation, get that Id is not continuously
homotopic to a constant map, and also that S1 is not contractible.

Example 2.34. By the previous argument, any compact manifold is not contractible.

Example 2.35. Consider SO(3) ∼= RP 3 and let ` ⊂ RP 3 be a line, diffeomorphic to S1. This line corre-
sponds to a path of rotations about an axis by θ ∈ [0, π] radians. Let P ⊂ RP 3 be a plane intersecting ` in
one point. Since this is a transverse intersection in a single point, ` cannot be deformed to a point (which
would have zero intersection with P. This shows that the path of rotations is not homotopic to a constant
path.

If ι : θ 7→ ι(θ) is the embedding of S1, then traversing the path twice via ι′ : θ 7→ ι(2θ), we obtain a map
ι′ which is transverse to P but with two intersection points. Hence it is possible that ι′ may be deformed so
as not to intersect P. Can it be done?

Example 2.36. Consider RP 4 and two transverse hyperplanes P1, P2 each an embedded copy of RP 3. These
then intersect in P1∩P2 = RP 2, and since RP 2 is not null-homotopic, we cannot deform the planes to remove
all intersection.

Intersection theory also allows us to define the degree of a map modulo 2. The degree measures how
many generic preimages there are of a local diffeomorphism.

Definition 18. Let f : M −→ N be a smooth map of manifolds of the same dimension, and suppose M is
compact and N connected. Let p ∈ N be any point. Then we define deg2(f) = I2(f, p).

Example 2.37. Let f : S1 −→ S1 be given by z 7→ zk. Then deg2(f) = k (mod 2).
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Example 2.38. If p : C∪ {∞} −→ C∪ {∞} is a polynomial of degree k, then as a map S2 −→ S2 we have
deg2(p) = k (mod 2), and hence any odd polynomial has at least one root. To get the fundamental theorem
of algebra, we must consider oriented cobordism

Even if submanifolds C,C ′ do not intersect, it may be that there are more sophisticated geometrical
invariants which cause them to be “intertwined” in some way. One example of this is linking number.

Definition 19. Suppose that M,N ⊂ Rk+1 are compact embedded submanifolds with dimM + dimN = k,
and let us assume they are transverse, meaning they do not intersect at all.

Then define λ : M ×N −→ Sk via
(x, y) 7→ x− y

|x− y|
.

Then we define the (mod 2) linking number of M,N to be deg2(λ).

Example 2.39. Consider the standard Hopf link in R3. Then it is easy to calculate that deg2(λ) = 1. On
the other hand, the standard embedding of disjoint circles (differing by a translation, say) has deg2(λ) = 0.
Hence it is impossible to deform the circles through embeddings of S1 tS1 −→ R3, so that they are unlinked.
Why must we stay within the space of embeddings, and not allow the circles to intersect?

3 The tangent bundle and vector bundles

The tangent bundle of an n-manifold M is a 2n-manifold, called TM , naturally constructed in terms of M ,
which is made up of the disjoint union of all tangent spaces to all points in M . If M is embedded in RN , then
TM is a regular submanifold of RN ×RN , but we define it intrinsically, without reference to an embedding.

As a set, it is fairly easy to describe, as simply the disjoint union of all tangent spaces. However we must
explain precisely what we mean by the tangent space TpM to p ∈M .

Definition 20. Let (U,ϕ), (V, ψ) be coordinate charts around p ∈M . Let u ∈ Tϕ(p)ϕ(U) and v ∈ Tψ(p)ψ(V ).
Then the triples (U,ϕ, u), (V, ψ, v) are called equivalent when D(ψ ◦ ϕ−1)(ϕ(p)) : u 7→ v. The chain rule for
derivatives Rn −→ Rn guarantees that this is indeed an equivalence relation.

The set of equivalence classes of such triples is called the tangent space to p of M , denoted TpM , and
forms a real vector space of dimension dimM .

As a set, the tangent bundle is defined by

TM =
⊔
p∈M

TpM,

and it is equipped with a natural surjective map π : TM −→M , which is simply π(X) = x for X ∈ TxM .
We now give it a manifold structure in a natural way.

Proposition 3.1. For an n-manifold M , the set TM has a natural topology and smooth structure which
make it a 2n-manifold, and make π : TM −→M a smooth map.

Proof. Any chart (U,ϕ) for M defines a bijection

Tϕ(U) ∼= U × Rn −→ π−1(U)

via (p, v) 7→ (U,ϕ, v). Using this, we induce a smooth manifold structure on π−1(U), and view the inverse
of this map as a chart (π−1(U),Φ) to ϕ(U)× Rn.

given another chart (V, ψ), we obtain another chart (π−1(V ),Ψ) and we may compare them via

Ψ ◦ Φ−1 : ϕ(U ∩ V )× Rn −→ ψ(U ∩ V )× Rn,

which is given by (p, u) 7→ ((ψ ◦ ϕ−1)(p), D(ψ ◦ ϕ−1)pu), which is smooth. Therefore we obtain a topology
and smooth structure on all of TM (by defining W to be open when W ∩ π−1(U) is open for every U in an
atlas for M ; all that remains is to verify the Hausdorff property, which holds since points x, y are either in
the same chart (in which case it is obvious) or they can be separated by the given type of charts.
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A more constructive way of looking at the tangent bundle: We choose a countable, locally finite atlas
{(Ui, ϕi)} for M and glue together Ui × Rn to Uj × Rn via an equivalence

(x, u) ∼ (y, v) ⇔ y = ϕj ◦ ϕ−1
i (x) and v = D(ϕj ◦ ϕ−1

i )xu,

and verify the conditions of the general gluing construction 1.7. Then show that a different atlas gives a
canonically diffeomorphic manifold, i.e. that the result is independent of atlas.

A description of the tangent bundle is not complete without defining the derivative of a general smooth
map of manifolds f : M −→ N . Such a map may be defined locally in charts (Ui, ϕi) for M and (Vα, ψα)
for N as a collection of vector-valued functions ψα ◦ f ◦ ϕ−1

i = fiα : ϕi(Ui) −→ ψα(Vα) which satisfy

(ψβ ◦ ψ−1
α ) ◦ fiα = fjβ ◦ (ϕj ◦ ϕ−1

i ).

Differentiating, we obtain
D(ψβ ◦ ψ−1

α ) ◦Dfiα = Dfjβ ◦D(ϕj ◦ ϕ−1
i ),

and hence we obtain a map TM −→ TN . This map is called the derivative of f and is denoted Df :
TM −→ TN . Sometimes it is called the “push-forward” of vectors and is denoted f∗. The map fits into the
commutative diagram

TM
Df //

π

��

TN

π

��
M

f
// N

Just as π−1(x) = TxM ⊂ TM is a vector space for all x, making TM into a “bundle of vector spaces”, the
map Df : TxM −→ Tf(x)N is a linear map and hence Df is a “bundle of linear maps”.

The usual chain rule for derivatives then implies that if f◦g = h as maps of manifolds, then Df◦Dg = Dh.
As a result, we obtain the following category-theoretic statement.

Proposition 3.2. The map T which takes a manifold M to its tangent bundle TM , and which takes maps
f : M −→ N to the derivative Df : TM −→ TN , is a functor from the category of manifolds and smooth
maps to itself.

