THE CUBIC DIRAC OPERATOR FOR INFINITE-DIMENSONAL LIE ALGEBRAS

E. MEINRENKEN

Abstract

Let $\mathfrak{g}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{i}$ be an infinite-dimensional graded Lie algebra, with dim $\mathfrak{g}_{i}<$ ∞, equipped with a non-degenerate symmetric bilinear form B of degree 0 . The quantum Weil algebra $\widehat{\mathcal{W}}_{\mathfrak{g}}$ is a completion of the tensor product of the enveloping and Clifford algebras of \mathfrak{g}. Provided that the Kac-Peterson class of \mathfrak{g} vanishes, one can construct a cubic Dirac operator $\mathcal{D} \in \widehat{\mathcal{W}}(\mathfrak{g})$, whose square is a quadratic Casimir element. We show that this condition holds for symmetrizable Kac-Moody algebras. Extending Kostant's arguments, one obtains generalized Weyl-Kac character formulas for suitable 'equal rank' Lie subalgebras of Kac-Moody algebras. These extend the formulas of G. Landweber for affine Lie algebras.

AMS subject classification: 22E65, 15A66

0 . Introduction

Let \mathfrak{g} be a finite-dimensional complex Lie algebra, equipped with a non-degenerate invariant symmetric bilinear form B. For $\xi \in \mathfrak{g}$, the corresponding generators of the enveloping algebra $U(\mathfrak{g})$ are denoted $s(\xi)$, while those of the Clifford algebra $\mathrm{Cl}(\mathfrak{g})$ are denoted simply by ξ. The quantum Weil algebra [1] is the super algebra

$$
\mathcal{W}(\mathfrak{g})=U(\mathfrak{g}) \otimes \mathrm{Cl}(\mathfrak{g})
$$

with even generators $s(\xi)$ and odd generators ξ. Let $\mathcal{D} \in \mathcal{W}(\mathfrak{g})$ be the odd element, written in terms of a basis e_{a} of \mathfrak{g} as

$$
\mathcal{D}=\sum_{a} s\left(e_{a}\right) e^{a}-\frac{1}{12} \sum_{a b c} f_{a b c} e^{a} e^{b} e^{c},
$$

where e^{a} is the B-dual basis and $f_{a b c}$ are the structure constants. The key property of this element is that its square lies in the center of $\mathcal{W}(\mathfrak{g})$:

$$
\begin{equation*}
\mathcal{D}^{2}=\mathrm{Cas}_{\mathfrak{g}}+\frac{1}{24} \operatorname{tr}_{\mathfrak{g}}\left(\mathrm{Cas}_{\mathfrak{g}}\right), \tag{1}
\end{equation*}
$$

where $\operatorname{Cas}_{\mathfrak{g}}=\sum_{a} s\left(e_{a}\right) s\left(e^{a}\right) \in U(\mathfrak{g})$ is the quadratic Casimir element. The element \mathcal{D} is called the cubic Dirac operator, following Kostant [10]. More generally, Kostant introduced cubic Dirac operators $\mathcal{D}_{\mathfrak{g}, \mathfrak{u}}$ for pairs of a quadratic Lie algebra \mathfrak{g} and a quadratic Lie subalgebra \mathfrak{u}. For \mathfrak{g} semi-simple and \mathfrak{u} an equal rank subalgebra, he used this to prove, among other things, generalizations of the Bott-Borel-Weil theorem and of the Weyl character formula (see also $[2,11]$).

[^0]In this article, we will consider generalizations of this theory to infinite-dimensional Lie algebras. We assume that \mathfrak{g} is \mathbb{Z}-graded, with finite dimensional graded pieces \mathfrak{g}_{i}, and equipped with a non-degenerate invariant symmetric bilinear form B of degree 0 . A priori, the formal expressions defining $\mathcal{D}, \mathrm{Cas}_{\mathfrak{g}}$ are undefined since they involve infinite sums. It is possible to replace these expressions with 'normal-ordered' sums, leading to well-defined elements \mathcal{D}^{\prime}, Cas ${ }_{\mathfrak{g}}^{\prime}$ in suitable completion of $\mathcal{W}(\mathfrak{g})$. However, it is no longer true in general that $\left(\mathcal{D}^{\prime}\right)^{2}-$ Cas $_{\mathfrak{g}}^{\prime}$ is a constant, and in any case $\mathrm{Cas}_{\mathfrak{g}}^{\prime}$ is not a central element. One may attempt to define elements \mathcal{D}, Cas $_{\mathfrak{g}}$ having these properties by adding lower order correction terms to \mathcal{D}^{\prime}, Cas $_{\mathfrak{g}}^{\prime}$. Our main observation is that this is possible if and only the Kac-Peterson class $\left[\psi_{K P}\right] \in H^{2}(\mathfrak{g})$ is zero. In fact, given $\rho \in \mathfrak{g}_{0}^{*}$ with $\psi_{K P}=\mathrm{d} \rho$, the elements $\mathcal{D}=\mathcal{D}^{\prime}+\rho$ and $\mathrm{Cas}_{\mathfrak{g}}=\mathrm{Cas}_{\mathfrak{g}}^{\prime}+2 \rho$ have the desired properties. These results are motivated by the work of Kostant-Sternberg [12], who had exhibited the Kac-Peterson class as an obstruction class in their BRST quantization scheme.

For symmetrizable Kac-Moody algebras, the existence of a corrected Casimir element $\mathrm{CaS}_{\mathfrak{g}}$ is a famous result of Kac [4]. In particular, $\left[\psi_{K P}\right]=0$ in this case. As we will see, Kostant's theory carries over to the symmetrizable Kac-Moody case in a fairly straightforward manner. For suitable 'regular' Kac-Moody subalgebras $\mathfrak{u} \subset \mathfrak{g}$, we thus obtain generalized Weyl-Kac character formulas as sums over multiplets of \mathfrak{u}-representations.

For affine Lie algebras or loop algebras, similar Dirac operators were described in KacTodorov [7] and Kazama-Suzuki [8], and more explicitly in Landweber [14] and Wassermann [19]. In fact, Wassermann uses this Dirac operator to give a proof of the Weyl-Kac character formula for affine Lie algebras, while Landweber proves generalized Weyl character formulas for 'equal rank loop algebras'. The cubic Dirac operator \mathcal{D} for general symmetrizable KacMoody algebras is very briefly discussed in Kitchloo [9].

1. Completions

In this Section we will define completions of the exterior and Clifford algebras of a graded quadratic vector space. We recall from [6] how the Kac-Peterson cocycle appears in this context.
1.1. Kac-Peterson cocycle. Let $V=\bigoplus_{i \in \mathbb{Z}} V_{i}$ be a \mathbb{Z}-graded vector space over \mathbb{C}, with finite-dimensional graded components. The (graded) dual space is the direct sum over the duals of V_{i}, with grading $\left(V^{*}\right)_{i}=\left(V_{-i}\right)^{*}$. Given another graded vector space V^{\prime} with $\operatorname{dim} V_{i}^{\prime}<\infty$, we let $\operatorname{Hom}\left(V, V^{\prime}\right)$ be the direct sum over the spaces $\operatorname{Hom}\left(V, V^{\prime}\right)_{i}=$ $\bigoplus_{r} \operatorname{Hom}\left(V_{r}, V_{r+i}^{\prime}\right)$ of finite rank maps of degree i. We let

$$
\widehat{\operatorname{Hom}}\left(V, V^{\prime}\right)_{i}=\prod_{r} \operatorname{Hom}\left(V_{r}, V_{r+i}^{\prime}\right)
$$

be the space of all linear maps $V \rightarrow V^{\prime}$ of degree i, and $\widehat{\operatorname{Hom}}\left(V, V^{\prime}\right)$ their direct sum. If $V=V^{\prime}$ we write $\operatorname{End}(V)=\operatorname{Hom}(V, V)$ and $\widehat{\operatorname{End}}(V)=\widehat{\operatorname{Hom}}(V, V)$. Note that $\widehat{\operatorname{End}}(V)$ is an algebra with unit I.

Define a splitting $V=V_{-} \oplus V_{+}$where $V_{+}=\bigoplus_{i>0} V_{i}, V_{-}=\bigoplus_{i<0} V_{i}$. Denote by π_{-}, π_{+} the projections to the two summands. The Kac-Peterson cocycle ([6]; see also [5, Exercise
7.28]) on $\widehat{\operatorname{End}}(V)$ is a Lie algebra cocycle given by the formula,

$$
\begin{equation*}
\psi_{K P}\left(A_{1}, A_{2}\right)=\frac{1}{2} \operatorname{tr}\left(A_{1} \pi_{-} A_{2} \pi_{+}\right)-\frac{1}{2} \operatorname{tr}\left(A_{2} \pi_{-} A_{1} \pi_{+}\right) \tag{2}
\end{equation*}
$$

This is well-defined since the compositions $\pi_{-} A_{i} \pi_{+}: V \rightarrow V$ have finite rank. Observe that $\psi_{K P}$ has degree 0 , that is, (2) vanishes unless the degrees of A_{1}, A_{2} add to zero. On the Lie subalgebra $\operatorname{End}(V) \subset \widehat{\operatorname{End}}(V)$, the Kac-Peterson cocycle restricts to a coboundary:

$$
\begin{equation*}
\psi_{K P}\left(A_{1}, A_{2}\right)=\frac{1}{2} \operatorname{tr}\left(\pi_{+}\left[A_{1}, A_{2}\right]\right) \tag{3}
\end{equation*}
$$

1.2. Completion of symmetric and exterior algebras. Let $S(V)$ be the symmetric algebra of V, with \mathbb{Z}-grading defined by assigning degree i to generators in V_{i}. Let V^{*} be the graded dual as above. The pairing between $S(V)$ and $S\left(V^{*}\right)$ identifies $S(V)_{i}$ as a subspace of the space of linear maps $S\left(V^{*}\right)_{-i} \rightarrow \mathbb{K}$. We define a completion $\widehat{S}(V)_{i}$ as the space of all linear maps $S\left(V^{*}\right)_{-i} \rightarrow \mathbb{K}$. Equivalently,

$$
\widehat{S}(V)_{i}=\prod_{r \geq 0} S\left(V_{-}\right)_{i-r} \otimes S\left(V_{+}\right)_{r}
$$

We let $\widehat{S}(V)$ be the direct sum over the $\widehat{S}(V)_{i}$. The multiplication map of $S(V)$ extends to the completion, making $\widehat{S}(V)$ into a \mathbb{Z}-graded algebra. For each $k \geq 0$ one similarly has a completion $\widehat{S}^{k}(V) \subset \widehat{S}(V)$ of each component $S^{k}(V)$. Then $\widehat{S}(V)_{i}$ is the direct product over all $\widehat{S}^{k}(V)_{i}$. The space $\widehat{S}^{2}\left(V^{*}\right)_{0}$ may be identified with the space of symmetric bilinear maps $B: V \times V \rightarrow \mathbb{C}$ of degree 0 , that is $B\left(V_{i}, V_{j}\right)=0$ for $i+j \neq 0$.

In a similar fashion, one defines a completions $\widehat{\wedge}(V)_{i}$ as the spaces of all linear maps $\widehat{\wedge}\left(V^{*}\right)_{-i} \rightarrow \mathbb{K}$, or equivalently

$$
\widehat{\wedge}(V)_{i}=\prod_{r \geq 0} \wedge\left(V_{-}\right)_{i-r} \otimes \wedge\left(V_{+}\right)_{r}
$$

We let $\widehat{\wedge}(V)$ be the \mathbb{Z}-graded super algebra given as the direct sum over all $\widehat{\wedge}(V)_{i}$. Again, one also has completions of the individual $\wedge^{k}(V)$. The space $\widehat{\wedge}^{2}\left(V^{*}\right)_{0}$ may be identified with the skew-symmetric bilinear maps $V \times V \rightarrow \mathbb{C}$ of degree 0 . In particular:

$$
\psi_{K P} \in \widehat{\wedge}^{2}\left(\widehat{\operatorname{End}}(V)^{*}\right)_{0}
$$

1.3. Clifford algebras. Suppose B is a (possibly degenerate) symmetric bilinear form on $V=\bigoplus_{i} V_{i}$ of degree 0 . Let $\mathrm{Cl}(V)$ be the corresponding Clifford algebra, i.e. the super algebra with odd generators $v \in V$ and relations $v w+w v=2 B(v, w)$ for $v, w \in V$. The \mathbb{Z}-grading on V defines a \mathbb{Z}-grading on $\mathrm{Cl}(V)$, compatible with the algebra structure.

Using the restrictions of the bilinear form to $V_{ \pm}$, we may similarly form the Clifford algebras $\mathrm{Cl}\left(V_{ \pm}\right)$. These are \mathbb{Z}-graded subalgebras of $\mathrm{Cl}(V)$, and the multiplication map defines an isomorphism of super vector spaces, $\mathrm{Cl}(V) \cong \mathrm{Cl}\left(V_{-}\right) \otimes \mathrm{Cl}\left(V_{+}\right)$. Note that $\mathrm{Cl}\left(V_{+}\right)=\wedge\left(V_{+}\right)$since B restricts to 0 on V_{+}.

We obtain a \mathbb{Z}-graded superalgebra $\widehat{\mathrm{Cl}}(V)$ as the direct sum over all

$$
\widehat{\mathrm{Cl}}(V)_{i}=\prod_{r \geq 0} \mathrm{Cl}\left(V_{-}\right)_{i-r} \otimes \mathrm{Cl}\left(V_{+}\right)_{r} .
$$

Let $q^{0}: \wedge(V) \rightarrow \mathrm{Cl}(V)$ denote the standard quantization map for the Clifford algebra, defined by super symmetrization:

$$
q^{0}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in \mathfrak{F}_{k}} \operatorname{sign}(\sigma) v_{\sigma(1)} \cdots v_{\sigma(k)}
$$

where \mathfrak{S}_{k} is the permutation group on k elements, and $\operatorname{sign}(\sigma)= \pm 1$ is the parity of the permutation σ. The map q^{0} is an isomorphism of super spaces, preserving the \mathbb{Z}-gradings and taking $\wedge\left(V_{ \pm}\right)$to $\mathrm{Cl}\left(V_{ \pm}\right)$. While q^{0} itself does not extend to the completions, we obtain a well-defined normal-ordered quantization map

$$
q: \widehat{\wedge}(V) \rightarrow \widehat{\mathrm{Cl}}(V)
$$

by taking the direct sum over $i \in \mathbb{Z}$ and direct product over $r \geq 0$ of

$$
q^{0} \otimes q^{0}: \wedge\left(V_{-}\right)_{i-r} \otimes \wedge\left(V_{+}\right)_{r} \rightarrow \mathrm{Cl}\left(V_{-}\right)_{i-r} \otimes \mathrm{Cl}\left(V_{+}\right)_{r}
$$

The quantization map is an isomorphism of \mathbb{Z}-graded super vector spaces, with the property that for $\lambda \in \widehat{\Lambda}^{k}(V), \mu \in \widehat{\Lambda}^{l}(V)$,

$$
q^{-1}(q(\lambda) q(\mu))=\lambda \wedge \mu \quad \bmod \widehat{\wedge}^{k+l-2}(V)
$$

Any element $v \in V$ defines an odd derivation ι_{v}, called contraction, of the super algebra $\wedge(V)$, given on generators by $\iota_{v}(w)=B(v, w)$. The same formula also defines a derivation of the Clifford algebra, again denoted ι_{v}. In both cases, the contractions extend to the completions. The map $q: \widehat{\wedge}(V) \rightarrow \widehat{\mathrm{Cl}}(V)$ intertwines contractions:

$$
q \circ \iota_{v}=\iota_{v} \circ q,
$$

since $q^{0} \circ \iota_{v}=\iota_{v} \circ q^{0}$ and since contractions preserve $\wedge\left(V_{ \pm}\right)$and $\mathrm{Cl}\left(V_{ \pm}\right)$.
Let $\mathfrak{o}(V) \subset \operatorname{End}(V)$ and $\widehat{\mathfrak{o}}(V) \subset \widehat{\operatorname{End}}(V)$ denote the B-skew-symmetric endomorphisms. Let

$$
\begin{equation*}
\hat{\wedge}^{2}(V) \rightarrow \widehat{\mathfrak{o}}(V), \quad \lambda \mapsto A_{\lambda} \tag{4}
\end{equation*}
$$

be the map defined by $A_{\lambda}(v)=-2 \iota_{v} \lambda$. The map (4) is $\widehat{\mathfrak{o}}(V)$-equivariant, that is,

$$
A_{L_{X} \lambda}=\left[X, A_{\lambda}\right]
$$

for $X \in \widehat{\mathfrak{o}}(V)$.
Lemma 1.1. For all $\lambda \in \wedge^{2}(V)$,

$$
\begin{equation*}
q(\lambda)=q^{0}(\lambda)-\frac{1}{2} \operatorname{tr}\left(\pi_{+} A_{\lambda}\right) . \tag{5}
\end{equation*}
$$

Proof. It suffices to check for elements of the form $\lambda=u \wedge v$ for $u, v \in V$. We have $A_{u \wedge v}(w)=2(B(v, w) u-B(u, w) v)$, hence $\operatorname{tr}\left(\pi_{+} A_{u \wedge v}\right)=2\left(B\left(\pi_{+} u, v\right)-B\left(\pi_{+} v, u\right)\right)$. On the other hand, by considering the special cases that u, v are both in V_{-}, both in V_{+}, or $u \in V_{-}, v \in V_{+}$we find

$$
\begin{equation*}
q(u \wedge v)=q^{0}(u \wedge v)+B\left(\pi_{+} v, u\right)-B\left(\pi_{+} u, v\right) . \tag{6}
\end{equation*}
$$

The map q^{0} is $\mathfrak{o}(V)$-equivariant. For the normal-ordered quantization map this is no longer the case.

Proposition 1.2 (Kac-Peterson). [6] For all $\lambda \in \widehat{\wedge}^{2}(V)$ and $X \in \widehat{\mathfrak{o}}(V)$, one has

$$
L_{X} q(\lambda)=q\left(L_{X} \lambda\right)+\psi_{K P}\left(X, A_{\lambda}\right) .
$$

Proof. It is enough to prove this for $X \in \mathfrak{o}(V)$ and $\lambda \in \wedge^{2}(V)$. Since q^{0} intertwines Lie derivatives, Lemma 1.1 together with (3) give

$$
L_{X} q(\lambda)-q\left(L_{X} \lambda\right)=\frac{1}{2} \operatorname{tr}\left(\pi_{+} A_{L_{X} \lambda}\right)=\frac{1}{2} \operatorname{tr}\left(\pi_{+}\left[X, A_{\lambda}\right]\right)=\psi_{K P}\left(X, A_{\lambda}\right) .
$$

If B is non-degenerate, the map $\lambda \mapsto A_{\lambda}$ defines an isomorphism $\wedge^{2}(V) \rightarrow \mathfrak{o}(V)$. Let

$$
\lambda: \mathfrak{o}(V) \rightarrow \wedge^{2}(V), \quad A \mapsto \lambda(A)
$$

be the inverse map. It extends to a map $\widehat{\mathfrak{o}}(V) \rightarrow \widehat{\wedge}^{2}(V)$ of the completions. In a basis e_{a} of V, with B-dual basis e^{a} (i.e. $B\left(e_{a}, e^{b}\right)=\delta_{a}^{b}$), one has

$$
\lambda(A)=\frac{1}{4} \sum_{a} A\left(e_{a}\right) \wedge e^{a} .
$$

If $A \in \mathfrak{o}(V)$, the elements $\gamma^{0}(A)=q^{0}(\lambda(A))$ are defined. As is well-known, $\left[\gamma^{0}\left(A_{1}\right), \gamma^{0}\left(A_{2}\right)\right]=$ $\gamma^{0}\left(\left[A_{1}, A_{2}\right]\right)$ for $A_{i} \in \mathfrak{o}(V)$, and

$$
L_{A}=\left[\gamma^{0}(A), \cdot\right] .
$$

If $A \in \widehat{\mathfrak{o}}(V)$, one still has $L_{A}=\left[\gamma^{\prime}(A), \cdot\right]$ with

$$
\gamma^{\prime}(A)=q(\lambda(A))
$$

but the map γ^{\prime} is no longer a Lie algebra homomorphism. Instead, Proposition 1.2 shows [6]

$$
\begin{equation*}
\left[\gamma^{\prime}\left(A_{1}\right), \gamma^{\prime}\left(A_{2}\right)\right]=\gamma^{\prime}\left(\left[A_{1}, A_{2}\right]\right)+\psi_{K P}\left(A_{1}, A_{2}\right) \tag{7}
\end{equation*}
$$

for $A_{1}, A_{2} \in \widehat{\mathfrak{o}}(V)$.

2. Graded Lie algebras

We will now specialize to the case that $V=\mathfrak{g}$ is a \mathbb{Z}-graded Lie algebra. We show that in the quadratic case, the obstruction to defining a reasonable 'Casimir operator' is precisely the Kac-Peterson class of \mathfrak{g}.
2.1. Kac-Peterson cocycle of \mathfrak{g}. Let $\mathfrak{g}=\bigoplus_{i} \mathfrak{g}_{i}$ be a graded Lie algebra, with $\operatorname{dim} \mathfrak{g}_{i}<\infty$. That is, we assume that the grading is compatible with the bracket: $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right]_{\mathfrak{g}} \subset \mathfrak{g}_{i+j}$. The map $\operatorname{ad}_{\xi}: \mathfrak{g} \rightarrow \mathfrak{g}$ defines a homomorphism of graded Lie algebras

$$
\operatorname{ad}: \mathfrak{g} \rightarrow \widehat{\operatorname{End}}(\mathfrak{g}) .
$$

Recall that $\mathfrak{g}^{*}=\bigoplus_{i}\left(\mathfrak{g}^{*}\right)_{i}$ denotes the restricted dual where $\left(\mathfrak{g}^{*}\right)_{i}=\left(\mathfrak{g}_{-i}\right)^{*}$. The algebra $\wedge\left(\mathfrak{g}^{*}\right)$ carries contraction operators and Lie derivatives ι_{ξ}, L_{ξ} for $\xi \in \mathfrak{g}$, given on generators by $\iota_{\xi} \mu=\langle\mu, \xi\rangle$ and $L_{\xi} \mu=\left(-\mathrm{ad}_{\xi}\right)^{*} \mu$. If $\operatorname{dim} \mathfrak{g}<\infty$ it also carries a differential d, given on generators by

$$
\mathrm{d} \mu=2 \lambda(\mu)
$$

where $\lambda(\mu)$ is defined by $\iota_{\xi} \lambda(\mu)=\frac{1}{2} L_{\xi} \mu$. On generators,

$$
(\mathrm{d} \mu)\left(\xi_{1}, \xi_{2}\right)=-\left\langle\mu,\left[\xi_{1}, \xi_{2}\right]_{\mathfrak{g}}\right\rangle .
$$

In the infinite-dimensional case, $\lambda(\mu)$ and hence d are well-defined on the completion $\widehat{\wedge}\left(\mathfrak{g}^{*}\right)$. The operators ι_{ξ}, L_{ξ}, d make $\widehat{\wedge}\left(\mathfrak{g}^{*}\right)$ into a \mathfrak{g}-differential algebra.

Define

$$
\psi_{K P}\left(\xi_{1}, \xi_{2}\right):=\psi_{K P}\left(\operatorname{ad}_{\xi_{1}}, \operatorname{ad}_{\xi_{2}}\right)
$$

for $\xi_{i} \in \mathfrak{g}$. Thus $\psi_{K P} \in \widehat{\wedge}^{2}\left(\mathfrak{g}^{*}\right)_{0}$ is a degree 2 Lie algebra cocycle of \mathfrak{g}, called the KacPeterson cocycle of \mathfrak{g}. Its class $\left[\psi_{K P}\right] \in H^{2}(\mathfrak{g})$ will be called the Kac-Peterson class of the graded Lie algebra \mathfrak{g}. Note that d has \mathbb{Z}-degree 0 , so that it restricts to a differential on each $\widehat{\wedge}\left(\mathfrak{g}^{*}\right)_{i}$. Hence, if $\psi_{K P}$ admits a primitive in \mathfrak{g}^{*}, then it admits a primitive in \mathfrak{g}_{0}^{*}.
Example 2.1. [6] Suppose \mathfrak{k} is a finite-dimensional Lie algebra, and let $\mathfrak{g}=\mathfrak{k}\left[z, z^{-1}\right]$ the loop algebra with its usual \mathbb{Z}-grading. Let $B^{\mathrm{Kil}}(x, y)=\operatorname{tr}_{\mathfrak{k}}\left(\mathrm{ad}_{x} \mathrm{ad}_{y}\right)$ for $x, y \in \mathfrak{k}$ be the Killing form on \mathfrak{k}. One finds

$$
\psi_{K P}(\xi, \zeta)=\operatorname{Res} B^{\operatorname{Kil}}\left(\frac{\partial \xi}{\partial z}, \zeta\right)
$$

for $\xi, \zeta \in \mathfrak{k}\left[z, z^{-1}\right]$, where Res picks out the coefficient of z^{-1}. One may check that unless B Kil $=0$, the Kac-Peterson class $\left[\psi_{K P}\right]$ is non-zero.
Example 2.2 (Heisenberg algebra). Let \mathfrak{g} be the Lie algebra with basis $K, e_{1}, f_{1}, e_{2}, f_{2}, \ldots$, where K is a central element and $\left[e_{i}, f_{j}\right]_{\mathfrak{g}}=\delta_{i j} K$. Define a grading on \mathfrak{g} such that e_{i} has degree i and f_{i} has degree $-i$, while K has degree 0 . One finds $\psi_{K P}=0$.

Example 2.3. Suppose \mathfrak{g} is a finite-dimensional semi-simple Lie algebra. Choose a Cartan subalgebra \mathfrak{h} and a system $\Delta^{+} \subset \mathfrak{h}^{*}$ of positive roots. Let \mathfrak{g} carry the principal grading, i.e. $\mathfrak{g}_{0}=\mathfrak{h}$ while $\mathfrak{g}_{i}, i \neq 0$ is the direct sum of root spaces for roots of height i. Using (3) one finds that $\psi_{K P}=\mathrm{d} \rho$, where $\rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha$.
2.2. Enveloping algebras. The \mathbb{Z}-grading on \mathfrak{g} defines a \mathbb{Z}-grading on the enveloping algebra $U(\mathfrak{g})$. Both $\mathfrak{g}_{+}=\bigoplus_{i>0} \mathfrak{g}_{i}$ and $\mathfrak{g}_{-}=\bigoplus_{i \leq 0} \mathfrak{g}_{i}$ are graded Lie subalgebras, thus $U\left(\mathfrak{g}_{ \pm}\right)$ are graded subalgebras of $U(\mathfrak{g})$. By the Poincaré-Birkhoff-Witt theorem, the multiplication map defines an isomorphism of vector spaces, $U(\mathfrak{g})=U\left(\mathfrak{g}_{-}\right) \otimes U\left(\mathfrak{g}_{+}\right)$. We define a completion $\widehat{U}(\mathfrak{g})$ as a direct sum over

$$
\widehat{U}(\mathfrak{g})_{i}=\prod_{r \geq 0} U\left(\mathfrak{g}_{-}\right)_{i-r} \otimes U\left(\mathfrak{g}_{+}\right)_{r} .
$$

The multiplication map extends to the completion, making $\widehat{U}(\mathfrak{g})$ into a graded algebra. Let $q^{0}: S(\mathfrak{g}) \rightarrow U(\mathfrak{g})$ be the isomorphism given by the standard (PBW) symmetrization map,

$$
q^{0}\left(\xi_{1} \cdots \xi_{k}\right)=\frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{k}} \xi_{\sigma(1)} \cdots \xi_{\sigma(k)} .
$$

This preserves \mathbb{Z}-degrees and takes $S\left(\mathfrak{g}_{ \pm}\right)$to $U\left(\mathfrak{g}_{ \pm}\right)$. While the map itself does not extend to the completions, we define a normal-ordered symmetrization (quantization) map

$$
q: \widehat{S}(\mathfrak{g}) \rightarrow \widehat{U}(\mathfrak{g})
$$

by taking the direct sum over i and direct product over r of the maps

$$
q^{0} \otimes q^{0}: S\left(\mathfrak{g}_{-}\right)_{i-r} \otimes S\left(\mathfrak{g}_{+}\right)_{r} \rightarrow U\left(\mathfrak{g}_{-}\right)_{i-r} \otimes U\left(\mathfrak{g}_{+}\right)_{r}
$$

Then q is an isomorphism of \mathbb{Z}-graded vector spaces. Let

$$
S^{2}(\mathfrak{g}) \rightarrow \operatorname{Hom}\left(\mathfrak{g}^{*}, \mathfrak{g}\right), p \mapsto A_{p}
$$

be the linear map given for $p=u v, u, v \in \mathfrak{g}$ by

$$
A_{p}(\mu)=\langle\mu, u\rangle v+\langle\mu, v\rangle u
$$

It extends to a \mathfrak{g}-equivariant linear map $\widehat{S}^{2}(\mathfrak{g}) \rightarrow \widehat{\operatorname{Hom}}\left(\mathfrak{g}^{*}, \mathfrak{g}\right)$. Let

$$
\text { br: } \operatorname{Hom}\left(\mathfrak{g}^{*}, \mathfrak{g}\right) \rightarrow \mathfrak{g}
$$

be the linear map, given by the identification $\operatorname{Hom}\left(\mathfrak{g}^{*}, \mathfrak{g}\right) \cong \mathfrak{g} \otimes \mathfrak{g}$ followed by the Lie bracket. In a basis e_{a} of \mathfrak{g} with dual basis $e^{a} \in \mathfrak{g}^{*}, \operatorname{br}(A)=\sum_{a}\left[A\left(e^{a}\right), e_{a}\right]_{\mathfrak{g}}$. The counterpart to Lemma 1.1 reads:

Lemma 2.4. For $p \in S^{2}(\mathfrak{g})$,

$$
q(p)=q^{0}(p)-\frac{1}{2} \operatorname{br}\left(\pi_{+} A_{p}\right)
$$

Proof. It suffices to check for $p=u v$, where the formula reduces to (cf. (6))

$$
\begin{equation*}
q(u v)=q^{0}(u v)+\frac{1}{2}\left[u, \pi_{+} v\right]_{\mathfrak{g}}+\frac{1}{2}\left[v, \pi_{+} u\right]_{\mathfrak{g}} \tag{8}
\end{equation*}
$$

but this is straightforward in each of the cases that u, v are both in \mathfrak{g}_{+}, both in \mathfrak{g}_{-}, or $u \in \mathfrak{g}_{+}, v \in \mathfrak{g}_{-}$.