For this reason, the derivative map Df is sometimes called the “tangent mapping” Tf .

Example 3.3. If ι : M −→ N is an embedding of M into N , then Dι : TM −→ TN is also an embedding,
and hence Dkι : T kM −→ T kN are all embeddings.

The tangent bundle allows us to make sense of the notion of vector field in a global way. Locally, in a
chart (Ui, ϕi), we would say that a vector field Xi is simply a vector-valued function on Ui, i.e. a function
Xi : ϕ(Ui) −→ Rn. Of course if we had another vector field Xj on (Uj , ϕj), then the two would agree as vector
fields on the overlap Ui ∩Uj when D(ϕj ◦ϕ−1

i ) : Xi 7→ Xj . So, if we specify a collection {Xi ∈ C∞(Ui,Rn)}
which glue on overlaps, this would define a global vector field. This leads precisely to the following definition.

Definition 21. A smooth vector field on the manifold M is a smooth map X : M −→ TM such that
π ◦X : M −→ M is the identity. Essentially it is a smooth assignment of a unique tangent vector to each
point in M .

Such maps X are also called cross-sections or simply sections of the tangent bundle TM , and the set
of all such sections is denoted C∞(M,TM) or sometimes Γ∞(M,TM), to distinguish them from simply
smooth maps M −→ TM .

28



3.1 Properties of vector fields 1300Y Geometry and Topology

Example 3.4. From a computational point of view, given an atlas (Ũi, ϕi) for M , let Ui = ϕi(Ũi) ⊂ Rn and
let ϕij = ϕj ◦ ϕ−1

i . Then a global vector field X ∈ Γ∞(M,TM) is specified by a collection of vector-valued
functions Xi : Ui −→ Rn such that Dϕij(Xi(x)) = Xj(ϕij(x)) for all x ∈ ϕi(Ũi ∩ Ũj).

For example, if S1 = U0 u U1/ ∼, with U0 = R and U1 = R, with x ∈ U0\{0} ∼ y ∈ U1\{0} whenever
y = x−1, then ϕ01 : x 7→ x−1 and Dϕ01(x) : v 7→ −x−2v. Then if we define (letting x be the standard
coordinate along R)

X0 =
∂

∂x

X1 = −y2 ∂

∂y
,

we see that this defines a global vector field, which does not vanish in U0 but vanishes to order 2 at a single
point in U1. Find the local expression in these charts for the rotational vector field on S1 given in polar
coordinates by ∂

∂θ .

3.1 Properties of vector fields

The space C∞(M,R) of smooth functions on M is not only a vector space but also a ring, with multiplication
(fg)(p) := f(p)g(p). That this defines a smooth function is clear from the fact that it is a composition of
the form

M
∆ // M ×M

f×g // R× R
× // R .

Given a smooth map ϕ : M −→ N of manifolds, we obtain a natural operation ϕ∗ : C∞(N,R) −→ C∞(M,R),
given by f 7→ f ◦ ϕ. This is called the pullback of functions, and defines a homomorphism of rings since
∆ ◦ ϕ = (ϕ× ϕ) ◦∆.

The association M 7→ C∞(M,R) and ϕ 7→ ϕ∗ is therefore a contravariant functor from the category of
manifolds to the category of rings, and is the basis for algebraic geometry, the algebraic representation of
geometrical objects.

It is easy to see from this that any diffeomorphism ϕ : M −→ M defines an automorphism ϕ∗ of
C∞(M,R), but actually all automorphisms are of this form (Exercise!).

The concept of derivation of an algebra A is the infinitesimal version of an automorphism of A. That is,
if φt : A −→ A is a family of automorphisms of A starting at Id, so that φt(ab) = φt(a)φt(b), then the map
a 7→ d

dt |t=0φt(a) is a derivation.

Definition 22. A derivation of the R-algebra A is a R-linear map D : A −→ A such that D(ab) =
(Da)b+ a(Db). The space of all derivations is denoted Der(A).

In the following, we show that derivations of the algebra of functions actually correspond to vector fields.
The vector fields Γ∞(M,TM) form a vector space over R of infinite dimension (unless dimM = 0).

They also form a module over the ring of smooth functions C∞(M,R) via pointwise multiplication: for
f ∈ C∞(M,R) and X ∈ Γ∞(M,TM), we claim that fX : x 7→ f(x)X(x) defines a smooth vector field: this
is clear from local considerations: if {Xi} is a local description of X and {fi} is a local description of f with
respect to a cover, then

Dϕij(fi(x)Xi(x)) = fi(x)DϕijXi(x) = fj(ϕij(x))Xj(ϕij(x)).

The important property of vector fields which we are interested in is that they act as R-derivations of
the algebra of smooth functions. Locally, it is clear that a vector field X =

∑
i a
i ∂
∂xi gives a derivation of

the algebra of smooth functions, via the formula X(f) =
∑
i a
i ∂f
∂xi , since

X(fg) =
∑
i

ai( ∂f∂xi g + f ∂g
∂xi ) = X(f)g + fX(g).

We wish to verify that this local action extends to a well-defined global derivation on C∞(M,R).
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Lemma 3.5. Let f be a smooth function on U ⊂ Rn, and X : U −→ Rn a vector field. Then Df : TU −→
TR = R × R and let Df2 : TM −→ R be the composition of Df with the projection to the fiber TR −→ R.
Then

X(f) = Df2(X).

Proof. In local coordinates, we have X(f) =
∑
i a
i ∂f
∂xi whereas Df : X(x) 7→ (f(x),

∑
i
∂f
∂xi a

i), so that we
obtain the result by projection.

Proposition 3.6. Local partial differentiation extends to an injective map Γ∞(M,TM) −→ Der(C∞(M,R)).

Proof. Globally, we verify that

Xj(fj) = Xj(fi ◦ ϕ−1
ij ) = ((ϕij)∗Xi)(fi ◦ ϕ−1

ij ) (20)

= D(fi ◦ ϕ−1
ij )2((ϕij)∗Xi) (21)

= (Dfi)2(Xi) = Xi(fi). (22)

In fact, vector fields provide all possible derivations of the algebra A = C∞(M,R):

Theorem 3.7. The map Γ∞(M,TM) −→ Der(C∞(M,R)) is an isomorphism.

Proof. First we prove the result for an open set U ⊂ Rn. Let D be a derivation of C∞(U,R) and define
the smooth functions ai = D(xi). Then we claim D =

∑
i a
i ∂
∂xi . We prove this by testing against smooth

functions. Any smooth function f on Rn may be written

f(x) = f(0) +
∑
i

xigi(x),

with gi(0) = ∂f
∂xi (0) (simply take gi(x) =

∫ 1

0
∂f
∂xi (tx)dt). Translating the origin to y ∈ U , we obtain for any

z ∈ U
f(z) = f(y) +

∑
i

(xi(z)− xi(y))gi(z), gi(y) = ∂f
∂xi (y).

Applying D, we obtain
Df(z) =

∑
i

(Dxi)gi(z)−
∑
i

(xi(z)− xi(y))Dgi(z).