In contrast to q^{0}, the map q is not \mathfrak{g}-equivariant. Similar to Proposition 1.2 we have:
Proposition 2.5. On $\widehat{S}^{2}(\mathfrak{g})$,

$$
L_{\xi}(q(p))-q\left(L_{\xi}(p)\right)=\frac{1}{2} \operatorname{br}\left(\left(\pi_{+} \operatorname{ad}_{\xi} \pi_{-}-\pi_{-} \operatorname{ad}_{\xi} \pi_{+}\right) A_{p}\right)
$$

The right hand side is well-defined, since $\pi_{-} \operatorname{ad}_{\xi} \pi_{+}$and $\pi_{+} \operatorname{ad}_{\xi} \pi_{-}$are in $\operatorname{Hom}(\mathfrak{g}, \mathfrak{g})$, hence $\left(\pi_{+} \operatorname{ad}_{\xi} \pi_{-}-\pi_{-} \operatorname{ad}_{\xi} \pi_{+}\right) A_{p} \in \operatorname{Hom}\left(\mathfrak{g}^{*}, \mathfrak{g}\right)$.

Proof. It suffices to verify this for $p \in S^{2}(\mathfrak{g})$, so that A_{p} has finite rank. Since $L_{\xi} q^{0}(p)-$ $q^{0}\left(L_{\xi} p\right)=0$, Lemma 2.4 gives

$$
\begin{aligned}
L_{\xi} q(p)-q\left(L_{\xi} p\right) & =-\frac{1}{2}\left(L_{\xi} \operatorname{br}\left(\pi_{+} A_{p}\right)-\operatorname{br}\left(\pi_{+} A_{L_{\xi} p}\right)\right) \\
& =-\frac{1}{2} \operatorname{br}\left(\left[L_{\xi}, \pi_{+} A_{p}\right]-\pi_{+}\left[L_{\xi}, A_{p}\right]\right) \\
& =-\frac{1}{2} \operatorname{br}\left(L_{\xi} \pi_{+} A_{p}-\pi_{+} L_{\xi} A_{p}\right) \\
& =\frac{1}{2} \operatorname{br}\left(\left(\pi_{+} L_{\xi} \pi_{-}-\pi_{-} L_{\xi} \pi_{+}\right) A_{p}\right)
\end{aligned}
$$

2.3. Quadratic Lie algebras. We assume that $\mathfrak{g}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{i}$ comes equipped with a nondegenerate ad-invariant symmetric bilinear form B of degree 0 . Thus, $B\left(\mathfrak{g}_{i}, \mathfrak{g}_{j}\right)=0$ for $i+j \neq 0$, while B defines a non-degenerate pairing between $\mathfrak{g}_{i}, \mathfrak{g}_{-i}$. We will often use B to identify \mathfrak{g}^{*} with \mathfrak{g}. The examples we have in mind are the following:
(a) Let \mathfrak{k} be a finite-dimensional Lie algebra, with an invariant symmetric bilinear form $B_{\mathfrak{k}}$. Then B extends to an inner product on the loop algebra $\mathfrak{g}=\mathfrak{k}\left[z, z^{-1}\right]$.
(b) Let $\mathfrak{l}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{l}_{i}$ be a graded Lie algebra, with finite-dimensional homogeneous components, and $\mathfrak{l}^{*}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{l}_{i}^{*}$ its restricted dual, with grading $\left(\mathfrak{l}^{*}\right)_{i}=\mathfrak{l}_{-i}^{*}$. The semidirect product $\mathfrak{g}=\mathfrak{l} \ltimes \mathfrak{l}^{*}$, with B given by the pairing, satisfies our assumptions. This case was studied by Kostant and Sternberg in [12].
(c) Let $\mathfrak{g}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{i}$ be a symmetrizable Kac-Moody Lie algebra, with grading the principal grading (defined by the height of roots). Then \mathfrak{g} carries a 'standard' non-degenerate invariant symmetric bilinear form, see [5]. We will return to the Kac-Moody case in Section 6.
Under the identification $\widehat{\wedge}^{2}(\mathfrak{g}) \cong \widehat{\mathfrak{o}}(\mathfrak{g})$, the Kac-Peterson cocycle $\psi_{K P}$ corresponds to an element

$$
\Psi_{K P} \in \widehat{\mathfrak{o}}(\mathfrak{g}), \quad \psi_{K P}(\xi, \zeta)=B\left(\Psi_{K P}(\xi), \zeta\right)
$$

Since $\psi_{K P}$ has \mathbb{Z}-degree 0 , the transformation $\Psi_{K P}$ preserves each \mathfrak{g}_{i}. Since $\psi_{K P}$ is a cocycle, $\Psi_{K P}$ is a derivation of the Lie bracket on \mathfrak{g}. Moreover, $\psi_{K P}$ is a coboundary if and only if the derivation $\Psi_{K P}$ is inner:

$$
\begin{equation*}
\psi_{K P}=\mathrm{d} \rho \quad \Leftrightarrow \quad \Psi_{K P}=\left[\rho^{\sharp}, \cdot\right]_{\mathfrak{g}} \tag{9}
\end{equation*}
$$

where ρ^{\sharp} is the image of $\rho \in \mathfrak{g}_{0}^{*}$ under the isomorphism $B^{\sharp}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}$.
Example 2.6. Let $\mathfrak{g}=\mathfrak{k}\left[z, z^{-1}\right]$, with \mathfrak{k} semi-simple, and with bilinear form defined in terms of the Killing form on \mathfrak{k} as $B(\xi, \zeta)=\operatorname{Res}\left(z^{-1} B^{\operatorname{Kil}}(\xi, \zeta)\right)$, for $\xi, \zeta \in \mathfrak{k}\left[z, z^{-1}\right]$. Then $\Psi_{K P}$ is the degree operator:

$$
\Psi_{K P}(\xi)=z \frac{\partial \xi}{\partial z}
$$

2.4. Casimir elements. Let $p \in \widehat{S}^{2}(\mathfrak{g})$ be the element

$$
p=\sum_{a} e_{a} e^{a} \in \widehat{S}^{2}(\mathfrak{g})
$$

where e_{a} is a homogeneous basis of \mathfrak{g}, with B-dual basis e^{a}. The corresponding transformation $A_{p} \in \operatorname{Hom}\left(\mathfrak{g}^{*}, \mathfrak{g}\right) \cong \operatorname{End}(\mathfrak{g})$ is $2 \operatorname{Id}_{\mathfrak{g}}$. We refer to

$$
\mathrm{Cas}_{\mathfrak{g}}^{\prime}=q(p) \in \widehat{U}(\mathfrak{g})
$$

as the normal-ordered Casimir element. It is not an element of the center, in general:
Theorem 2.7. The normal-ordered Casimir element satisfies

$$
L_{\xi} \operatorname{Cas}_{\mathfrak{g}}^{\prime}=2 \Psi_{K P}(\xi)
$$

for all $\xi \in \mathfrak{g}$.
Proof. From the definition of br, one finds

$$
B(\operatorname{br}(A), \zeta)=\operatorname{tr}\left(\operatorname{ad}_{\zeta} A\right)
$$

for all $A \in \operatorname{End}(\mathfrak{g})$ and $\zeta \in \mathfrak{g}$. Since $A_{p}=2 \operatorname{Id}_{\mathfrak{g}}$ and $L_{\xi} p=0$, Proposition 2.5 therefore gives

$$
\begin{aligned}
B\left(L_{\xi} \operatorname{Cas}_{\mathfrak{g}}^{\prime}, \zeta\right) & =B\left(\operatorname{br}\left(\pi_{+} \operatorname{ad}_{\xi} \pi_{-}-\pi_{-} \operatorname{ad}_{\xi} \pi_{+}\right), \zeta\right) \\
& =\operatorname{tr}\left(\operatorname{ad}_{\zeta} \pi_{+} \operatorname{ad}_{\xi} \pi_{-}-\operatorname{ad}_{\zeta} \pi_{-} \operatorname{ad}_{\xi} \pi_{+}\right) \\
& =2 \psi_{\mathrm{KP}}(\xi, \zeta) \\
& =2 B\left(\Psi_{\mathrm{KP}}(\xi), \zeta\right)
\end{aligned}
$$

The normal-ordered Casimir element $\mathrm{Cas}_{\mathfrak{g}}^{\prime}$ admits a linear correction to a central element if and only if the Kac-Peterson class is zero. More precisely:

Corollary 2.8. For $\rho \in \mathfrak{g}_{0}^{*}$,

$$
\begin{equation*}
\operatorname{Cas}_{\mathfrak{g}}:=\operatorname{Cas}_{\mathfrak{g}}^{\prime}+2 \rho^{\sharp} \tag{10}
\end{equation*}
$$

lies in the center of $\widehat{U}(\mathfrak{g})$ if and only if $\psi_{K P}=d \rho$.
Proof. This is a direct consequence of Theorem 2.7 , since $\psi_{K P}=\mathrm{d} \rho$ if and only if $L_{\xi} \rho^{\sharp}=$ $-\Psi_{K P}(\xi)$, see Equation (9).
Example 2.9. For a loop algebra $\mathfrak{g}=\mathfrak{k}\left[z, z^{-1}\right]$, with \mathfrak{k} a semi-simple Lie algebra, the KacPeterson coycle of \mathfrak{g} defines a non-trivial cohomology class. Hence it is impossible to make $\mathrm{Cas}_{\mathfrak{g}}^{\prime}$ invariant by adding linear terms. On the other hand, for a symmetrizable Kac-Moody algebra \mathfrak{g}, a classical result of Kac shows that Cas ${ }_{\mathfrak{g}}^{\prime}$ becomes invariant after a ρ-shift. Hence the Kac-Peterson class of such a \mathfrak{g} is trivial. See Section 6 below.
2.5. The structure constants tensor and its quantization. Recall the definition of $\lambda: \widehat{\mathfrak{o}}(\mathfrak{g}) \rightarrow \widehat{\Lambda}^{2}(\mathfrak{g})$. We will write

$$
\lambda(\xi)=\lambda\left(\mathrm{ad}_{\xi}\right),
$$

that is $\iota_{\xi} \lambda(\zeta)=\frac{1}{2}[\xi, \zeta]_{\mathfrak{g}}$. In a basis e_{a} of \mathfrak{g}, with B-dual basis e^{a}, we have $\lambda(\xi)=$ $\frac{1}{4} \sum_{a}\left[\xi, e_{a}\right]_{\mathfrak{g}} \wedge e^{a}$.
Lemma 2.10. There is a unique element $\phi \in \widehat{\wedge}^{3}(\mathfrak{g})_{0}$ with the property

$$
\begin{equation*}
\iota \xi_{\xi_{1}} \iota \xi_{\xi_{2}}{\xi_{3}} \phi=\frac{1}{2} B\left(\left[\xi_{1}, \xi_{2}\right]_{\mathfrak{g}}, \xi_{3}\right), \quad \xi_{1}, \xi_{2}, \xi_{3} \in \mathfrak{g} \tag{11}
\end{equation*}
$$

Proof. The right-hand side is a skew-symmetric trilinear form of degree 0 on \mathfrak{g}. Hence it defines an element of $\widehat{\wedge}^{3}(\mathfrak{g})$.

Equivalently, $\iota_{\xi} \phi=2 \lambda(\xi), \quad \xi \in \mathfrak{g}$. In a basis,

$$
\begin{equation*}
\phi=-\frac{1}{12} \sum_{a b c} f_{a b c} e^{a} \wedge e^{b} \wedge e^{c} \tag{12}
\end{equation*}
$$

where $f_{a b c}=B\left(\left[e_{a}, e_{b}\right]_{\mathfrak{g}}, e_{c}\right)$ are the structure constants. From the definition, it is clear that ϕ is \mathfrak{g}-invariant. This need no longer be true of its normal-ordered quantization. Write

$$
\gamma^{\prime}(\xi)=q(\lambda(\xi)), \quad \phi_{\mathrm{Cl}}^{\prime}=q(\phi),
$$

so that $\left.L_{\xi}=\left[\gamma^{\prime}(\xi), \cdot\right)\right]$. Denote by $\psi_{K P}^{\sharp} \in \widehat{\wedge}^{2}(\mathfrak{g})$ the image of $\psi_{K P} \in \widehat{\wedge}^{2}\left(\mathfrak{g}^{*}\right)$ under the isomorphism $B^{\sharp}: \widehat{\wedge}\left(\mathfrak{g}^{*}\right) \rightarrow \widehat{\wedge}(\mathfrak{g})$.
Proposition 2.11. The element $\phi_{\mathrm{C} 1}^{\prime} \in \widehat{\mathrm{Cl}}(\mathfrak{g})$ satisfies

$$
L_{\xi} \phi_{\mathrm{Cl}}^{\prime}=\Psi_{K P}(\xi),
$$

and its square is given by the formula

$$
\left(\phi_{\mathrm{Cl}}^{\prime}\right)^{2}=q\left(\psi_{K P}^{\sharp}\right)+\frac{1}{24} \operatorname{tr}_{\mathfrak{g}_{0}}\left(\operatorname{Cas}_{\mathfrak{g}_{0}}\right) .
$$

Here $\operatorname{Cas}_{\mathfrak{g}_{0}} \in U\left(\mathfrak{g}_{0}\right)$ is the quadratic Casimir element for \mathfrak{g}_{0}, and $\operatorname{tr}_{\mathfrak{g}_{0}}\left(\mathrm{Cas}_{\mathfrak{g}_{0}}\right)$ is its trace in the adjoint representation.

Proof. The first formula follows from the second, since

$$
L_{\xi} \phi_{\mathrm{Cl}}^{\prime}=\left[\gamma^{\prime}(\xi), \phi_{\mathrm{Cl}}^{\prime}\right]=\iota_{\xi}\left(\phi_{\mathrm{Cl}}^{\prime}\right)^{2} .
$$

Since

$$
\iota_{\xi}\left(\phi_{\mathrm{Cl}}^{\prime}\right)^{2}=\left[\gamma^{\prime}(\xi), \phi_{\mathrm{Cl}}^{\prime}\right]=L_{\xi} \phi_{\mathrm{Cl}}^{\prime}=\Psi_{K P}(\xi)=\iota_{\xi} q\left(\psi_{K P}^{\sharp}\right),
$$

the difference $\left(\phi_{\mathrm{Cl}}^{\prime}\right)^{2}-q\left(\psi_{K P}^{\sharp}\right)$ is a constant. Let ϕ_{r} be the component of ϕ in $\left(\wedge \mathfrak{g}_{-}\right)_{-r} \otimes$ $\left(\wedge \mathfrak{g}_{+}\right)_{r}$. The commutator of $\phi_{\mathrm{Cl}}^{\prime}$ with a term $q\left(\phi_{r}\right)$ for $r>0$ is contained in the right ideal generated by \mathfrak{g}_{+}, and hence does not contribute to the constant. Hence the constant equals $q\left(\phi_{0}\right)^{2}$, where $\phi_{0} \in \wedge^{3} \mathfrak{g}_{0}$ is the structure constants tensor of $\mathfrak{g}_{0} \subset \mathfrak{g}$. By [1, 10] this constant is given by $\frac{1}{24} \operatorname{tr}_{\mathfrak{g}_{0}}\left(\operatorname{Cas}_{\mathfrak{g}_{0}}\right)$.