Letting z approach y, we obtain
Df(y) =

∑
i

ai ∂f∂xi (y) = X(f)(y),

as required.
To prove the global result, let (Vi ⊂ Ui, ϕi) be a regular covering and θi the associated partition of

unity. Then for each i, θiD : f 7→ θiD(f) is also a derivation of C∞(M,R). This derivation defines a
unique derivation Di of C∞(Ui,R) such that Di(f |Ui) = (θiDf)|Ui , since for any point p ∈ Ui, a given
function g ∈ C∞(Ui,R) may be replaced with a function g̃ ∈ C∞(M,R) which agrees with g on a small
neighbourhood of p, and we define (Dig)(p) = θi(p)Dg̃(p). This definition is independent of g̃, since if
h1 = h2 on an open set, Dh1 = Dh2 on that open set (let ψ = 1 in a neighbourhood of p and vanish outside
Ui; then h1 − h2 = (h1 − h2)(1− ψ) and applying D we obtain zero).

The derivation Di is then represented by a vector field Xi, which must vanish outside the support of θi.
Hence it may be extended by zero to a global vector field which we also call Xi. Finally we observe that for
X =

∑
iXi, we have

X(f) =
∑
i

Xi(f) =
∑
i

Di(f) = D(f),

as required.
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Since vector fields are derivations, we have a natural source of examples, coming from infinitesimal
automorphisms of M :

Example 3.8. Let ϕt : be a smooth family of diffeomorphisms of M with ϕ0 = Id. That is, let ϕ : (−ε, ε)×
M −→M be a smooth map and ϕt : M −→M a diffeomorphism for each t. Then X(f)(p) = d

dt |t=0(ϕ∗t f)(p)
defines a smooth vector field. A better way of seeing that it is smooth is to rewrite it as follows: Let ∂

∂t be
the coordinate vector field on (−ε, ε) and observe X(f)(p) = ∂

∂t (ϕ
∗f)(0, p).

In many cases, a smooth vector field may be expressed as above, i.e. as an infinitesimal automorphism of
M , but this is not always the case. In general, it gives rise to a “local 1-parameter group of diffeomorphisms”,
as follows:

Definition 23. A local 1-parameter group of diffeomorphisms is an open set U ⊂ R×M containing {0}×M
and a smooth map

Φ :U −→M

(t, x) 7→ ϕt(x)

such that R × {x} ∩ U is connected, ϕ0(x) = x for all x and if (t, x), (t + t′, x), (t′, ϕt(x)) are all in U then
ϕt′(ϕt(x)) = ϕt+t′(x).

Then the local existence and uniqueness of solutions to systems of ODE implies that every smooth vector
field X ∈ Γ∞(M,TM) gives rise to a local 1-parameter group of diffeomorphisms (U,Φ) such that the curve
γx : t 7→ ϕt(x) is such that (γx)∗( ddt ) = X(γx(t)) (this means that γx is an integral curve or “trajectory”
of the “dynamical system” defined by X). Furthermore, if (U ′,Φ′) are another such data, then Φ = Φ′ on
U ∩ U ′.

Definition 24. A vector field X ∈ Γ∞(M,TM) is called complete when its local 1-parameter group of
diffeomorphisms has U = R×M .

Theorem 3.9. If M is compact, then every smooth vector field is complete.

Example 3.10. The vector field X = x2 ∂
∂x on R is not complete. For initial condition x0, have integral

curve γ(t) = x0(1− tx0)−1, which gives Φ(t, x0) = x0(1− tx0)−1, which is well-defined on {1− tx > 0}.
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3.2 Vector bundles

Definition 25. A smooth real vector bundle of rank k over the base manifold M is a manifold E (called
the total space), together with a smooth surjection π : E −→M (called the bundle projection), such that

• ∀p ∈M , π−1(p) = Ep has the structure of k-dimensional vector space,

• Each p ∈ M has a neighbourhood U and a diffeomorphism Φ : π−1(U) −→ U × Rk (called a local
trivialization of E over U) such that π1(Φ(π−1(x))) = x, where π1 : U×Rk −→ U is the first projection,
and also that Φ : π−1(x) −→ {x} × Rk is a linear map, for all x ∈M .

Given two local trivializations Φi : π−1(Ui) −→ Ui × Rk and Φj : π−1(Uj) −→ Uj × Rk, we obtain a
smooth gluing map Φj ◦ Φ−1

i : Uij × Rk −→ Uij × Rk, where Uij = Ui ∩ Uj . This map preserves images to
M , and hence it sends (x, v) to (x, gji(v)), where gji is an invertible k× k matrix smoothly depending on x.
That is, the gluing map is uniquely specified by a smooth map

gji : Uij −→ GL(k,R).

These are called transition functions of the bundle, and since they come from Φj ◦ Φ−1
i , they clearly satisfy

gij = g−1
ji as well as the “cocycle condition”

gijgjkgki = Id|Ui∩Uj∩Uk .

Example 3.11. To build a vector bundle, choose an open cover {Ui} and form the pieces {Ui × Rk} Then
glue these together on double overlaps {Uij} via functions gij : Uij −→ GL(k,R). As long as gij satisfy
gij = g−1

ji as well as the cocycle condition, the resulting space has a vector bundle structure.

Example 3.12. Let S2 = U0 t U1 for Ui = R2, as before. Then on U01 = R2\{0} = C\{0}, define

g01(z) = [zk], k ∈ Z.

In real coordinates z = reiθ, g01(r, θ) = rk
(
cos(kθ) − sin(kθ)
sin(kθ) cos(kθ)

)
. This defines a vector bundle Ek −→ S2 of

rank 2 for each k ∈ Z (or a complex vector bundle of rank 1, since g01 : U01 −→ GL(1,C)). Actually, since
the map g01 is actually holomorphic as a function of z, we have defined holomorphic vector bundles on CP 1.

Example 3.13 (The tangent bundle). The tangent bundle TM is indeed a vector bundle, of rank dimM .
For any chart (U,ϕ) of M , there is an associated local trivialization (π−1(U),Φ) of TM , and the transition
function gji : Uij −→ GL(n,R) between two trivializations obtained from (Ui, ϕi), (Uj , ϕj) is simply the
Jacobian matrix

gji : p 7→ D(ϕj ◦ ϕ−1
i )(p).

Just as for the tangent bundle, we can define the analog of a vector-valued function, where the function
has values in a vector bundle:

Definition 26. A smooth section of the vector bundle E π−→ M is a smooth map s : M −→ E such that
π ◦ s = IdM . The set of all smooth sections, denoted Γ∞(M,E), is an infinite-dimensional real vector space,
and is also a module over the ring C∞(M,R).

Having introduced vector bundles, we must define the notion of morphism between vector bundles, so as
to form a category.

Definition 27. A smooth bundle map between the bundles E π−→ M and E′
π′−→ M ′ is a pair (f, F ) of

smooth maps f : M −→M ′ and F : E −→ E′ such that π′ ◦ F = f ◦ π and such that F : Ep −→ E′f(p) is a
linear map for all p.
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Example 3.14. I claim that the bundles Ek
π−→ S2 are all non-isomorphic, except that Ek is isomorphic

to E−k over the antipodal map S2 −→ S2.

Example 3.15. Suppose f : M −→ N is a smooth map. Then f∗ : TM −→ TN is a bundle map covering
f , i.e. (f∗, f) defines a bundle map.