Corollary 2.12. Suppose $\psi_{K P}=d \rho$ for some $\rho \in \mathfrak{g}_{0}^{*}$. Define elements of $\widehat{\mathrm{Cl}}(\mathfrak{g})$ by

$$
\phi_{\mathrm{Cl}}:=\phi_{\mathrm{Cl}}^{\prime}+\rho^{\sharp}, \quad \gamma(\xi)=\gamma^{\prime}(\xi)+\langle\rho, \xi\rangle,
$$

for $\xi \in \mathfrak{g}$. The following commutator relations hold in $\widehat{\mathrm{Cl}}(\mathfrak{g})$:

$$
\begin{aligned}
{[\xi, \zeta] } & =2 B(\xi, \zeta), \\
{\left[\gamma(\xi), \phi_{\mathrm{Cl}}\right] } & =0, \\
{\left[\xi, \phi_{\mathrm{Cl}}\right] } & =2 \gamma(\xi), \\
{[\gamma(\xi), \gamma(\zeta)] } & =\gamma\left([\xi, \zeta]_{\mathfrak{g}}\right), \\
{[\gamma(\xi), \zeta] } & =[\xi, \zeta]_{\mathfrak{g}}, \\
{\left[\phi_{\mathrm{Cl}}, \phi_{\mathrm{Cl}}\right] } & =2 B\left(\rho^{\sharp}, \rho^{\sharp}\right)+\frac{1}{12} \operatorname{tr}_{\mathfrak{g}_{0}}\left(\mathrm{Cas}_{\mathfrak{g}_{0}}\right) .
\end{aligned}
$$

Thus $\widehat{\mathrm{Cl}}(\mathfrak{g})$ becomes a \mathfrak{g}-differential algebra (see e.g. [16]) with differential $d=\left[\phi_{\mathrm{Cl}}, \cdot\right]$, contractions $\iota_{\xi}=\frac{1}{2}[\xi, \cdot]$, and Lie derivatives $L_{\xi}=[\gamma(\xi), \cdot]$.

Proof. Observe first that $\lambda\left(\rho^{\sharp}\right)=-\psi_{K P}$, since

$$
\iota_{\zeta} \iota_{\xi} \lambda\left(\rho^{\sharp}\right)=\iota_{\zeta}\left[\xi, \rho^{\sharp}\right]_{\mathfrak{g}}=B\left(\zeta,\left[\xi, \rho^{\sharp}\right]_{\mathfrak{g}}\right)=-\left\langle\rho,[\xi, \zeta]_{\mathfrak{g}}\right\rangle .
$$

Consequently $\left[\rho^{\sharp}, \phi_{\mathrm{Cl}}^{\prime}\right]=-q\left(\psi_{K P}\right)$, which implies the formula for $\left[\phi_{\mathrm{Cl}}, \phi_{\mathrm{Cl}}\right]$. The other assertions are verified similarly.

Still assuming $\psi_{K P}=\mathrm{d} \rho$, consider the algebra morphism

$$
\begin{equation*}
\gamma: U(\mathfrak{g}) \rightarrow \widehat{\mathrm{C}}(\mathfrak{g}) \tag{13}
\end{equation*}
$$

extending the Lie algebra homomorphism $\xi \mapsto \gamma(\xi)$.
Proposition 2.13. The map (13) extends to an algebra morphism

$$
\gamma: \widehat{U}(\mathfrak{g}) \rightarrow \widehat{\mathrm{Cl}}(\mathfrak{g}) .
$$

Proof. We claim that for all $i>0, \gamma\left(\mathfrak{g}_{i}\right)$ is contained in

$$
\begin{equation*}
\coprod_{r \geq 0} \mathrm{Cl}\left(\mathfrak{g}_{-}\right)_{-r} \mathrm{Cl}\left(\mathfrak{g}_{+}\right)_{i+r} \subset \widehat{\mathrm{Cl}}(\mathfrak{g})_{i} \tag{14}
\end{equation*}
$$

(i.e. the components in $\mathrm{Cl}\left(\mathfrak{g}_{+}\right)$have degree $\geq i$. Indeed, suppose $\xi \in \mathfrak{g}_{i}$ with $i>0$. In particular, $\langle\rho, \xi\rangle=0$. Let $e_{a} \in \mathfrak{g}$ be a basis consisting of homogeneous elements, and e^{a} the dual basis. Since $\langle\rho, \xi\rangle=0$, and since $\left[\xi, e_{a}\right]_{\mathfrak{g}}$ Clifford commutes with e^{a}, we have

$$
\gamma(\xi)=\frac{1}{2} \sum_{+}\left(\left[\xi, e^{a}\right] e_{a}-e^{a}\left[\xi, e_{a}\right]\right)+\frac{1}{4} \sum_{0}\left[\xi, e_{a}\right] e^{a}
$$

where \sum_{+}is a summation over indices with $e_{a} \in \mathfrak{g}_{+}$, and \sum_{0} is a summation over indices with $e_{a} \in \mathfrak{g}_{0}$. The second and third term in this expression are in (14), as are the summands $\left[\xi, e^{a}\right] e_{a}$ from the first sum for $e_{a} \in \mathfrak{g}_{s}$ with $s \geq i$. In the remaining case $s<i$ we have $\left[\xi, e^{a}\right] \in \mathfrak{g}_{i-s} \subset \mathfrak{g}_{+}$, and hence $\left[\xi, e^{a}\right] e_{a} \in \mathrm{Cl}\left(\mathfrak{g}_{+}\right)_{i}$. This proves the claim. By induction, one deduces that

$$
\gamma\left(U\left(\mathfrak{g}_{+}\right)_{i}\right) \subset \prod_{r \geq 0} \mathrm{Cl}\left(\mathfrak{g}_{-}\right)_{-r} \mathrm{Cl}\left(\mathfrak{g}_{+}\right)_{i+r} .
$$

Similarly, if $j \leq 0$,

$$
\gamma\left(U\left(\mathfrak{g}_{-}\right)_{j}\right) \subset \prod_{r \geq 0} \mathrm{Cl}\left(\mathfrak{g}_{-}\right)_{j-r} \mathrm{Cl}\left(\mathfrak{g}_{+}\right)_{r}
$$

It follows that

$$
\gamma\left(U\left(\mathfrak{g}_{-}\right)_{-r} U\left(\mathfrak{g}_{+}\right)_{i+r}\right) \subset \coprod_{m \geq 0} \mathrm{Cl}\left(\mathfrak{g}_{-}\right)_{-r-m} \mathrm{Cl}\left(\mathfrak{g}_{+}\right)_{i+r+m} .
$$

Summing over all $r \geq 0$, one obtains a well-defined map $\widehat{U}(\mathfrak{g})_{i} \rightarrow \widehat{\mathrm{Cl}}(\mathfrak{g})_{i}$.

3. Double extension

For the loop algebra $\mathfrak{g}=\mathfrak{k}\left[z, z^{-1}\right]$ of a semisimple Lie algebra \mathfrak{k}, the Kac-Peterson class is non-trivial. On the other hand, the usual double extension $\tilde{\mathfrak{g}}$ of \mathfrak{g} is a symmetrizable Kac-Moody algebra, hence its Kac-Peterson class is zero. In fact, one has a similar double extension in the general case, as we now explain.

We continue to work with the assumptions from the last sections; in particular \mathfrak{g} carries an invariant non-degenerate symmetric bilinear form B of degree 0 . As noted above, the Kac-Peterson cocycle $\psi_{K P}$ gives rise to a skew-symmetric derivation $\Psi_{K P} \in \widehat{\mathfrak{o}}(\mathfrak{g})$. By a general construction of Medina-Revoy [15], such a derivation can be used to define a double extension

$$
\tilde{\mathfrak{g}}=\mathfrak{g} \oplus \mathbb{C} \delta \oplus \mathbb{C} K,
$$

with the following bracket: For $\xi, \xi_{1}, \xi_{2} \in \mathfrak{g}$,

$$
\begin{aligned}
{\left[\xi_{1}, \xi_{2}\right]_{\tilde{\mathfrak{g}}} } & =\left[\xi_{1}, \xi_{2}\right]_{\mathfrak{g}}+\psi_{K P}\left(\xi_{1}, \xi_{2}\right) K, \\
{[\delta, \xi]_{\tilde{\mathfrak{g}}} } & =\Psi_{K P}(\xi), \\
{[\delta, K]_{\tilde{\mathfrak{g}}} } & =0, \\
{[\xi, K]_{\tilde{\mathfrak{g}}} } & =0
\end{aligned}
$$

The bilinear form B on \mathfrak{g} extends to a non-degenerate invariant bilinear form on $\tilde{\mathfrak{g}}$, in such a way that \mathfrak{g} and $\mathbb{C} \delta \oplus \mathbb{C} K$ are orthogonal and

$$
\tilde{B}(\delta, K)=1, \quad \tilde{B}(\delta, \delta)=\tilde{B}(K, K)=0 .
$$

Introduce the grading $\tilde{\mathfrak{g}}_{i}=\mathfrak{g}_{i}$ for $i \neq 0$ and $\tilde{\mathfrak{g}}_{0}=\mathfrak{g}_{0} \oplus \mathbb{C} \delta \oplus \mathbb{C} K$. The resulting splitting is

$$
\tilde{\mathfrak{g}}_{-}=\mathfrak{g}_{-} \oplus \mathbb{C} \delta \oplus \mathbb{C} K, \tilde{\mathfrak{g}}_{+}=\mathfrak{g}_{+} .
$$

Let $\tilde{\psi}_{K P}$ be the Kac-Peterson cocycle for this splitting, $\tilde{\Psi}_{K P}$ the associated derivation, and denote by $\tilde{\pi}_{ \pm}: \tilde{\mathfrak{g}} \rightarrow \mathfrak{g}_{ \pm}$the projections along $\tilde{\mathfrak{g}}_{\mp}$. The adjoint representation for $\tilde{\mathfrak{g}}$ will be denoted ad.

Proposition 3.1. The derivation $\tilde{\Psi}_{K P}$ is inner:

$$
\tilde{\Psi}_{K P}=[\delta, \cdot]_{\tilde{\mathfrak{g}}} .
$$

Equivalently $\tilde{\psi}_{K P}=d \rho$ where $\rho=\tilde{B}(\delta, \cdot)$.
Proof. The desired equation $\tilde{\Psi}_{K P}=[\delta, \cdot]_{\tilde{\mathfrak{g}}}$ means that $\tilde{\Psi}_{K P}(\xi)=\Psi_{K P}(\xi), \tilde{\Psi}_{K P}(\delta)=$ 0 , $\tilde{\Psi}_{K P}(K)=0$. Equivalently, we have to show that $\tilde{\psi}_{K P}\left(\xi_{1}, \xi_{2}\right)=\psi_{K P}\left(\xi_{1}, \xi_{2}\right)$ for $\xi_{1}, \xi_{2} \in$ \mathfrak{g}, while both K, δ are in the kernel of $\tilde{\psi}_{K P}$. The last claim follows from

$$
\tilde{\pi}_{-} \tilde{\mathrm{ad}}_{\delta} \tilde{\pi}_{+}=0=\tilde{\pi}_{+} \tilde{\mathrm{ad}}_{\delta} \tilde{\pi}_{-},
$$

and similarly for ad_{K}, since $^{\mathrm{ad}_{\delta}}$ and ad_{K} preserve degrees. On the other hand, one checks that for $\xi_{1}, \xi_{2} \in \mathfrak{g}$, the composition

$$
\pi_{+} \operatorname{ad}_{\xi_{1}} \pi_{-} \operatorname{ad}_{\xi_{2}} \pi_{+}: \mathfrak{g}_{+} \rightarrow \mathfrak{g}_{+}
$$

of operators on \mathfrak{g} coincides with the composition

$$
\tilde{\pi}_{+} \tilde{a d}_{\xi_{1}} \tilde{\pi}_{-} \tilde{\mathrm{ad}}_{\xi_{2}} \tilde{\pi}_{+}: \mathfrak{g}_{+} \rightarrow \mathfrak{g}_{+}
$$

of operators on $\tilde{\mathfrak{g}}$. Hence the Kac-Peterson coycles agree on elements of $\mathfrak{g} \subset \tilde{\mathfrak{g}}$.

4. The cubic Dirac operator

We will define the cubic Dirac operator as an element of a completion of the quantum Weil algebra $\mathcal{W}(\mathfrak{g})=U(\mathfrak{g}) \otimes \mathrm{Cl}(\mathfrak{g})$. Following [1], we take the viewpoint that the commutator with \mathcal{D} defines a differential, making $\widehat{\mathcal{W}}(\mathfrak{g})$ into a \mathfrak{g}-differential algebra.
4.1. Weil algebra. We begin with an arbitrary \mathbb{Z}-graded Lie algebra \mathfrak{g} with $\operatorname{dim} \mathfrak{g}_{i}<\infty$. As usual \mathfrak{g}^{*} denotes the restricted dual. Consider the tensor product $W\left(\mathfrak{g}^{*}\right)=S\left(\mathfrak{g}^{*}\right) \otimes \wedge\left(\mathfrak{g}^{*}\right)$ with grading

$$
W^{k}\left(\mathfrak{g}^{*}\right)=\bigoplus_{2 r+s=k} S^{r}\left(\mathfrak{g}^{*}\right) \otimes \wedge^{s}\left(\mathfrak{g}^{*}\right)
$$

For $\mu \in \mathfrak{g}^{*}$ we denote by $s(\mu)=\mu \otimes 1$ the degree 2 generators and by $\mu=1 \otimes \mu$ the degree 1 generators. Any $\xi \in \mathfrak{g}$ defines contraction operators ι_{ξ}; these are derivations of degree -1 given on generators by $\iota_{\xi} \mu=\mu(\xi),{ }_{\iota} s(\mu)=0$. The co-adjoint action on \mathfrak{g}^{*} defines Lie derivatives $L_{\xi}=L_{\xi}^{S} \otimes 1+1 \otimes L_{\xi}$. If $\operatorname{dim}(\mathfrak{g})<\infty$, the algebra $W(\mathfrak{g})$ carries a Weil differential d^{W}, given on generators by ${ }^{1}$

$$
\begin{equation*}
\mathrm{d}^{W} \mu=2(s(\mu)+\lambda(\mu)), \mathrm{d}^{W} s(\mu)=\sum_{a} s\left(L_{e_{a}} \mu\right) e^{a} . \tag{15}
\end{equation*}
$$

[^1]Here e_{a} is a basis of \mathfrak{g} with dual basis $e^{a} \in \mathfrak{g}^{*}$.
In the general case, we need to pass to a completion in order for the differential to be defined. Define a second \mathbb{Z}-grading on $W\left(\mathfrak{g}^{*}\right)$, in such a way that the generators $s(\mu), \mu$ for $\mu \in\left(\mathfrak{g}^{*}\right)_{i}=\left(\mathfrak{g}_{-i}\right)^{*}$ have degree i. Letting $\mathfrak{g}_{+}^{*}=\bigoplus_{i>0}\left(\mathfrak{g}^{*}\right)_{i}$ and $\mathfrak{g}_{-}^{*}=\bigoplus_{i \leq 0}\left(\mathfrak{g}^{*}\right)_{i}$ we define a completion $\widehat{W}\left(\mathfrak{g}^{*}\right)$ as the graded algebra with

$$
\widehat{W}\left(\mathfrak{g}^{*}\right)_{i}=\prod_{r \geq 0} W\left(\mathfrak{g}_{-}^{*}\right)_{i-r} \otimes W\left(\mathfrak{g}_{+}^{*}\right)_{r} .
$$

(Equivalently, $\widehat{W}\left(\mathfrak{g}^{*}\right)_{i}$ is the space of all linear maps $(S(\mathfrak{g}) \otimes \wedge(\mathfrak{g}))_{-i} \rightarrow \mathbb{K}$.) The Weil differential d^{W} is define on generators by the formulas (15). Together with the natural extensions of ι_{ξ}, L_{ξ} this makes $\widehat{W}\left(\mathfrak{g}^{*}\right)$ into a \mathfrak{g}-differential algebra.
4.2. Quantum Weil algebra. Suppose now that \mathfrak{g} carries an invariant symmetric bilinear form B of degree 0 . We use B to identify \mathfrak{g}^{*} with \mathfrak{g}, and will thus write $W(\mathfrak{g}), \widehat{W}(\mathfrak{g})$ and so on. The non-commutative quantum Weil algebra is the tensor product

$$
\mathcal{W}(\mathfrak{g})=U(\mathfrak{g}) \otimes \mathrm{Cl}(\mathfrak{g})
$$