Example 3.16 (Pullback bundle). if f : M −→ N is a smooth map and E
π−→ N is a vector bundle over

N , then we may form the fiber product Mf×πE, which then is a bundle over M with local trivializations
(f−1(Ui), f∗gij), where (Ui, gij) is the local transition data for E over N . This bundle is called the pullback
bundle and is denoted by f∗E. The natural projection to E defines a vector bundle map back to E:

f∗E

p1

��

p2 // E

π

��
M

f
// N

There is also a natural pullback map on sections: given a section s ∈ Γ∞(N,E), the composition s ◦ f gives
a map M −→ E. This then determines a smooth map f∗s : M −→ f∗E by the universal property of the
fiber product. We therefore obtain a pullback map

f∗ : Γ∞(N,E) −→ Γ∞(M,f∗E).

Example 3.17. If f : M −→ N is an embedding, then so is the bundle map f∗ : TM −→ TN . By the
universal property of the fiber product we obtain a bundle map, also denoted f∗, from TM to f∗TN . This is
a vector bundle inclusion and f∗TN/f∗TM = NM is a vector bundle over M called the normal bundle of
M . Note: we haven’t covered subbundles and quotient bundles in detail. I’ll leave this as an exercise.

3.3 Associated bundles

We now describe a functorial construction of vector bundles, using functors from vector spaces. Consider the
category VectR of finite-dimensional real vector spaces and linear maps. We will describe several functors
from VectR to itself.

Example 3.18. If V ∈ VectR, then V ∗ ∈ VectR, and if f : V −→ W then f∗ : W ∗ −→ V ∗. Since the
composition of duals is the dual of the composition, duality defines a contravariant functor ∗ : VectR −→
VectR.

Example 3.19. If V,W ∈ VectR, then V ⊕W ∈ VectR, and this defines a covariant functor VectR ×
VectR −→ VectR.

Example 3.20. If V,W ∈ VectR, then V ⊗W ∈ VectR and this again defines a covariant functor VectR×
VectR −→ VectR.

Example 3.21. If V ∈ VectR, then

⊗•V = R⊕ V ⊕ (V ⊗ V )⊕ · · · ⊕ (⊗kV )⊕ · · ·

is an infinite-dimensional vector space, with a product a ⊗ b. Quotienting by the double-sided ideal I =
〈v ⊗ v : v ∈ V 〉, we obtain the exterior algebra

∧•V = R⊕ V ⊕ ∧2V ⊕ · · · ⊕ ∧nV,

with n = dimV . The product is customarily denoted (a, b) 7→ a ∧ b. The direct sum decompositions above,
where ∧kV or ⊗kV is labeled by the integer k, are called Z-gradings, and since the product takes ∧k×∧l −→
∧k+l, these algebras are called Z-graded algebras.
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If (v1, . . . vn) is a basis for V , then vi1 ∧ · · · ∧ vik for i1 < · · · < ik form a basis for ∧kV . This space then
has dimension

(
n
k

)
, hence the algebra ∧•V has dimension 2n.

Note in particular that ∧nV has dimension 1, is also called the determinant line detV , and a choice of
nonzero element in detV is called an “orientation” on the vector space V .

Recall that if f : V −→W is a linear map, then ∧kf : ∧kV −→ ∧kW is defined on monomials via

∧kf(a1 ∧ · · · ∧ ak) = f(a1) ∧ · · · ∧ f(ak).

In particular, if A : V −→ V is a linear map, then for n = dimV , the top exterior power ∧nA : ∧nV −→ ∧nV
is a linear map of a 1-dimensional space onto itself, and is hence given by a number, called detA, the
determinant of A.

We may now apply any of these functors to vector bundles. The main observation is that if F is a vector
space functor as above, we may apply it to any vector bundle E π−→M to obtain a new vector bundle

F (E) = tp∈MF (Ep).

If (Ui) is an atlas for M and E has local trivializations (Ui ×Rk), glued together via gji : Uij −→ GL(k,R),
then F (E) may be given the local trivialization (Ui × F (Rk)), glued together via F (gji). This new vector
bundle F (E) is called the “associated” vector bundle to E, given by the functor F .

Example 3.22. If E −→M is a vector bundle, then E∗ −→M is the dual vector bundle. If E,F are vector
bundles then E ⊕ F is called the direct or “Whitney” sum, and has rank rk E + rk F . E ⊗ F is the tensor
product bundle, which has rank rk E · rk F .

Example 3.23. If E −→M is a vector bundle of rank n, then ⊗kE and ∧kE are its tensor power bundles,
of rank nk and

(
n
k

)
, respectively. The top exterior power ∧nE has rank 1, and is hence a line bundle. If this

line bundle is trivial (i.e. isomorphic to M × R) then E is said to be an orientable bundle.

Example 3.24. Starting with the tangent bundle TM −→M , we may form the cotangent bundle T ∗M , the
bundle of tensors of type (r, s), ⊗rTM ⊗⊗sT ∗M .

We may also form the bundle of multivectors ∧kTM , which has sections Γ∞(M,∧kTM) called multivector
fields.

Finally, we may form the bundle of k-forms, ∧kT ∗M , whose sections Γ∞(M,∧kT ∗M) = Ωk(M) are
called differential k-forms, and will occupy us for some time.

We have now produced several vector bundles by applying functors to the tangent bundle. We are familiar
with vector fields, which are sections of TM , and we know that a vector field is written locally in coordinates
(x1, . . . , xn) as

X =
∑
i

ai ∂
∂xi ,

with coefficients ai smooth functions.
There is an easy way to produce examples of 1-forms in Ω1(M), using smooth functions f . We note that

the action X 7→ X(f) defines a dual vector at each point of M , since (X(f))p depends only on the vector
Xp and not the behaviour of X away from p. Recall that X(f) = Df2(X).

Definition 28. The exterior derivative of a function f , denoted df , is the section of T ∗M given by the fiber
projection Df2.

Since dxi( ∂
∂xj ) = δij , we see that (dx1, . . . , dxn) is the dual basis to ( ∂

∂x1 , . . . ,
∂
∂xn ). Therefore, a section

of T ∗M has local expression
ξ =

∑
i

ξidx
i,
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for ξi smooth functions, given by ξi = ξ( ∂
∂xi ). In particular, the exterior derivative of a function df can be

written
df =

∑
i

∂f
∂xi dx

i.

A section of the tensor bundle ⊗rTM ⊗⊗sT ∗M can be written as

Θ =
∑

i1,··· ,ir
j1,··· ,js

ai1···irj1···js
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir ⊗ dx
j1 ⊗ · · · ⊗ dxjs ,

where ai1···irj1···js are nr+s smooth functions.
A general differential form ρ ∈ Ωk(M) can be written

ρ =
∑

i1<···<ik

ρi1···ikdx
i1 ∧ · · · ∧ dxik

4 Differential forms

There are several properties of differential forms which make them indispensible: first, the k-forms are
intended to give a notion of k-dimensional volume (this is why they are multilinear and skew-symmetric,
like the determinant) and in a way compatible with the boundary map (this leads to the exterior derivative,
which we define below). Second, they behave well functorially, as we see now.