It is a super algebra, with even generators $s(\zeta)=\zeta \otimes 1$ and odd generators $\zeta=1 \otimes \zeta$. Any $\xi \in \mathfrak{g}$ defines Lie derivatives $L_{\xi}=L_{\xi}^{U} \otimes 1+1 \otimes L_{\xi}^{C l}$ and contraction operators ι_{ξ}, given as odd derivations with $\iota_{\xi} \zeta=B(\xi, \zeta), \iota_{\xi} s(\zeta)=0$. Super symmetrization defines an isomorphism

$$
\begin{equation*}
q^{0}: W(\mathfrak{g}) \rightarrow \mathcal{W}(\mathfrak{g}) \tag{16}
\end{equation*}
$$

given simply as the tensor product of $q^{0}: S(\mathfrak{g}) \rightarrow U(\mathfrak{g})$ and $q^{0}: \wedge(\mathfrak{g}) \rightarrow \mathrm{Cl}(\mathfrak{g})$. Note that (16) intertwines the contractions and Lie derivatives. We define a completion $\widehat{\mathcal{W}}(\mathfrak{g})$ as the graded super algebra with

$$
\widehat{\mathcal{W}}(\mathfrak{g})_{i}=\prod_{r \geq 0} \mathcal{W}\left(\mathfrak{g}_{-}\right)_{i-r} \otimes \mathcal{W}\left(\mathfrak{g}_{+}\right)_{r} .
$$

The 'normal-ordered' quantization map $q: \widehat{W}(\mathfrak{g}) \rightarrow \widehat{\mathcal{W}}(\mathfrak{g})$ is defined by summing over all

$$
q^{0} \otimes q^{0}: W\left(\mathfrak{g}_{-}\right)_{i-r} \otimes W\left(\mathfrak{g}_{+}\right)_{r} \rightarrow \mathcal{W}\left(\mathfrak{g}_{-}\right)_{i-r} \otimes \mathcal{W}\left(\mathfrak{g}_{+}\right)_{r} .
$$

It extends the quantization maps $q: \widehat{S}(\mathfrak{g}) \rightarrow \widehat{U}(\mathfrak{g})$ and $q: \widehat{\wedge}(\mathfrak{g}) \rightarrow \widehat{\mathrm{Cl}}(\mathfrak{g})$.
4.3. The element $q(D)$. If $\operatorname{dim} \mathfrak{g}<\infty$, one obtains a differential $\mathrm{d}^{\mathcal{W}}$ on $\mathcal{W} \mathfrak{g}$, as a derivation given on generators by formulas similar to (15),

$$
\mathrm{d}^{\mathcal{W}} \zeta=2\left(s(\zeta)+q_{0}(\lambda(\zeta))\right), \mathrm{d}^{\mathcal{W}} s(\zeta)=\sum_{a} s\left(L_{e_{a}} \zeta\right) e^{a}
$$

see [1]. In fact, $\mathrm{d}^{\mathcal{W}}=\left[q^{0}(D), \cdot\right]$, where $D \in W^{3}(\mathfrak{g})$ is the element

$$
D=\sum_{a} s\left(e_{a}\right) e^{a}+\phi,
$$

with $\phi \in \wedge^{3} \mathfrak{g} \subset W^{3}(\mathfrak{g})$ the structure constants tensor. The fact that $\mathrm{d}^{\mathcal{W}}$ squares to zero means that $q^{0}(D)$ squares to a central element, and indeed one finds

$$
q^{0}(D)^{2}=\operatorname{Cas}_{\mathfrak{g}}+\frac{1}{24} \operatorname{tr}_{\mathfrak{g}}\left(\operatorname{Cas}_{\mathfrak{g}}\right)
$$

If $\operatorname{dim} \mathfrak{g}=\infty$, the element D is well-defined as an element of the completion $\widehat{W^{3}}(\mathfrak{g})$, but $q^{0}(D)$ is ill-defined. On the other hand,

$$
\mathcal{D}^{\prime}=q(D)=\sum_{a} s\left(e_{a}\right) e^{a}+\phi_{\mathrm{Cl}}^{\prime}
$$

is defined but does not square to a central element.
Proposition 4.1. The square of $\mathcal{D}^{\prime}=q(D)$ is given by

$$
\left(\mathcal{D}^{\prime}\right)^{2}=\operatorname{Cas}_{\mathfrak{g}}^{\prime}+q\left(\psi_{K P}^{\sharp}\right)+\frac{1}{24} \operatorname{tr}_{\mathfrak{g}_{0}}\left(\operatorname{Cas}_{\mathfrak{g}_{0}}\right) .
$$

Proof. We have

$$
L_{\xi} \mathcal{D}^{\prime}=L_{\xi} \phi_{\mathrm{Cl}}^{\prime}=\Psi_{K P}(\xi)=\iota_{\xi} q\left(\psi_{K P}^{\sharp}\right)
$$

because $\sum_{a} s\left(e_{a}\right) e^{a} \in \widehat{\mathcal{W}}(\mathfrak{g})$ is \mathfrak{g}-invariant. Using that

$$
\iota_{\xi} \mathcal{D}^{\prime}=s(\xi)+\iota_{\xi}(q(\phi))=s(\xi)+\gamma^{\prime}(\xi)
$$

are generators for the \mathfrak{g}-action on $\widehat{\mathcal{W}}(\mathfrak{g})$, we have

$$
\iota_{\xi}\left(\left(\mathcal{D}^{\prime}\right)^{2}-q\left(\psi_{K P}^{\sharp}\right)\right)=\left[\iota_{\xi} \mathcal{D}^{\prime}, \mathcal{D}^{\prime}\right]-q\left(\psi_{K P}^{\sharp}\right)=0 .
$$

This shows $\left(\mathcal{D}^{\prime}\right)^{2}-q\left(\psi_{K P}^{\sharp}\right) \in \widehat{U}(\mathfrak{g}) \subset \widehat{\mathcal{W}}(\mathfrak{g})$. To find this element we calculate, denoting by \ldots terms in the kernel of the projection $\widehat{\mathcal{W}}(\mathfrak{g}) \rightarrow \widehat{U}(\mathfrak{g})$,

$$
\begin{aligned}
\left(\mathcal{D}^{\prime}\right)^{2} & =\sum_{a b} s\left(e_{a}\right) s\left(e_{b}\right) e^{a} e^{b}+\left(\phi_{\mathrm{Cl}}^{\prime}\right)^{2}+\ldots \\
& =\frac{1}{2} \sum_{a b} s\left(e_{a}\right) s\left(e_{b}\right)\left[e^{a}, e^{b}\right]+\frac{1}{24} \operatorname{tr}_{\mathfrak{g}_{0}}\left(\operatorname{Cas}_{\mathfrak{g}_{0}}\right)+\ldots \\
& =\operatorname{Cas}_{\mathfrak{g}}^{\prime}+\frac{1}{24} \operatorname{tr}_{\mathfrak{g}_{0}}\left(\mathrm{Cas}_{\mathfrak{g}_{0}}\right)+\ldots
\end{aligned}
$$

If the Kac-Peterson class is trivial, one obtains an element \mathcal{D} with better properties.
Corollary 4.2. Suppose that $\psi_{K P}=d \rho$ for some $\rho \in \mathfrak{g}_{0}^{*}$. Define

$$
\mathcal{D}=\mathcal{D}^{\prime}+\rho^{\sharp}, \quad \gamma_{\mathcal{W}}(\xi)=s(\xi)+\gamma_{\mathrm{Cl}}^{\prime}(\xi)+\langle\rho, \xi\rangle,
$$

and put $\operatorname{Cas}_{\mathfrak{g}}=\operatorname{Cas}_{\mathfrak{g}}^{\prime}+2 \rho^{\sharp}$ as before. Then

$$
\mathcal{D}^{2}=\operatorname{Cas}_{\mathfrak{g}} \otimes 1+\frac{1}{24} \operatorname{tr}_{\mathfrak{g}_{0}}\left(\operatorname{Cas}_{\mathfrak{g}_{0}}\right)+B\left(\rho^{\sharp}, \rho^{\sharp}\right) .
$$

One has the following commutator relations in $\widehat{\mathcal{W}}(\mathfrak{g})$,

$$
\begin{aligned}
{[\mathcal{D}, \mathcal{D}] } & =2 \mathrm{Cas}_{\mathfrak{g}} \otimes 1+\frac{1}{12} \operatorname{tr}_{\mathfrak{g}_{0}}\left(\mathrm{Cas}_{\mathfrak{g}_{0}}\right)+2 B\left(\rho^{\sharp}, \rho^{\sharp}\right), \\
{\left[\gamma_{\mathcal{W}}(\xi), \mathcal{D}\right] } & =0, \\
{[\xi, \mathcal{D}] } & =2 \gamma_{\mathcal{W}}(\xi), \\
{[\gamma \mathcal{W}(\xi), \gamma \mathcal{W}(\zeta)] } & =\gamma_{\mathcal{W}}\left([\xi, \zeta]_{\mathfrak{g}}\right), \\
{\left[\gamma_{\mathcal{W}}(\xi), \zeta\right] } & =[\xi, \zeta]_{\mathfrak{g}}, \\
{[\xi, \zeta] } & =2 B(\xi, \zeta) .
\end{aligned}
$$

Thus $\widehat{\mathcal{W}}(\mathfrak{g})$ becomes a \mathfrak{g}-differential algebra, with differential, Lie derivatives and contractions given by

$$
d^{\mathcal{W}}=[\mathcal{D}, \cdot], \quad L_{\xi}^{\mathcal{W}}=\left[\gamma_{\mathcal{W}}(\xi), \cdot\right], \quad \iota_{\xi}^{\mathcal{W}}=\frac{1}{2}[\xi, \cdot]
$$

We will refer to $\mathcal{D} \in \widehat{\mathcal{W}}(\mathfrak{g})$ as the cubic Dirac operator, following Kostant [10].

5. Relative Dirac operators

In his paper [10], Kostant introduced more generally Dirac operators for any pair of a quadratic Lie algebra \mathfrak{g} and a quadratic Lie subalgebra \mathfrak{u}. We consider now an extension of his results to infinite-dimensional graded Lie algebras.

Let \mathfrak{g}, B be as in the last Section, and suppose $\mathfrak{u} \subseteq \mathfrak{g}$ is a graded quadratic subalgebra. That is, $\mathfrak{u}_{i} \subseteq \mathfrak{g}_{i}$ for all i, and the non-degenerate symmetric bilinear form B on \mathfrak{g} restricts to a non-degenerate bilinear form on \mathfrak{u}. We have an orthogonal decomposition

$$
\mathfrak{g}=\mathfrak{u} \oplus \mathfrak{p}
$$

where $\mathfrak{p}=\mathfrak{u}^{\perp}$. For any $\xi \in \mathfrak{u}$, the operator $\operatorname{ad}_{\xi} \in \widehat{\mathfrak{o}}(\mathfrak{g})$ breaks up as a sum

$$
\operatorname{ad}_{\xi}=\operatorname{ad}_{\xi}^{\mathfrak{u}}+\operatorname{ad}_{\xi}^{\mathfrak{p}}, \quad \xi \in \mathfrak{u}
$$

of operators $\operatorname{ad}_{\xi}^{\mathfrak{u}} \in \widehat{\mathfrak{o}}(\mathfrak{u})$ and $\operatorname{ad}_{\xi}^{\mathfrak{p}} \in \widehat{\mathfrak{o}}(\mathfrak{p})$. Accordingly,

$$
\lambda(\xi)=\lambda_{\mathfrak{u}}(\xi)+\lambda_{\mathfrak{p}}(\xi), \quad \xi \in \mathfrak{u}
$$

with $\lambda_{\mathfrak{u}}(\xi) \in \widehat{\wedge}^{2}(\mathfrak{u})$ and $\lambda_{\mathfrak{p}}(\xi) \in \widehat{\wedge}^{2}(\mathfrak{p})$. Denote by $\gamma_{\mathfrak{u}}^{\prime}(\xi)$, $\gamma_{\mathfrak{p}}^{\prime}(\xi)$ their images under $q: \widehat{W}(\mathfrak{g}) \rightarrow \widehat{\mathcal{W}}(\mathfrak{g})$. We have (cf. (7))

$$
\left[\gamma_{\mathfrak{p}}^{\prime}(\xi), \gamma_{\mathfrak{p}}^{\prime}(\zeta)\right]=\gamma_{\mathfrak{p}}^{\prime}([\xi, \zeta])+\psi_{K P}^{\mathfrak{p}}(\xi, \zeta)
$$

where $\psi_{K P}^{\mathfrak{p}}(\xi, \zeta)=\psi_{K P}^{\mathfrak{p}}\left(\operatorname{ad}_{\xi}^{\mathfrak{p}}, \operatorname{ad}_{\zeta}^{\mathfrak{p}}\right)$ defines a cocycle $\psi_{K P}^{\mathfrak{p}} \in \widehat{\wedge}^{2}\left(\mathfrak{u}^{*}\right)$. If $\psi_{K P}^{\mathfrak{p}}=\mathrm{d} \rho_{\mathfrak{p}}$ for some $\rho_{\mathfrak{p}} \in \mathfrak{u}_{0}^{*}$, then

$$
\gamma_{\mathfrak{p}}(\xi)=\gamma_{\mathfrak{p}}^{\prime}(\xi)+\left\langle\rho_{\mathfrak{p}}, \xi\right\rangle
$$

gives a Lie algebra homomorphism $\mathfrak{u} \rightarrow \widehat{\mathrm{Cl}}(\mathfrak{p})$, generating the adjoint action of \mathfrak{u}. One obtains an algebra homomorphism $j: \mathcal{W}(\mathfrak{u}) \rightarrow \widehat{\mathcal{W}}(\mathfrak{g})$, given on generators by

$$
j(\xi)=\xi, \quad j(s(\xi))=s(\xi)+\gamma_{\mathfrak{p}}(\xi), \quad \xi \in \mathfrak{u}
$$

Proposition 5.1. The homomorphism $\mathcal{W}(\mathfrak{u}) \rightarrow \widehat{\mathcal{W}}(\mathfrak{g})$ extends to an algebra homomorphism for the completion:

$$
j: \widehat{\mathcal{W}}(\mathfrak{u}) \rightarrow \widehat{\mathcal{W}}(\mathfrak{g})
$$

It intertwines Lie derivatives and contraction by elements $\xi \in \mathfrak{u}$.
Proof. The first part follows by an argument parallel to that for Proposition 2.13. The second part follows from

$$
j \circ L_{\xi}=j \circ\left[s(\xi)+\gamma_{\mathfrak{u}}^{\prime}(\xi), \cdot\right]=\left[s(\xi)+\gamma_{\mathfrak{g}}^{\prime}(\xi), \cdot\right] \circ j=L_{\xi} \circ j
$$

and similarly $j \circ \iota_{\xi}=\frac{1}{2} j \circ[\xi, \cdot]=\frac{1}{2}[\xi, \cdot] \circ j=\iota_{\xi} \circ j$.