Given a smooth map f : M −→ N , we obtain bundle maps f∗ : TM −→ TN and hence f∗ := ∧k(f∗)∗ :
∧kT ∗N −→ ∧kT ∗M . Hence we have the diagram

∧kT ∗M
πM

��

∧kT ∗N
πN

��

f∗
oo

M
f

// N

The interesting thing is that if ρ ∈ Ωk(N) is a differential form on N , then it is a section of πN . Composing
with f, f∗, we obtain a section f∗ρ := f∗ ◦ ρ ◦ f of πM . Hence we obtain a natural map

Ωk(N)
f∗−→ Ωk(M).

Such a natural map does not exist (in either direction) for multivector fields, for instance.
Suppose that ρ ∈ Ωk(N) is given in a coordinate chart by ρ =

∑
ρi1···ikdy

i1 ∧ · · · ∧ dyik . Now choose
a coordinate chart for M with coordinates x1, . . . xm. What is the local expression for f∗ρ? We need only
compute f∗dyi. We use a notation where fk denotes the kth component of f in the coordinates (y1, . . . yn),
i.e. fk = yk ◦ f .

f∗dyi( ∂
∂xj ) = dyi(f∗ ∂

∂xj ) (23)

= dyi(
∑
k

∂fk

∂xj
∂
∂yk

) (24)

= ∂fi

∂xj . (25)

Hence we conclude that
f∗dyi =

∑
j

∂fi

∂xj dx
j .

Finally we compute

f∗ρ =
∑

i1<···<ik

f∗ρi1···ikf
∗(dyi1) ∧ · · · ∧ f∗(dyik) (26)

=
∑

i1<···<ik

(ρi1···ik ◦ f)
∑
j1

· · ·
∑
jk

∂fi1

∂xj1
· · · ∂f

ik

∂xjk
dxj1 ∧ · · · dxjk . (27)
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4.1 The exterior derivative

Differential forms are equipped with a natural differential operator, which extends the exterior derivative
of functions to all forms: d : Ωk(M) −→ Ωk+1(M). The exterior derivative is uniquely specified by the
following requirements: first, it satisfies d(df) = 0 for all functions f . Second, it is a graded derivation of
the algebra of exterior differential forms of degree 1, i.e.

d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ.

This allows us to compute its action on any 1-form d(ξidxi) = dξi ∧ dxi, and hence, in coordinates, we have

d(ρdxi1 ∧ · · · ∧ dxik) =
∑
k

∂ρ
∂xk

dxk ∧ dxi1 ∧ · · · ∧ dxik .

Extending by linearity, this gives a local definition of d on all forms. Does it actually satisfy the requirements?
this is a simple calculation: let τp = dxi1 ∧ · · · ∧ dxip and τq = dxj1 ∧ · · · ∧ dxjq . Then

d((fτp) ∧ (gτq)) = d(fgτp ∧ τq) = (gdf + fdg) ∧ τp ∧ τq = d(fτp) ∧ gτq + (−1)pfτp ∧ d(gτq),

as required.
Therefore we have defined d, and since the definition is coordinate-independent, we can be satisfied that

d is well-defined.

Definition 29. d is the unique degree +1 graded derivation of Ω•(M) such that df(X) = X(f) and d(df) = 0
for all functions f .

Example 4.1. Consider M = R3. For f ∈ Ω0(M), we have

df = ∂f
∂x1 dx

1 + ∂f
∂x2 dx

2 + ∂f
∂x3 dx

3.

Similarly, for A = A1dx
1 +A2dx

2 +A3dx
3, we have

dA = (∂A2
∂x1 − ∂A1

∂x2 )dx1 ∧ dx2 + (∂A3
∂x1 − ∂A1

∂x3 )dx1 ∧ dx3 + (∂A3
∂x2 − ∂A2

∂x3 )dx2 ∧ dx3

Finally, for B = B12dx
1 ∧ dx2 +B13dx

1 ∧ dx3 +B23dx
2 ∧ dx3, we have

dB = (∂B12
∂x3 − ∂B13

∂x2 + ∂B23
∂x1 )dx1 ∧ dx2 ∧ dx3.

Definition 30. The form ρ ∈ Ω•(M) is called closed when dρ = 0 and exact when ρ = dτ for some τ .

Example 4.2. A function f ∈ Ω0(M) is closed if and only if it is constant on each connected component of
M : This is because, in coordinates, we have

df = ∂f
∂x1 dx

1 + · · ·+ ∂f
∂xn dx

n,

and if this vanishes, then all partial derivatives of f must vanish, and hence f must be constant.

Theorem 4.3. The exterior derivative of an exact form is zero, i.e. d ◦ d = 0. Usually written d2 = 0.

Proof. The graded commutator [d1, d2] = d1◦d2−(−1)|d1||d2|d2◦d1 of derivations of degree |d1|, |d2| is always
(why?) a derivation of degree |d1| + |d2|. Hence we see [d, d] = d ◦ d − (−1)1·1d ◦ d = 2d2 is a derivation
of degree 2 (and so is d2). Hence to show it vanishes we must test on functions and exact 1-forms, which
locally generate forms since every form is of the form fdxi1 ∧ · · · ∧ dxik .

But d(df) = 0 by definition and this certainly implies d2(df) = 0, showing that d2 = 0.
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The fact that d2 = 0 is dual to the fact that ∂(∂M) = ∅ for a manifold with boundary M . We will see
later that Stokes’ theorem explains this duality. Because of the fact d2 = 0, we have a very special algebraic
structure: we have a sequence of vector spaces Ωk(M), and maps d : Ωk(M) −→ Ωk+1(M) which are such
that any successive composition is zero. This means that the image of d is contained in the kernel of the next
d in the sequence. This arrangement of vector spaces and operators is called a cochain complex of vector
spaces 1. We often simply refer to this as a “complex” and omit the term “cochain”. The reason for the “co”
is that the differential increases the degree k, which is opposite to the usual boundary map on manifolds,
which decreases k. We will see chain complexes when we study homology.

A complex of vector spaces is usually drawn as a linear sequence of symbols and arrows as follows: if
f : U −→ V is a linear map and g : V −→W is a linear map such that g ◦ f = 0, then we write

U
f−→ V

g−→W

In general, this simply means that imf ⊂ ker g, and to measure the difference between them we look at the
quotient ker g/imf , which is called the cohomology of the complex at the position V (or homology, if d
decreases degree). If we are lucky, and the complex has no cohomology at V , meaning that ker g is precisely
equal to imf , then we say that the complex is exact at V . If the complex is exact everywhere, we call it an
exact sequence (and it has no cohomology!) In our case, we have a longer cochain complex:

0 −→ Ω0(M) d−→ · · · d−→ Ωk−1(M) d−→ Ωk(M) d−→ Ωk+1(M) d−→ · · · d−→ Ωn(M) −→ 0

There is a bit of terminology to learn: we have seen that if dρ = 0 then ρ is called closed. But these are also
called cocycles and denoted Zk(M). Similarly the exact forms dα are also called coboundaries, and are
denoted Bk(M). Hence the cohomology groups may be written Hk

dR(M) = ZkdR(M)/BkdR(M).

Definition 31. The de Rham complex is the complex (Ω•(M), d), and its cohomology at Ωk(M) is called
Hk
dR(M), the de Rham cohomology.

Exercise: Check that the graded vector space H•dR(M) =
⊕

k∈Z H
k(M) inherits a product from the

wedge product of forms, making it into a Z-graded ring. This is called the de Rham cohomology ring of M ,
and the product is called the cup product.

It is clear from the definition of d that it commutes with pullback via diffeomorphisms, in the sense
f∗ ◦ d = d ◦ f∗. But this is only a special case of a more fundamental property of d:

Theorem 4.4. Exterior differentiation commutes with pullback: for f : M −→ N a smooth map, f∗ ◦ dN =
dM ◦ f∗.

Proof. We need only check this on functions g and exact 1-forms dg: let X be a vector field on M and
g ∈ C∞(N,R).

f∗(dg)(X) = dg(f∗X) = π2g∗f∗X = π2(g ◦ f)∗X = d(f∗g)(X),

giving f∗dg = df∗g, as required. For exact 1-forms we have f∗d(dg) = 0 and d(f∗dg) = d(df∗g) = 0 by the
result for functions.

This theorem may be interpreted as follows: The differential forms give us a Z-graded ring, Ω•(M), which
is equipped with a differential d : Ωk −→ Ωk+1. This sequence of vector spaces and maps which compose to
zero is called a cochain complex. Beyond it being a cochain complex, it is equipped with a wedge product.

Cochain complexes (C•, dC) may be considered as objects of a new category, whose morphisms consist of
a sum of linear maps ψk : Ck −→ Dk commuting with the differentials, i.e. dD◦ψk = ψk+1◦dC . The previous
theorem shows that pullback f∗ defines a morphism of cochain complexes Ω•(N) −→ Ω•(M); indeed it even
preserves the wedge product, hence it is a morphism of differential graded algebras.

1since this complex appears for Ω•(U) for any open set U ⊂ M , this is actually a cochain complex of sheaves of vector
spaces, but this won’t concern us right away.
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Corollary 4.5. We may interpret the previous result as showing that Ω• is a functor from manifolds to
differential graded algebras (or, if we forget the wedge product, to the category of cochain complexes). As
a result, we see that the de Rham cohomology H•dR may be viewed as a functor, from smooth manifolds to
Z-graded commutative rings.

Example 4.6. S1 is connected, and hence H0
dR(S1) = R. So it remains to compute H1

dR(S1).
Let ∂

∂θ be the rotational vector field on S1 of unit Euclidean norm, and let dθ be its dual 1-form, i.e.
dθ( ∂∂θ ) = 1. Note that θ is not a well-defined function on S1, so the notation dθ may be misleading at first.

Of course, d(dθ) = 0, since Ω2(S1) = 0. We might ask, is there a function f(θ) such that df = dθ? This
would mean ∂f

∂θ = 1, and hence f = θ+ c2. But since f is a function on S1, we must have f(θ+ 2π) = f(θ),
which is a contradiction. Hence dθ is not exact, and [dθ] 6= 0 in H1

dR(S1).
Any other 1-form will be closed, and can be represented as gdθ for g ∈ C∞(S1,R). Let g = 1

2π

∫ θ=2π

θ=0
g(θ)dθ

be the average value of g, and consider g0 = g − g. Then define

f(θ) =
∫ t=θ

t=0

g0(t)dt.

Clearly we have ∂f
∂θ = g0(θ), and furthermore f is a well-defined function on S1, since f(θ + 2π) = f(θ).

Hence we have that g0 = df , and hence g = g + df , showing that [gdθ] = g[dθ].
Hence H1

dR(S1) = R, and as a ring, H0
dR +H1

dR is simply R[x]/(x2).
Note that technically we have proven that H1

dR(S1) ∼= R, but we will see from the definition of integration
later that this isomorphism is canonical.

The de Rham cohomology is an important invariant of a smooth manifold (in fact it doesn’t even depend
on the smooth structure, only the topological structure). To compute it, there are many tools available.
There are three particularly important tools: first, there is Poincaré’s lemma, telling us the cohomology of
Rn. Second, there is integration, which allows us to prove that certain cohomology classes are non-trivial.
Third, there is the Mayer-Vietoris sequence, which allows us to compute the cohomology of a union of open
sets, given knowledge about the cohomology of each set in the union.

Lemma 4.7. Consider the embeddings Ji : M −→ M × [0, 1] given by x 7→ (x, i) for i = 0, 1. The induced
morphisms of de Rham complexes J∗0 and J∗1 are chain homotopic morphisms, meaning that there is a linear
map K : Ωk(M × [0, 1]) −→ Ωk−1(M) such that

J∗1 − J∗0 = dK +Kd

This shows that on closed forms, J∗i may differ, but only by an exact form.

Proof. Let t be the coordinate on [0, 1]. Define Kf = 0 for f ∈ Ω0(M × [0, 1]), and Kα = 0 if α = fρ for
ρ ∈ Ωk(M) . But for β = fdt ∧ ρ we define

Kβ = (
∫ 1

0

fdt)ρ.

Then we verify that

dKf +Kdf = 0 +
∫ 1

0

∂f
∂t dt = (J∗1 − J∗0 )f,

dKα+Kdα = 0 + (
∫ 1

0

∂f
∂t dt)ρ = (J∗1 − J∗0 )α,

dKβ +Kdβ = (
∫ 1

0

dMfdt) ∧ ρ+ (
∫ 1

0

fdt) ∧ dρ+K(df ∧ dt ∧ ρ− fdt ∧ dρ) = 0,

which agrees with (J∗1 − J∗0 )β = 0− 0 = 0. Note that we have used K(df ∧ dt ∧ ρ) = K(−dt ∧ dMf ∧ ρ) =
−(
∫ 1

0
dMf) ∧ ρ, and the notation dMf is a time-dependent 1-form whose value at time t is the exterior

derivative on M of the function f(−, t) ∈ Ω0(M).
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The previous theorem can be used in a clever way to prove that homotopic maps M −→ N induce the
same map on cohomology:

Theorem 4.8. Let f : M −→ N and g : M −→ N be smooth maps which are (smoothly) homotopic. Then
f∗ = g∗ as maps H•(N) −→ H•(M).

Proof. Let H : M × [0, 1] −→ N be a (smooth) homotopy between f, g, and let J0, J1 be the embeddings
M −→M×[0, 1] from the previous result, so that H ◦J0 = f and H ◦J1 = g. Recall that J∗1 −J∗0 = dK+Kd,
so we have

g∗ − f∗ = (J∗1 − J∗0 )H∗ = (dK +Kd)H∗ = dKH∗ +KH∗d

This shows that f∗, g∗ differ, on closed forms, only by exact terms, and hence are equal on cohomology.

Corollary 4.9. If M,N are (smoothly) homotopic, then H•dR(M) ∼= H•dR(N).

Proof. M,N are homotopic iff we have maps f : M −→ N , g : N −→ M with fg ∼ 1 and gf ∼ 1.
This shows that f∗g∗ = 1 and g∗f∗ = 1, hence f∗, g∗ are inverses of each other on cohomology, and hence
isomorphisms.

Corollary 4.10 (Poincaré lemma). Since Rn is homotopic to the 1-point space (R0), we have

Hk
dR(Rn) =

{
R for k = 0
0 for k > 0

As a note, we should mention that the homotopy in the previous theorem need not be smooth, since any
homotopy may be deformed (using a continuous homotopy) to a smooth homotopy, by smooth approximation.
Hence we finally obtain that the de Rham cohomology is a homotopy invariant of smooth manifolds.