Let

$$
\mathcal{W}(\mathfrak{g}, \mathfrak{u})=(U(\mathfrak{g}) \otimes \mathrm{Cl}(\mathfrak{p}))^{\mathfrak{u}}
$$

be the \mathfrak{u}-basic part of $\mathcal{W}(\mathfrak{g})$, i.e. the subalgebra of elements annilated by all L_{ξ} and all ι_{ξ} for $\xi \in \mathfrak{u}$. Similarly let $\widehat{\mathcal{W}}(\mathfrak{g}, \mathfrak{u})$ be the \mathfrak{u}-basic part of $\widehat{\mathcal{W}}(\mathfrak{g})$.
Proposition 5.2. The subalgebra $\widehat{\mathcal{W}}(\mathfrak{g}, \mathfrak{u})$ is the commutant of the range $j(\widehat{\mathcal{W}}(\mathfrak{u}))$.
Proof. Since $\iota_{\xi}=\frac{1}{2}[\xi, \cdot]$, an element of $\widehat{\mathcal{W}}(\mathfrak{g})$ commutes with the generators $j(\xi)$ for $\xi \in \mathfrak{u}$ precisely if it lies in the \mathfrak{u}-horizontal subspace, given as the completion of $U(\mathfrak{g}) \otimes \mathrm{Cl}(\mathfrak{p})$. The elements $j(s(\xi))=s(\xi)+\gamma_{\mathfrak{p}}^{\prime}(\xi)$ generate the \mathfrak{u}-action on that subspace. Hence, an element of $\widehat{\mathcal{W}}(\mathfrak{g})$ commutes with all $j(\xi), j(s(\xi))$ if and only if it is \mathfrak{u}-basic.

We will now make the stronger assumption that the Kac-Peterson classes of both $\mathfrak{g}, \mathfrak{u}$ are zero. Let $\rho \in \mathfrak{g}_{0}^{*}, \rho_{\mathfrak{u}} \in \mathfrak{u}_{0}^{*}$ be elements such that

$$
\psi_{K P}=\mathrm{d} \rho, \quad \psi_{K P}^{\mathfrak{u}}=\mathrm{d} \rho_{\mathfrak{u}}
$$

and take $\rho_{\mathfrak{p}}:=\left.\rho\right|_{\mathfrak{u}_{0}}-\rho_{\mathfrak{u}} \in \mathfrak{u}_{0}^{*}$ so that $\psi_{K P}^{\mathfrak{p}}=\mathrm{d} \rho_{\mathfrak{p}}$. Put

$$
\gamma(\zeta)=\gamma^{\prime}(\zeta)+\langle\rho, \zeta\rangle, \quad \gamma_{\mathfrak{u}}(\xi)=\gamma_{\mathfrak{u}}^{\prime}(\xi)+\left\langle\rho_{u}, \xi\right\rangle
$$

for all $\zeta \in \mathfrak{g}, \quad \xi \in \mathfrak{u}$, and let

$$
\mathcal{D}=\mathcal{D}^{\prime}+\rho^{\sharp} \in \widehat{\mathcal{W}}(\mathfrak{g}), \quad \mathcal{D}_{\mathfrak{u}}=\mathcal{D}_{u}^{\prime}+\rho_{\mathfrak{u}}^{\sharp} \in \widehat{\mathcal{W}}(\mathfrak{u})
$$

be the cubic Dirac operators for $\mathfrak{g}, \mathfrak{u}$. The commutator with these elements defines differentials on the two Weil algebras.
Lemma 5.3. The map $j: \widehat{\mathcal{W}}(\mathfrak{u}) \rightarrow \widehat{\mathcal{W}}(\mathfrak{g})$ is a homomorphism of \mathfrak{u}-differential algebras.
Proof. It remains to show that the map j intertwines differentials. It suffices to check on generators. For $\xi \in \mathfrak{u}$,

$$
j(\mathrm{~d} \xi)=j\left(s_{\mathfrak{u}}(\xi)+\gamma_{\mathfrak{u}}(\xi)\right)=s(\xi)+\gamma_{\mathfrak{p}}(\xi)+\gamma_{\mathfrak{u}}(\xi)=s(\xi)+\gamma(\xi)=\mathrm{d} j(\xi)
$$

and similarly $j\left(\mathrm{~d} s_{\mathfrak{u}}(\xi)\right)=\mathrm{d} j\left(s_{\mathfrak{u}}(\xi)\right)$.
We define the relative cubic Dirac operator $\mathcal{D}_{\mathfrak{g}, \mathfrak{u}}$ as a difference,

$$
\begin{equation*}
\mathcal{D}_{\mathfrak{g}, \mathfrak{u}}=\mathcal{D}-j\left(\mathcal{D}_{\mathfrak{u}}\right) \tag{17}
\end{equation*}
$$

Proposition 5.4. The element $\mathcal{D}_{\mathfrak{g}, \mathfrak{u}}$ lies in $\widehat{\mathcal{W}}(\mathfrak{g}, \mathfrak{u})$, and squares to an element of the center of $\widehat{\mathcal{W}}(\mathfrak{g}, \mathfrak{u})$. Explicitly,

$$
\mathcal{D}_{\mathfrak{g}, \mathfrak{u}}^{2}=\operatorname{Cas}_{\mathfrak{g}}-j\left(\operatorname{Cas}_{\mathfrak{u}}\right)+\frac{1}{24} \operatorname{tr}_{\mathfrak{g}_{0}}\left(\operatorname{Cas}_{\mathfrak{g}_{0}}\right)-\frac{1}{24} \operatorname{tr}_{\mathfrak{u}_{0}}\left(\operatorname{Cas}_{\mathfrak{u}_{0}}\right)+B\left(\rho^{\sharp}, \rho^{\sharp}\right)-B\left(\rho_{\mathfrak{u}}^{\sharp}, \rho_{\mathfrak{u}}^{\sharp}\right) .
$$

Proof. Using that j intertwines contractions $\iota_{\xi}, \xi \in \mathfrak{u}$, we find

$$
\begin{aligned}
\iota_{\xi} \mathcal{D}_{\mathfrak{g}, \mathfrak{u}} & =\iota_{\xi} \mathcal{D}-j\left(\iota_{\xi} \mathcal{D}_{\mathfrak{u}}\right) \\
& =s(\xi)+\gamma(\xi)-j\left(s_{\mathfrak{u}}(\xi)+\gamma_{\mathfrak{u}}(\xi)\right) \\
& =\gamma(\xi)-\gamma_{\mathfrak{p}}(\xi)-\gamma_{\mathfrak{u}}(\xi)=0
\end{aligned}
$$

Thus $\mathcal{D}_{\mathfrak{g}, \mathfrak{u}}$ is \mathfrak{u}-horizontal, and it is clearly \mathfrak{u}-invariant as well. Thus $\mathcal{D}_{\mathfrak{g}, \mathfrak{u}} \in \widehat{\mathcal{W}}(\mathfrak{g}, \mathfrak{u})$. In particular, $\mathcal{D}_{\mathfrak{g}, \mathfrak{u}}$ commutes with $j\left(\mathcal{D}_{\mathfrak{u}}\right)$. Consequently, $[\mathcal{D}, \mathcal{D}]=j\left(\left[\mathcal{D}_{\mathfrak{u}}, \mathcal{D}_{\mathfrak{u}}\right]\right)+\left[\mathcal{D}_{\mathfrak{g}, \mathfrak{u}}, \mathcal{D}_{\mathfrak{g}, \mathfrak{u}}\right]$, that is

$$
\mathcal{D}_{\mathfrak{g}, \mathfrak{u}}^{2}=\mathcal{D}^{2}-j\left(\mathcal{D}_{\mathfrak{u}}^{2}\right) .
$$

Now use Corollary 4.2.

6. Application to Kac-Moody algebras

In his paper [10], Kostant used the cubic Dirac operator $\mathcal{D}_{\mathfrak{g}, \mathfrak{u}}$ to prove generalized Weyl character formulas for any pair of a semi-simple Lie algebra \mathfrak{g} and equal rank subalgebra \mathfrak{u}. In this Section, we show that much of this theory carries over to symmetrizable Kac-Moody algebras, with only minor adjustments.
6.1. Notation and basic facts. Let us recall some notation and basic facts; our main references are the books by Kac [5] and Kumar [13].

Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq l}$ be a generalized Cartan matrix, and let $\left(\mathfrak{h}, \Pi, \Pi \Pi^{\vee}\right)$ be a realization of A. Thus \mathfrak{h} is a vector space of dimension $2 l-\operatorname{rk}(A)$, and $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\} \subset \mathfrak{h}^{*}$ (the set of simple roots) and $\Pi^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{l}^{\vee}\right\} \subset \mathfrak{h}$ (the corresponding co-roots) satisfy $\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle=a_{i j}$. The Kac-Moody algebra $\mathfrak{g}=\mathfrak{g}(A)$ is the Lie algebra generated by elements $h \in \mathfrak{h}$ and elements e_{j}, f_{j} for $j=1, \ldots, l$, subject to relations

$$
\begin{aligned}
{\left[h, e_{i}\right]=} & \left\langle\alpha_{i}, h\right\rangle e_{i},\left[h, f_{i}\right]=-\left\langle\alpha_{i}, h\right\rangle f_{i},\left[h, h^{\prime}\right]=0, \quad\left[e_{i}, f_{j}\right]=\delta_{i j} \alpha_{i}^{\vee}, \\
& \operatorname{ad}\left(e_{i}\right)^{1-a_{i j}}\left(e_{j}\right)=0, \quad \operatorname{ad}\left(f_{i}\right)^{1-a_{i j}}\left(f_{j}\right)=0, \quad i \neq j .
\end{aligned}
$$

The non-zero weights $\alpha \in \mathfrak{h}^{*}$ for the adjoint action of \mathfrak{h} on \mathfrak{g} are called the roots, the corresponding root spaces are denoted \mathfrak{g}_{α}. The set Δ of roots is contained in the lattice $Q=\bigoplus_{j=1}^{l} \mathbb{Z} \alpha_{j} \subset \mathfrak{h}^{*}$. Let $Q^{+}=\bigoplus_{j=1}^{l} \mathbb{Z}_{\geq 0} \alpha_{j}$, and put $\Delta^{+}=\Delta \cap Q^{+}$and $\Delta^{-}=-\Delta^{+}$. One has $\Delta=\Delta^{+} \cup \Delta^{-}$.

Let W be the Weyl group of \mathfrak{g}, i.e. the group of transformations of \mathfrak{h} generated by the simple reflections $\xi \mapsto \xi-\left\langle\alpha_{j}, \xi\right\rangle \alpha_{j}^{\vee}$. The dual action of W as a reflection group on \mathfrak{h}^{*} preserves Δ. Let $\Delta^{\text {re }}$ be the set of real roots, i.e. roots that are W-conjugate to roots in Π, and let Δ^{im} be its complement, the imaginary roots. For $\alpha \in \Delta^{\mathrm{re}}$ one has $\operatorname{dim} \mathfrak{g}_{\alpha}=1$.

The length $l(w)$ of a Weyl group element may be characterized as the cardinality of the set

$$
\Delta_{w}^{+}=\Delta^{+} \cap w \Delta^{-}
$$

of positive roots that become negative under w^{-1} [13, Lemma 1.3.14]. We remark that $\Delta_{w}^{+} \subset \Delta^{\mathrm{re}}[5, \S 5.2]$.

Fix a real subspace $\mathfrak{h}_{\mathbb{R}} \subset \mathfrak{h}$ containing Π^{\vee}. Let $C \subset \mathfrak{h}_{\mathbb{R}}$ be the dominant chamber and X the Tits cone [5, §3.12]. Thus C is the set of all $\xi \in \mathfrak{h}_{\mathbb{R}}$ such that $\langle\alpha, \xi\rangle \geq 0$ for all $\alpha \in \Pi$, while X is characterized by the property that $\langle\alpha, \xi\rangle<0$ for at most finitely many $\alpha \in \Delta$. The W-action preserves X, and C is a fundamental domain in the sense that every W-orbit in X intersects C in a unique point.

For any $\mu=\sum_{j=1}^{l} k_{j} \alpha_{j} \in Q$ one defines $\operatorname{ht}(\mu)=\sum_{j=1}^{l} k_{j}$. The principal grading on \mathfrak{g} is defined by letting \mathfrak{g}_{i} for $i \neq 0$ be the direct sum of root spaces \mathfrak{g}_{α} with $\operatorname{ht}(\alpha)=i$, and $\mathfrak{g}_{0}=\mathfrak{h}$. Letting $\mathfrak{n}_{ \pm}=\bigoplus_{\alpha \in \Delta^{ \pm}} \mathfrak{g}_{\alpha}$, it follows that $\mathfrak{g}_{+}=\mathfrak{n}_{+}$and $\mathfrak{g}_{-}=\mathfrak{n}_{-} \oplus \mathfrak{h}$.
6.2. The Kac-Peterson cocycle. Suppose from now on that A is symmetrizable, that is, there exists a diagonal matrix $D=\operatorname{diag}\left(\epsilon_{1}, \ldots, \epsilon_{l}\right)$ such that $D^{-1} A$ is symmetric. In this case, \mathfrak{g} carries a non-degenerate symmetric invariant bilinear form B with the property $B\left(\alpha_{j}^{\vee}, \xi\right)=\epsilon_{j}\left\langle\alpha_{j}, \xi\right\rangle, \xi \in \mathfrak{h}[5, \S 2.2]$. One refers to B as a standard bilinear form. Choose $\rho \in \mathfrak{h}^{*}$ with $\left\langle\rho, \alpha_{j}^{\vee}\right\rangle=1$ for $j=1, \ldots, l$.
Proposition 6.1. The Kac-Peterson cocycle of the symmetrizable Kac-Moody algebra \mathfrak{g} is exact. In fact,

$$
\psi_{K P}=d \rho
$$

Proof. Use B to define Cass $_{\mathfrak{g}}^{\prime}$. As shown by Kac [5, Theorem 2.6] the operator $\mathrm{Cas}_{\mathfrak{g}}:=$ $\mathrm{Cas}_{\mathfrak{g}}^{\prime}+2 \rho^{\sharp}$ is \mathfrak{g}-invariant. By Corollary 2.8 above this is equivalent to $\psi_{K P}=\mathrm{d} \rho$.
6.3. Regular subalgebras. We now introduce a suitable class of 'equal rank' subalgebras. Following Morita and Naito $[17,18]$, consider a linearly independent subset $\Pi_{\mathfrak{u}} \subset \Delta^{\mathrm{re},+}$ with the property that the difference of any two elements in Π_{u} is not a root. We denote by $\mathfrak{u} \subset \mathfrak{g}$ the Lie subalgebra generated by \mathfrak{h} together with the root spaces $\mathfrak{g}_{ \pm \beta}$ for $\beta \in \Pi_{\mathfrak{u}}$. Let $\mathfrak{p}=\mathfrak{u}^{\perp}$, so that $\mathfrak{g}=\mathfrak{u} \oplus \mathfrak{p}$.

Examples 6.2. (a) If $\Pi_{\mathfrak{u}}=\varnothing$ one obtains $\mathfrak{u}=\mathfrak{h}$. (b) Suppose \mathfrak{g} is an affine Kac-Moody algebra, i.e. the double extension of a loop algebra $\mathfrak{k}\left[z, z^{-1}\right]$ of a semi-simple Lie algebra \mathfrak{k}. Let $\mathfrak{l} \subset \mathfrak{k}$ be an equal rank subalgebra of \mathfrak{k}. Let $\Pi_{\mathfrak{l}} \subset \Delta_{\mathfrak{k}}^{+}$be the simple roots of \mathfrak{l}, and $\Pi_{\mathfrak{u}} \subset \Delta^{+}$the corresponding affine roots. Then $\mathfrak{u}=\mathfrak{l}\left[z, z^{-1}\right]$. This is the setting considered in Landweber's paper [14].