4.2 Integration

Since we are accustomed to the idea that a function may be integrated over a subset of Rn, we might think
that if we have a function on a manifold, we can compute its local integrals and take a sum. This, however,
makes no sense, because the answer will depend on the particular coordinate system you choose in each open
set: for example, if f : U −→ R is a smooth function on U ⊂ Rn and ϕ : V −→ U is a diffeomorphism onto
V ⊂ Rn, then we have the usual change of variables formula for the (Lebesgue or Riemann) integral:∫

U

fdx1dx2 · · · dxn =
∫
V

ϕ∗f
∣∣∣det[∂ϕi∂xj ]

∣∣∣ dx1 · · · dxn.

The extra factor of the absolute value of the Jacobian determinant shows that the integral of f is coordinate-
dependant. For this reason, it makes more sense to view the left hand side not as the integral of f but rather
as the integral of ν = fdx1∧· · ·∧dxn. Then, the right hand side is indeed the integral of ϕ∗ν (which includes
the Jacobian determinant in its expression automatically) , as long as ϕ∗ has positive Jacobian determinant.

Therefore, the integral of a differential n-form will be well-defined on an n-manifold M , as long as we
can choose an atlas where the Jacobian determinants of the gluing maps are all positive: This is precisely
the choice of an orientation on M , as we now show.

Definition 32. A n-manifold M is called orientable when detT ∗M := ∧nT ∗M is isomorphic to the trivial
line bundle. An orientation is the choice of an equivalence class of nonvanishing sections v, where v ∼ v′ iff
fv = v′ for f ∈ C∞(M,R). M is called oriented when an orientation is chosen, and if M is connected and
orientable, there are two possible orientations.

Rn has a natural orientation by dx1 ∧ · · · ∧ dxn; if M is orientable, we may choose charts which preserve
orientation, as we now show.
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Proposition 4.11. If the n-manifold M is oriented by [v], it is possible to choose an orientation-preserving
atlas (Ui, ϕi) in the sense that ϕ∗i dx

1 ∧ · · · ∧ dxn ∼ v for all i. In particular, the Jacobian determinants for
this atlas are all positive.

Proof. Choose any atlas (Ui, ϕi). For each i, either ϕ∗i dx
1 ∧ · · · ∧ dxn ∼ v, and if not, replace ϕi with q ◦ ϕ,

where q : (x1, . . . , xn) 7→ (−x1, . . . , xn). This completes the proof.

Now we can define the integral on an oriented n-manifold M , by defining the integral on chart images
and asking it to be compatible with these charts:

Theorem 4.12. Let M be an oriented n-manifold. Then there is a unique linear map
∫
M

: Ωnc (M) −→ R
on compactly supported n-forms which has the following property: if h is an orientation-preserving diffeo-
morphism from V ⊂ Rn to U ⊂M , and if α ∈ Ωnc (M) has support contained in U , then∫

M

α =
∫
V

h∗α.

Proof. Let α ∈ Ωnc (M) and choose an orientation-preserving, locally finite atlas (Ui, ϕi) with subordinate
partition of unity (θi). Then using the required properties (and noting that α is nonzero in only finitely
many Ui), we have ∫

M

α =
∑
i

∫
M

θiα =
∑
i

∫
ϕi(Ui)

(ϕ−1
i )∗θiα.

This proves the uniqueness of the integral. To show existence, we must prove that the above expression
actually satisfies the defining condition, and hence can be used as an explicit definition of the integral.

Let h : V −→ U be an orientation-preserving diffeomorphism from V ⊂ Rn to U ⊂ M , and suppose α
has support in U . Then ϕi ◦ h are orientation-preserving, and

∫
M

α =
∑
i

∫
ϕi(Ui)∩ϕi(U)

(ϕ−1
i )∗θiα

=
∑
i

∫
V ∩h−1(Ui)

(ϕi ◦ h)∗(ϕ−1
i )∗θiα

=
∑
i

∫
V ∩h−1(Ui)

h∗(θiα)

=
∫
V

h∗α,

as required.
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Having defined the integral, we wish to explain the duality between d and ∂: A n − 1-form α on a n-
manifold may be pulled back to the boundary ∂M and integrated. On the other hand, it can be differentiated
and integrated over M . The fact that these are equal is Stokes’ theorem, and is a generalization of the
fundamental theorem of calculus.

First we must some simple observations concerning the behaviour of forms in a neighbourhood of the
boundary.

Recall the operation of contraction with a vector field X, which maps ρ ∈ Ωk(M) to iXρ ∈ Ωk−1(M),
defined by the condition of being a graded derivation iX(α∧β) = iXα∧β+(−1)|α|α∧iXβ such that iXf = 0
and iXdf = X(f) for all f ∈ C∞(M,R).

Proposition 4.13. Let M be a manifold with boundary. If M is orientable, then so is ∂M . Furthermore,
an orientation on M induces one on ∂M .

Proof. Given a locally finite atlas (Ui) of ∂M , in each Ui we can pick a nonvanishing outward-pointing vector
field Xi in Γ∞(Ui, j∗TM), for j : ∂M −→M the inclusion. Let (θi) be a subordinate partition of unity, and
form X =

∑
i θiXi. This is a vector field on ∂M , tangent to M and pointing outward everywhere along the

boundary.
Given an orientation [v] of M , we can form [iXv], which is then an orientation of ∂M . This depends only

on [v] and X being a nonvanishing outward vector field.

We now verify a local computation leading to Stokes’ theorem. If

α =
∑
i

aidx
1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxm

is a degree m− 1 form with compact support in U ⊂ Hm, and if U does not intersect the boundary ∂Hm,
then by the fundamental theorem of calculus,∫

U

dα =
∑
i

(−1)i−1

∫
U

∂ai
∂xi dx

1 · · · dxm = 0.

Now suppose that V = U ∩ ∂Hm 6= ∅. Then∫
U

dα =
∑
i

(−1)i−1

∫
U

∂ai
∂xi dx

1 · · · dxm

= −(−1)m−1

∫
V

am(x1, . . . , xm−1, 0)dx1 · · · dxm−1

=
∫
V

am(x1, . . . , xm−1, 0)i
− ∂
∂xm

(dx1 ∧ · · · dxm)

=
∫
V

j∗α,

where the last integral is with respect to the orientation induced by the outward vector field.

Theorem 4.14 (Stokes’ theorem). Let M be an oriented manifold with boundary, and let the boundary be
oriented with respect to an outward pointing vector field. Then for α ∈ Ωm−1

c (M) and j : ∂M −→ M the
inclusion of the boundary, we have ∫

M

dα =
∫
∂M

j∗α.

Proof. For a locally finite atlas (Ui, ϕi), we have∫
M

dα =
∫
M

d(
∑
i

θiα) =
∑
i

∫
ϕi(Ui)

(ϕ−1
i )∗d(θiα)
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By the local calculation above, if ϕi(Ui) ∩ ∂Hm = ∅, the summand on the right hand side vanishes. On the
other hand, if ϕi(Ui) ∩ ∂Hm 6= ∅, we obtain (letting ψi = ϕi|Ui∩∂M and j′ : ∂Hm −→ Rn), using the local
result, ∫

ϕi(Ui)

(ϕ−1
i )∗d(θiα) =

∫
ϕi(Ui)∩∂Hm

j′
∗(ϕ−1

i )∗(θiα)

=
∫
ϕi(Ui)∩∂Hm

(ψ−1
i )∗(j∗(θiα)).