It was shown in $[17,18]$ that \mathfrak{u} is a direct sum (as Lie algebras) of a symmetrizable Kac-Moody algebra $\tilde{\mathfrak{u}}$ with a subalgebra of $\mathfrak{h} .^{2}$ Furthermore, the standard bilinear form B on \mathfrak{g} restricts to a standard bilinear form on $\tilde{\mathfrak{u}}$.

For any root $\alpha \in \Delta$ put $n_{\mathfrak{u}}(\alpha)=\operatorname{dim} \mathfrak{u}_{\alpha}$ and $n_{\mathfrak{p}}(\alpha)=\operatorname{dim}\left(\mathfrak{p}_{\alpha}\right)$. Thus $n(\alpha)=n_{\mathfrak{u}}(\alpha)+n_{\mathfrak{p}}(\alpha)$ is the multiplicity of α in \mathfrak{g}. Let $\Delta_{\mathfrak{u}}$ (resp. $\Delta_{\mathfrak{p}}$) be the set of roots such that $n_{\mathfrak{u}}(\alpha)>0$ (resp. $\left.n_{\mathfrak{p}}(\alpha)>0\right)$. Thus $\Delta_{\mathfrak{u}}$ is the set of roots of \mathfrak{u}. Let $W_{\mathfrak{u}} \subset W$ be the Weyl group of \mathfrak{u} (generated by reflections for elements of $\Pi_{\mathfrak{u}}$), and define a subset

$$
W_{\mathfrak{p}}=\left\{w \in W \mid w^{-1} \Delta_{\mathfrak{u}}^{+} \subset \Delta^{+}\right\} .
$$

Lemma 6.3. We have $w \in W_{\mathfrak{p}} \Leftrightarrow \Delta_{w}^{+} \subset \Delta_{\mathfrak{p}}$. Every $w \in W$ can be uniquely written as a product $w=w_{1} w_{2}$ with $w_{1} \in W_{\mathfrak{u}}$ and $w_{2} \in W_{\mathfrak{p}}$.

Proof. By definition, $w \in W_{\mathfrak{p}}$ if and only if the intersection $\Delta_{\mathfrak{u}}^{+} \cap w \Delta^{-}=\Delta_{\mathfrak{u}} \cap \Delta_{w}^{+}$is empty. Since Δ_{w}^{+}consists of real roots, this means $\Delta_{w}^{+} \subset \Delta_{\mathfrak{p}}$. For the second claim, let $C_{\mathfrak{u}} \subset X_{\mathfrak{u}}$ be the chamber and Tits cone for \mathfrak{u}. One has $w \in W_{\mathfrak{p}}$ if and only if $w^{-1} \Delta_{\mathfrak{u}}^{+} \subset \Delta^{+}$, if and only if $w C \subset C_{\mathfrak{u}}$. Let $w \in W$ be given. Then $w C \subset X \subset X_{\mathfrak{u}}$ is contained in a unique chamber of \mathfrak{u}. Hence there is a unique $w_{1} \in W_{\mathfrak{u}}$ such that $w C \subset w_{1} C_{\mathfrak{u}}$. Equivalently, $w_{2}:=w_{1}^{-1} w \in W_{\mathfrak{p}}$.

[^2]We have a decomposition $\mathfrak{p}=\mathfrak{p}_{+} \oplus \mathfrak{p}_{-}$, where $\mathfrak{p}_{ \pm}=\mathfrak{p} \cap \mathfrak{n}_{ \pm}$. The splitting defines a spinor module $\mathrm{S}_{\mathfrak{p}}=\wedge \mathfrak{p}_{-}$over $\mathrm{Cl}(\mathfrak{p})$, where the elements of \mathfrak{p}_{+}act by contraction and those of \mathfrak{p}_{-} by exterior multiplication. The Clifford action on this module extends to the completion $\widehat{\mathrm{Cl}}\left(\mathrm{S}_{\mathfrak{p}}\right)$.

Fix $\rho_{\mathfrak{u}} \in \mathfrak{h}^{*}$ with $\left\langle\rho_{\mathfrak{u}}, \beta^{\mathfrak{V}}\right\rangle=1$ for all $\beta \in \Pi_{\mathfrak{u}}$. Let $\rho_{\mathfrak{p}}=\left.\rho\right|_{\mathfrak{u}}-\rho_{\mathfrak{u}}$, defining a Lie algebra homomorphism $\gamma_{\mathfrak{p}}=\gamma_{\mathfrak{p}}^{\prime}+\rho_{\mathfrak{p}}: \mathfrak{u} \rightarrow \widehat{\mathrm{Cl}}(\mathfrak{p})$. By composition with the spinor action one obtains an integrable \mathfrak{u}-representation

$$
\pi_{\mathrm{s}}: \mathfrak{u} \rightarrow \operatorname{End}\left(\mathrm{S}_{\mathfrak{p}}\right)
$$

Proposition 6.4. The restriction of π_{s} to $\mathfrak{h} \subset \mathfrak{u}$ differs from the adjoint representation of \mathfrak{h} by a $\rho_{\mathfrak{p}}$-shift:

$$
\pi_{\mathbf{s}}(\xi)=\left\langle\rho_{\mathfrak{p}}, \xi\right\rangle+\operatorname{ad}(\xi), \quad \xi \in \mathfrak{h} .
$$

Hence, the weights for the action of \mathfrak{h} on $\mathrm{S}_{\mathfrak{p}}$ are of the form

$$
\rho_{\mathfrak{p}}-\sum_{\alpha \in \Delta_{\mathfrak{p}}^{+}} k_{\alpha} \alpha,
$$

where $0 \leq k_{\alpha} \leq n_{\mathfrak{p}}(\alpha)$. The parity of the corresponding weight space is $\sum_{\alpha} k_{\alpha} \bmod 2$. For all $w \in W_{\mathfrak{p}}$, the element

$$
w \rho-\rho_{\mathfrak{u}}
$$

is a weight of $\mathrm{S}_{\mathfrak{p}}$, of multiplicity 1 . The parity of the weight space $\mathrm{S}_{\mathfrak{p}}$ equals $l(w) \bmod 2$.
Proof. For each $\alpha \in \Delta_{\mathfrak{p}}^{+}$, fix a basis $e_{\alpha}^{(s)}, s=1, \ldots, n_{\mathfrak{p}}(\alpha)$ of \mathfrak{p}_{α}, and let $e_{-\alpha}^{(s)}$ be the B-dual basis of $\mathfrak{p}_{-\alpha}$. By definition, we have $\gamma_{\mathfrak{p}}(\xi)=\left\langle\rho_{\mathfrak{p}}, \xi\right\rangle+\gamma_{\mathfrak{p}}^{\prime}(\xi)$ with

$$
\gamma_{\mathfrak{p}}^{\prime}(\xi)=-\frac{1}{2} \sum_{\alpha \in \Delta_{\mathfrak{p}}^{+}} \sum_{s=1}^{n_{\mathfrak{p}}(\alpha)}\langle\alpha, \xi\rangle e_{-\alpha}^{(s)} e_{\alpha}^{(s)} .
$$

The action of $\gamma_{\mathfrak{p}}^{\prime}(\xi)$ on the spinor module is just the adjoint action of ξ. This proves the first assertion. It is now straightforward to read off the weights of the action on S_{p}. For all $w \in W$ one has $\rho-w \rho=\sum_{\alpha \in \Delta_{w}^{+}} \alpha$ (cf. [13, Corollary 1.3.22]). If $w \in W_{\mathfrak{p}}$, so that $\Delta_{w}^{+} \subset \Delta_{\mathfrak{p}}^{+}$, it follows that $w \rho-\rho_{\mathfrak{u}}=w \rho-\rho+\rho_{\mathfrak{p}}=\rho_{\mathfrak{p}}-\sum_{\alpha \in \Delta_{w}^{+}} \alpha$ is a weight of $\mathrm{S}_{\mathfrak{p}}$. We now use

$$
\mathrm{S}_{\mathfrak{h}^{\perp}}=\mathrm{S}_{\mathfrak{p}} \otimes \mathrm{S}_{\mathfrak{u} \cap \mathfrak{h}^{\perp}}
$$

as modules over $\mathrm{Cl}\left(\mathfrak{h}^{\perp}\right)=\mathrm{Cl}(\mathfrak{p}) \otimes \mathrm{Cl}\left(\mathfrak{u} \cap \mathfrak{h}^{\perp}\right)$. Hence, the tensor product with a generator of the line $\left(\mathrm{S}_{\mathfrak{u} \cap \mathfrak{h}^{\perp}}\right)_{\rho_{\mathfrak{u}}}$ defines an isomorphism of the weight space $\left(\mathrm{S}_{\mathfrak{p}}\right)_{w \rho-\rho_{\mathfrak{u}}}$ with $\left(\mathrm{S}_{\mathfrak{h}^{\perp}}\right)_{w \rho}$; but the latter is 1 -dimensional, and its parity is given by $l(w) \bmod 2(c f .[13$, Lemma 3.2.6]).
6.4. Action of the cubic Dirac operator. The subalgebra \mathfrak{u} inherits a \mathbb{Z}-grading from \mathfrak{g}, with \mathfrak{u}_{i} the direct sum of root spaces \mathfrak{u}_{α} for $\alpha=\sum_{r} k_{r} \beta_{r}$ and $i=\sum_{r} k_{r} m_{r}$. It is thus the grading of type $m=\left(m_{1}, \ldots, m_{r}\right)$ [5, §1.5] with $m_{r}=\operatorname{ht}\left(\beta_{r}\right)$. Let $\mathcal{W}(\mathfrak{u})$ be the completion of the quantum Weil algebra for this grading. (It is just the same as the completion defined by the principal grading of \mathfrak{u}).

Let $P \subset \mathfrak{h}^{*}$ be the weight lattice of \mathfrak{g}, and $P^{+} \subset P$ the dominant weights. Thus $\mu \in P$ if and only if $\left\langle\mu, \alpha_{j}^{\vee}\right\rangle \in \mathbb{Z}$ for $j=1, \ldots, l$, and $\mu \in P^{+}$if these pairings are all non-negative.

For any $\mu \in P^{+}$let $L(\mu)$ be the irreducible integrable representation of \mathfrak{g} of highest weight μ. By $[5, \S 11.4], L(\mu)$ carries a unique (up to scalar) Hermitian form for which the elements of the real form of \mathfrak{g} are represented as skew-adjoint operators. The weights ν of $L(\mu)$ satisfy $\mu-\nu \in Q^{+}$, hence there is a \mathbb{Z}-grading on $L(\mu)$ such that elements of $L(\mu)_{\nu}$ have degree $j=-\operatorname{ht}(\mu-\nu)$. The \mathfrak{g}-action is compatible with the gradings, i.e. the action map $\mathfrak{g} \otimes L(\mu) \rightarrow L(\mu)$ preserves gradings. The spinor module $\boldsymbol{S}_{\mathfrak{p}}=\wedge \mathfrak{p}_{-}$carries the \mathbb{Z}-grading defined by the \mathbb{Z}-grading on \mathfrak{p}_{-}, and the module action $\mathrm{Cl}(\mathfrak{p}) \otimes \mathrm{S}_{\mathfrak{p}} \rightarrow \mathrm{S}_{\mathfrak{p}}$ preserves gradings. The action of $\mathcal{W}(\mathfrak{g}, \mathfrak{u})$ on the graded vector space $L(\mu) \otimes \mathrm{S}_{\mathfrak{p}}$ extends to an action of the completion $\widehat{\mathcal{W}}(\mathfrak{g}, \mathfrak{u})$. We denote by

$$
\mathcal{D}_{L(\mu)} \in \widehat{\operatorname{End}}\left(L(\mu) \otimes \mathfrak{S}_{\mathfrak{p}}\right)
$$

the image of $\mathcal{D}_{\mathfrak{g}, \mathfrak{u}}$ under this representation. Then $\mathcal{D}_{L(\mu)}$ is an odd, skew-adjoint operator.
Since $\mathcal{D}_{L(\mu)}$ commutes with the diagonal action of \mathfrak{u} on $L(\mu) \otimes \mathrm{S}_{\mathfrak{p}}$, its kernel $\operatorname{ker}\left(\mathcal{D}_{L(\mu)}\right)$ is a \mathbb{Z}_{2}-graded \mathfrak{u}-representation.

Let $P_{\mathfrak{u}}^{+} \subset P_{\mathfrak{u}} \subset \mathfrak{h}^{*}$ be the set of dominant weights for \mathfrak{u}. For any $\nu \in P_{\mathfrak{u}}^{+}$, let $M(\nu)$ be the corresponding irreducible highest weight representation of \mathfrak{u}. Parallel to [10, Theorem 4.24] we have:

Theorem 6.5. The kernel of the operator $\mathcal{D}_{L(\mu)}$ is a direct sum,

$$
\operatorname{ker}\left(D_{L(\mu)}\right)=\bigoplus_{w \in W_{\mathfrak{p}}} M\left(w(\mu+\rho)-\rho_{\mathfrak{u}}\right)
$$

Here the even (resp. odd) part of the kernel is the sum over the $w \in W_{\mathfrak{p}}$ such that $l(w)$ is even (resp. odd).
Proof. Given an integrable \mathfrak{u}-representation, and any \mathfrak{u}-dominant weight $\nu \in P_{\mathfrak{u}}^{+}$, let the subscript $[\nu]$ denote the corresponding isotypical subspace. We are interested in $\operatorname{ker}\left(D_{L(\mu)}\right)_{[\nu]}$. Since $\mathcal{D}_{L(\mu)}$ is skew-adjoint, its kernel coincides with that of its square:

$$
\operatorname{ker}\left(\mathcal{D}_{L(\mu)}\right)=\operatorname{ker}\left(\mathcal{D}_{L(\mu)}^{2}\right)
$$

The action of $\mathrm{Cas}_{\mathfrak{g}}$ on $L(\mu)$ is as a scalar $B(\mu+\rho, \mu+\rho)-B(\rho, \rho)$, and similarly for the action of $\mathrm{Cas}_{\mathfrak{u}}$ on $M(\nu)$. Hence

$$
\mathcal{D}_{L(\mu)}^{2}=B(\mu+\rho, \mu+\rho)-j\left(\operatorname{Cas}_{\mathfrak{u}}\right)-B\left(\rho_{\mathfrak{u}}, \rho_{\mathfrak{u}}\right)
$$

acts on $\left(L(\mu) \otimes \mathrm{S}_{\mathfrak{p}}\right)_{[\nu]}$ as a scalar, $B(\mu+\rho, \mu+\rho)-B\left(\nu+\rho_{\mathfrak{u}}, \nu+\rho_{\mathfrak{u}}\right)$. This shows that

$$
\operatorname{ker}\left(\mathcal{D}_{L(\mu)}\right)_{[\nu]}=\bigoplus_{\nu}^{\prime}\left(L(\mu) \otimes \mathrm{S}_{\mathfrak{p}}\right)_{[\nu]},
$$

where the sum \bigoplus_{ν}^{\prime} is over all $\nu \in \Delta_{\mathfrak{u}}$ satisfying $B(\mu+\rho, \mu+\rho)=B\left(\nu+\rho_{\mathfrak{u}}, \nu+\rho_{\mathfrak{u}}\right)$. We want to identify this sum as a sum over $W_{\mathfrak{p}}$.

Suppose ν is any weight with $\left(L(\mu) \otimes \mathrm{S}_{\mathfrak{p}}\right)_{\nu} \neq 0$. We will show $B\left(\nu+\rho_{\mathfrak{u}}, \nu+\rho_{\mathfrak{u}}\right) \leq$ $B(\mu+\rho, \mu+\rho)$. By [5, Prop. 11.4(b)], an element $\nu \in P_{\mathfrak{u}}$ for which equality holds is automatically in $P_{\mathfrak{u}}^{+}$, and the multiplicity of $M(\nu)$ in $L(\mu) \otimes \mathrm{S}_{\mathfrak{p}}$ is then equal to the dimension of the highest weight space $\left(L(\mu) \otimes \mathrm{S}_{\mathfrak{p}}\right)_{\nu}$. Write $\nu=\nu_{1}+\nu_{2}$ where $L(\mu)_{\nu_{1}}$ and $\left(\mathrm{S}_{\mathfrak{p}}\right)_{\nu_{2}}$ are non-zero. By our description of the set of weights of $\boldsymbol{S}_{\mathfrak{p}}$, the element $\nu_{2}+\rho_{\mathfrak{u}}$ is among the weights of the \mathfrak{g}-representation $L(\rho)$, and in particular lies in the dual Tits cone X^{\vee} of \mathfrak{g}. Since the Tits cone is convex, and $\nu_{1} \in X^{\vee}$, it follows that $\nu_{1}+\left(\nu_{2}+\rho_{\mathfrak{u}}\right)=\nu+\rho_{\mathfrak{u}} \in X^{\vee}$.

Consequently, there exists $w \in W$ such that $w^{-1}\left(\nu+\rho_{\mathfrak{u}}\right) \in C^{\vee} \subset \mathfrak{h}^{*}$. Since $\nu_{2}+\rho_{\mathfrak{u}}$ is a weight of $L(\rho)$, so is its image under w^{-1}. Hence

$$
\kappa_{2}=\rho-w^{-1}\left(\nu_{2}+\rho_{\mathfrak{u}}\right) \in Q^{+} .
$$

On the other hand, since $w^{-1} \nu_{1}$ is a weight of $L(\mu)$, we also have $\kappa_{1}=\mu-w^{-1} \nu_{1} \in Q^{+}$. Adding, we obtain

$$
\mu+\rho=\kappa+w^{-1}\left(\nu+\rho_{\mathfrak{u}}\right) .
$$

with $\kappa=\kappa_{1}+\kappa_{2} \in Q^{+}$. Since the pairing of κ with $w^{-1}\left(\nu+\rho_{\mathfrak{u}}\right) \in C^{\vee}$ is non-negative, the inequality $B(\mu+\rho, \mu+\rho) \geq B\left(\nu+\rho_{\mathfrak{u}}, \nu+\rho_{\mathfrak{u}}\right)$ follows. Equality holds if and only if $\kappa=0$, i.e. $\kappa_{1}=0$ and $\kappa_{2}=0$, i.e. $\nu_{2}=w \rho-\rho_{\mathfrak{u}}$ and $\nu_{1}=w \mu$. The \mathfrak{h}-weight spaces $\left(\mathrm{S}_{\mathfrak{p}}\right)_{w \rho-\rho_{\mathfrak{u}}}$ and $L(\mu)_{w \mu}$ are 1-dimensional, hence so is their tensor product, $\left(L(\mu) \otimes \mathfrak{S}_{\mathfrak{p}}\right)_{\nu}$. It follows that ν appears with multiplicity 1.

This shows that $M(\nu)$ appears in $\operatorname{ker}\left(D_{L(\mu)}\right)$ if and only if it can be written in the form $\nu=w(\mu+\rho)-\rho_{\mathfrak{u}}$, for some $w \in W_{\mathfrak{p}}$, and in this case it appears with multiplicity 1 . Note finally that w with this property is unique, since $\mu+\rho$ is regular. The parity of the ν-isotypical component follows since $\left(\mathrm{S}_{\mathfrak{p}}\right)_{w \rho-\rho_{\mathrm{u}}}$ has parity equal to that of $l(w)$.

The weights

$$
\nu=w(\mu+\rho)-\rho_{\mathfrak{u}}, w \in W_{\mathfrak{p}}
$$

are referred to as the multiplet corresponding to μ. Note that for given μ, the value of the quadratic Casimir $\mathrm{Cas}_{\mathfrak{u}}$ on the representations $M\left(w(\mu+\rho)-\rho_{\mathfrak{u}}\right)$ is given by the constant value $B(\mu+\rho, \mu+\rho)-B\left(\rho_{\mathfrak{u}}, \rho_{\mathfrak{u}}\right)$, independent of w.
6.5. Characters. For any weight $\nu \in \mathfrak{h}^{*}$, we write $\mathrm{e}(\nu)$ for the corresponding formal exponential. We will regard the spinor module as a super representation, using the usual \mathbb{Z}_{2}-grading of the exterior algebra. The even and odd part are denoted $S_{\mathfrak{p}}^{\overline{0}}$ and $S_{\mathfrak{p}}^{\overline{1}}$, and its formal character $\operatorname{ch}\left(\mathrm{S}_{\mathfrak{p}}\right)=\sum_{\nu}\left(\operatorname{dim}\left(\mathrm{S}_{\mathfrak{p}}^{\overline{0}}\right)_{\nu}-\operatorname{dim}\left(\mathrm{S}_{\mathfrak{p}}^{\overline{1}}\right)_{\nu}\right) \mathrm{e}(\nu)$. Here $\left(\mathrm{S}_{\mathfrak{p}}^{\overline{0}}\right)_{\nu}$ and $\left(\mathrm{S}_{\mathfrak{p}}^{\overline{1}}\right)_{\nu}$ are the \mathfrak{h} weight spaces, and $\mathrm{e}(\nu)$ is the formal character defined by ν (cf. [5, §10.2]).
Proposition 6.6. The super character of the spin representation of \mathfrak{u} on \mathfrak{p} is given by the formula

$$
\operatorname{ch}\left(\mathrm{S}_{\mathfrak{p}}\right)=\mathrm{e}\left(\rho_{\mathfrak{p}}\right) \prod_{\alpha \in \Delta_{\mathfrak{p}}^{+}}(1-\mathrm{e}(-\alpha))^{n_{\mathfrak{p}}(\alpha)}
$$

Proof. For each root space $\mathfrak{p}_{-\alpha}$, the character of the adjoint action of \mathfrak{h} on $\wedge \mathfrak{p}_{-\alpha}$ equals $(1-\mathrm{e}(-\alpha))^{n_{\mathfrak{p}}(\alpha)}$. The character of the adjoint action on $\wedge \mathfrak{p}_{-}=\bigotimes_{\alpha \in \Delta_{\mathfrak{p}}^{+}} \wedge \mathfrak{p}_{-\alpha}$ is the product of the characters on $\wedge \mathfrak{p}_{-\alpha}$. By Proposition 6.4 the action of \mathfrak{h} as a subalgebra of \mathfrak{u} differs from the adjoint action by a $\rho_{\mathfrak{p}}$-shift accounting for an extra factor $\mathrm{e}\left(\rho_{\mathfrak{p}}\right)$.

Consider $L(\mu) \otimes \mathfrak{S}_{\mathfrak{p}}$ as a super representation of \mathfrak{u}. Its formal super character is

$$
\operatorname{ch}\left(L(\mu) \otimes \mathrm{S}_{\mathfrak{p}}\right)=\operatorname{ch}(L(\mu)) \operatorname{ch}\left(\mathrm{S}_{\mathfrak{p}}\right) .
$$

On the other hand, since $D_{L(\mu)}$ is an odd skew-adjoint operator on this space, this coincides with

$$
\operatorname{ch}\left(\operatorname{ker}\left(D_{L(\mu)}\right)\right)=\sum_{w \in \mathfrak{p}}(-1)^{l(w)} \operatorname{ch}\left(M\left(w(\mu+\rho)-\rho_{\mathfrak{u}}\right)\right) .
$$

This gives the generalized Weyl-Kac character formula,

$$
\operatorname{ch}(L(\mu))=\frac{\sum_{w \in W_{\mathfrak{p}}}(-1)^{l(w)} \operatorname{ch}\left(M\left(w(\mu+\rho)-\rho_{\mathfrak{u}}\right)\right)}{\mathrm{e}\left(\rho_{\mathfrak{p}}\right) \prod_{\alpha \in \Delta_{\mathfrak{p}}^{+}}(1-\mathrm{e}(-\alpha))^{n_{\mathfrak{p}}(\alpha)}}
$$

valid for quadratic subalgebras $\mathfrak{u} \subset \mathfrak{g}$ of the form considered above. For $\mathfrak{u}=\mathfrak{h}$ one recovers the usual Weyl-Kac character formula [5, §10.4] for symmetrizable Kac-Moody algebras. Note that the Weyl-Kac character formula also holds for the non-symmetrizable case, see Kumar [13, Chapter 3.2]. We do not know how to treat this general case using cubic Dirac operators.

Example 6.7. As a concrete example, consider the Kac-Moody algebra of hyperbolic type, associated to the generalized Cartan matrix

$$
\left(\begin{array}{rr}
2 & -3 \\
-3 & 2
\end{array}\right)
$$

(cf. [5, Exercise 5.28]). The Weyl group W is generated by the reflections r_{1}, r_{2} corresponding to α_{1}, α_{2}. The set P^{+}of dominant weights is generated by $\varpi_{1}=-\frac{1}{5}\left(2 \alpha_{1}+3 \alpha_{2}\right)$ and $\varpi_{2}=-\frac{1}{5}\left(2 \alpha_{2}+3 \alpha_{1}\right)$. One has $\rho=\varpi_{1}+\varpi_{2}=-\left(\alpha_{1}+\alpha_{2}\right)$.

Put $\Pi_{\mathfrak{u}}=\left\{\beta_{1}, \beta_{2}\right\}$ with

$$
\beta_{1}=\alpha_{1}, \quad \beta_{2}=r_{2}\left(\alpha_{1}\right)=\alpha_{1}+3 \alpha_{2} .
$$

Since $\beta_{2}-\beta_{1}=3 \alpha_{2}$ is not a root, $\Pi_{\mathfrak{u}}$ is the set of simple roots for a Kac-Moody Lie subalgebra $\mathfrak{u} \subset \mathfrak{g}$. One finds that $\rho_{\mathfrak{u}}=\varpi_{1}$, and the fundamental \mathfrak{u}-weights spanning $P_{\mathfrak{u}}^{+}$ are $\tau_{1}=\varpi_{1}-\frac{1}{3} \varpi_{2}$ and $\tau_{2}=\frac{1}{3} \varpi_{2}$.

The Weyl group $W_{\mathfrak{u}}$ is generated by the reflections defined by β_{1}, β_{2}, i.e. by r_{1} and $r_{2} r_{1} r_{2}$. A general element of $W_{\mathfrak{u}}$ is thus a word in r_{1}, r_{2}, with an even number of r_{2} 's. One has

$$
W_{\mathfrak{p}}=\left\{1, r_{2}\right\},
$$

giving duplets of \mathfrak{u}-representations. Write weights $\mu \in P^{+}$in the form $\mu=k_{1} \varpi_{1}+k_{2} \varpi_{2}$. Then the corresponding duplet is given by the weights

$$
\begin{aligned}
\mu+\rho-\rho_{\mathfrak{u}} & =k_{1} \varpi_{1}+\left(k_{2}+1\right) \varpi_{2}=k_{1} \tau_{1}+\left(k_{1}+3 k_{2}+3\right) \tau_{2} \\
r_{2}(\mu+\rho)-\rho_{\mathfrak{u}} & =\left(k_{1}+3\left(k_{2}+1\right)\right) \varpi_{1}-\left(k_{2}+1\right) \varpi_{2}=\left(k_{1}+3 k_{2}+3\right) \tau_{1}+k_{2} \tau_{2} .
\end{aligned}
$$

References

1. A. Alekseev and E. Meinrenken, The non-commutative Weil algebra, Invent. Math. 139 (2000), 135-172.
2. B. Gross, B. Kostant, P. Ramond, and S. Sternberg, The Weyl character formula, the half-spin representations, and equal rank subgroups, Proc. Natl. Acad. Sci. USA 95 (1998), no. 15, 8441-8442 (electronic).
3. V. Guillemin and S. Sternberg, Symplectic techniques in physics, Cambridge Univ. Press, Cambridge, 1990.
4. V. Kac, Infinite-dimensional Lie algebras and Dedekind's eta-function, Funct. Anal. Appl. 8 (1974), 68-70.
5. _ , Infinite-dimensional Lie algebras, second ed., Cambridge University Press, Cambridge, 1985.
6. V. Kac and D. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 6, part 1, 3308-3312.
7. V. Kac and T. Todorov, Superconformal current algebras and their unitary representations, Comm. Math. Phys. 102 (1985), 337-347.
8. Y. Kazama and H. Suzuki, Characterization of $n=2$ superconformal models generated by the coset space method, Phys. Lett. B 216 (1989), 112-116.
9. N. Kitchloo, Dominant K-theory and integrable highest weight representations of Kac-Moody groups, Adv. Math. 221 (2009), no. 4, 1191-1226. MR MR2518636
10. B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999), no. 3, 447-501.
11. _ A generalization of the Bott-Borel-Weil theorem and Euler number multiplets of representations, Conference Moshe Flato 1999 (G. Dito and D. Sternheimer, eds.), vol. 1, Kluwer, 2000, pp. 309-325.
12. B. Kostant and S. Sternberg, Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, Ann. Phys. 176 (1987), 49-113.
13. S. Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston Inc., Boston, MA, 2002. MR MR1923198 (2003k:22022)
14. G. Landweber, Multiplets of representations and Kostant's Dirac operator for equal rank loop groups, Duke Math. J. 110 (2001), no. 1, 121-160.
15. A. Medina and Ph. Revoy, Caractérisation des groupes de Lie ayant une pseudo-métrique bi-invariante. Applications, South Rhone seminar on geometry, III (Lyon, 1983), Travaux en Cours, Hermann, Paris, 1984, pp. 149-166.
16. E. Meinrenken, Lie groups and Clifford algebras, Lecture notes, available at http://www.math.toronto.edu/mein/teaching/lectures.html.
17. J. Morita, Certain rank two subsystems of Kac-Moody root systems, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., vol. 7, World Sci. Publ., Teaneck, NJ, 1989, pp. 52-56. MR MR1026946 (90k:17020)
18. S. Naito, On regular subalgebras of Kac-Moody algebras and their associated invariant forms. Symmetrizable case, J. Math. Soc. Japan 44 (1992), no. 2, 157-177. MR MR1154838 (93b:17073)
19. A. Wasserman, Kac-Moody and Virasoro algebras, lecture notes, 1998.

University of Toronto, Department of Mathematics, 40 St. George Street, Toronto, Ontario M5S 2E4, Canada

E-mail address: mein@math.toronto.edu

[^0]: Date: May 20, 2010.

[^1]: ${ }^{1}$ The conventions for the differential follow [16, $\left.\S 6.11\right]$. They are arranged to make the relation with the quantum Weil algebra appear most natural. One recovers the more standard conventions used in e.g. [3] and [1] by a simple rescaling of variables.

[^2]: ${ }^{2}$ In fact, Naito [18] constructs an explicit subspace $\widetilde{\mathfrak{h}} \subset \mathfrak{h}$ such that the Lie algebra $\widetilde{\mathfrak{g}}$ generated by $\widetilde{\mathfrak{h}}$ and the $\mathfrak{g}_{ \pm \beta}, \beta \in \Pi_{\mathfrak{u}}$ is a Kac-Moody algebra. He also considers subsets $\Pi_{\mathfrak{u}}$ that do not necessarily consist of real roots, and finds that the resulting \tilde{u} is a symmetrizable generalized Kac-Moody algebra.