This then shows that
∫
M
dα =

∫
∂M

j∗α, as desired.

Corollary 4.15. If ∂M = ∅, then for all α ∈ Ωn−1
c (M), we have

∫
M
dα = 0.

Corollary 4.16. Let M be orientable and compact, and let v ∈ Ωn(M) be nonvanishing. Then
∫
M
v > 0,

when M is oriented by [v]. Hence, v cannot be exact, by the previous corollary. This tells us that the class
[v] ∈ Hn

dR(M) cannot be zero. In this way, integration of a closed form may often be used to show that it is
nontrivial in de Rham cohomology.

4.3 The Mayer-Vietoris sequence

Decompose a manifold M into a union of open sets M = U ∪V . We wish to relate the de Rham cohomology
of M to that of U and V separately, and also that of U ∩ V . These 4 manifolds are related by obvious
inclusion maps as follows:

U ∪ V U t Voo U ∩ V
∂Uoo
∂V

oo

Applying the functor Ω•, we obtain morphisms of complexes in the other direction, given by simple restriction
(pullback under inclusion):

Ω•(U ∪ V ) // Ω•(U)⊕ Ω•(V )
∂∗U

//
∂∗V // Ω•(U ∩ V )

Now we notice the following: if forms ω ∈ Ω•(U) and τ ∈ Ω•(V ) come from a single global form on U ∪ V ,
then they are killed by ∂∗V − ∂∗U . Hence we obtain a complex of (morphisms of cochain complexes):

0 // Ω•(U ∪ V ) // Ω•(U)⊕ Ω•(V )
∂∗V −∂

∗
U // Ω•(U ∩ V ) // 0 (28)

It is clear that this complex is exact at the first position, since a form must vanish if it vanishes on U and
V . Similarly, if forms on U, V agree on U ∩ V , they must glue to a form on U ∪ V . Hence the complex is
exact at the middle position. We now show that the complex is exact at the last position.

Theorem 4.17. The above complex (of de Rham complexes) is exact. It may be called a “short exact
sequence” of cochain complexes.

Proof. Let α ∈ Ωq(U ∩ V ). We wish to write α as a difference τ − ω with τ ∈ Ωq(U) and ω ∈ Ωq(V ). Let
(ρU , ρV ) be a partition of unity subordinate to (U, V ). Then we have α = ρUα − (−ρV α) in U ∩ V . Now
observe that ρUα may be extended by zero in V (call the result τ), while −ρV α may be extended by zero in
U (call the result ω). Then we have α = (∂∗V − ∂∗U )(τ, ω), as required.

It is not surprising that given an exact sequence of morphisms of complexes

0 −→ A•
f−→ B•

g−→ C• −→ 0
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, we obtain maps between the cohomology groups of the complexes

Hk(A•)
f∗−→ Hk(B•)

g∗−→ Hk(C•).

And it is not difficult to see that this sequence is exact at the middle term: Let [ρ] ∈ Hk(B•), for ρ ∈ Bk
such that dBρ = 0. Suppose that g(ρ) = 0 in Ck, so that there exists τ ∈ Ak with f(τ) = ρ. Then since f is
a morphism of complexes, it follows that f(dAτ) = dBf(τ) = dBρ = 0. Since f : Ak+1 −→ Bk+1 is injective,
this implies that dAτ = 0, so we have f∗[τ ] = [ρ], as required.

The interesting thing is that the maps g∗ are not necessarily surjective, nor are f∗ necessarily injective.
In fact, there is a natural map δ : Hk(C•) −→ Hk+1(A•) (called the connecting homomorphism) which
extends the 3-term sequence to a full complex involving all cohomology groups of arbitrary degree:

If [α] ∈ Hk(C•), where dCα = 0, then there must exist ξ ∈ Bk with g(ξ) = α, and g(dBξ) = dC(g(ξ)) =
dCα = 0, so that there must exist β ∈ Ak+1 with f(β) = dBξ, and f(dAβ) = dB(f(β) = 0. Hence this
determines a class [β] ∈ Hk+1(A•), and one can check that this does not depend on the choices made. We
then define δ([α]) = [β].

Exercise: with this definition of δ, we obtain a “long exact sequence” of vector spaces as follows:

H•(A)
f∗ // H•(B)

g∗zzuuuuuuuuu

H•(C)
δ+1

ddIIIIIIIII

Therefore, from the complex of complexes (28), we immediately obtain a long exact sequence of vector
spaces, called the Mayer-Vietoris sequence:

· · · −→ Hk(U ∪ V ) −→ Hk(U)⊕Hk(V ) −→ Hk(U ∩ V ) δ−→ Hk+1(U ∪ V ) −→ · · · ,

where the first map is simply a restriction map, the second map is the difference of the restrictions δ∗V − δ∗U ,
and the third map is the connecting homomorphism δ, which can be written explicitly as follows:

δ[α] = [β], β = −d(ρV α) = d(ρUα).

(notice that β has support contained in U ∩ V .)

4.4 Examples of cohomology computations

Example 4.18 (Circle). Here we present another computation of H•dR(S1), by the Mayer-Vietoris sequence.
Express S1 = U0 ∪ U1 as before, with Ui ∼= R, so that H0(Ui) = R, H1

dR(Ui) = 0 by the Poincaré lemma.
Since U0∩U1

∼= RtR, we have H0(U0∩U1) = R⊕R and H1(U0∩U1) = 0. Since we know that H2
dR(S1) = 0,

the Mayer-Vietoris sequence only has 4 a priori nonzero terms:

0 −→ H0(S1) −→ R⊕ R
δ∗1−δ

∗
0−→ R⊕ R δ−→ H1(S1) −→ 0.

The middle map takes (c1, c0) 7→ c1 − c0 and hence has 1-dimensional kernel. Hence H0(S1) = R. Further-
more the kernel of δ must only be 1-dimensional, hence H1(S1) = R as well. Exercise: Using a partition of
unity, determine an explicit representative for the class in H1

dR(S1), starting with the function on U0 ∩ U1

which takes values 0,1 on each respective connected component.

Example 4.19 (Spheres). To determine the cohomology of S2, decompose into the usual coordinate charts
U0, U1, so that Ui ∼= R2, while U0 ∩ U1 ∼ S1. The first line of the Mayer-Vietoris sequence is

0 −→ H0(S2) −→ R⊕ R −→ R.
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The third map is nontrivial, since it is just the subtraction. Hence this first line must be exact, and H0(S2) =
R (not surprising since S2 is connected). The second line then reads (we can start it with zero since the first
line was exact)

0 −→ H1(S2) −→ 0 −→ H1(S1) = R,

where the second zero comes from the fact that H1(R2) = 0. This then shows us that H1(S2) = 0. The last
term, together with the third line now give

0 −→ H1(S1) = R −→ H2(S2) −→ 0,

showing that H2(S2) = R.
Continuing this process, we obtain the de Rham cohomology of all spheres:

Hk
dR(Sn) =

{
R, for k = 0 or n,
0 otherwise.
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