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Abstract. Let g =
L

i∈Z
gi be an infinite-dimensional graded Lie algebra, with dim gi <

∞, equipped with a non-degenerate symmetric bilinear form B of degree 0. The quantum

Weil algebra cWg is a completion of the tensor product of the enveloping and Clifford
algebras of g. Provided that the Kac-Peterson class of g vanishes, one can construct a

cubic Dirac operator D ∈ cW(g), whose square is a quadratic Casimir element. We show
that this condition holds for symmetrizable Kac-Moody algebras. Extending Kostant’s
arguments, one obtains generalized Weyl-Kac character formulas for suitable ‘equal rank’
Lie subalgebras of Kac-Moody algebras. These extend the formulas of G. Landweber for
affine Lie algebras.

AMS subject classification: 22E65, 15A66

0. Introduction

Let g be a finite-dimensional complex Lie algebra, equipped with a non-degenerate invari-
ant symmetric bilinear form B. For ξ ∈ g, the corresponding generators of the enveloping
algebra U(g) are denoted s(ξ), while those of the Clifford algebra Cl(g) are denoted simply
by ξ. The quantum Weil algebra [1] is the super algebra

W(g) = U(g) ⊗ Cl(g),

with even generators s(ξ) and odd generators ξ. Let D ∈ W(g) be the odd element, written
in terms of a basis ea of g as

D =
∑

a

s(ea)e
a −

1

12

∑

abc

fabce
aebec,

where ea is the B-dual basis and fabc are the structure constants. The key property of this
element is that its square lies in the center of W(g):

(1) D2 = Casg +
1

24
trg(Casg),

where Casg =
∑

a s(ea)s(e
a) ∈ U(g) is the quadratic Casimir element. The element D is

called the cubic Dirac operator, following Kostant [10]. More generally, Kostant introduced
cubic Dirac operators Dg,u for pairs of a quadratic Lie algebra g and a quadratic Lie subal-
gebra u. For g semi-simple and u an equal rank subalgebra, he used this to prove, among
other things, generalizations of the Bott-Borel-Weil theorem and of the Weyl character
formula (see also [2, 11]).
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In this article, we will consider generalizations of this theory to infinite-dimensional Lie
algebras. We assume that g is Z-graded, with finite dimensional graded pieces gi, and
equipped with a non-degenerate invariant symmetric bilinear form B of degree 0. A priori,
the formal expressions defining D, Casg are undefined since they involve infinite sums. It
is possible to replace these expressions with ‘normal-ordered’ sums, leading to well-defined
elements D′,Cas′g in suitable completion of W(g). However, it is no longer true in general

that (D′)2 − Cas′g is a constant, and in any case Cas′g is not a central element. One may
attempt to define elements D, Casg having these properties by adding lower order correction
terms to D′,Cas′g. Our main observation is that this is possible if and only the Kac-Peterson

class [ψKP ] ∈ H2(g) is zero. In fact, given ρ ∈ g∗0 with ψKP = dρ, the elements D = D′ + ρ

and Casg = Cas′g +2ρ have the desired properties. These results are motivated by the work
of Kostant-Sternberg [12], who had exhibited the Kac-Peterson class as an obstruction class
in their BRST quantization scheme.

For symmetrizable Kac-Moody algebras, the existence of a corrected Casimir element
Casg is a famous result of Kac [4]. In particular, [ψKP ] = 0 in this case. As we will see,
Kostant’s theory carries over to the symmetrizable Kac-Moody case in a fairly straight-
forward manner. For suitable ‘regular’ Kac-Moody subalgebras u ⊂ g, we thus obtain
generalized Weyl-Kac character formulas as sums over multiplets of u-representations.

For affine Lie algebras or loop algebras, similar Dirac operators were described in Kac-
Todorov [7] and Kazama-Suzuki [8], and more explicitly in Landweber [14] and Wassermann
[19]. In fact, Wassermann uses this Dirac operator to give a proof of the Weyl-Kac character
formula for affine Lie algebras, while Landweber proves generalized Weyl character formulas
for ‘equal rank loop algebras’. The cubic Dirac operator D for general symmetrizable Kac-
Moody algebras is very briefly discussed in Kitchloo [9].

1. Completions

In this Section we will define completions of the exterior and Clifford algebras of a graded
quadratic vector space. We recall from [6] how the Kac-Peterson cocycle appears in this
context.

1.1. Kac-Peterson cocycle. Let V =
⊕

i∈Z
Vi be a Z-graded vector space over C, with

finite-dimensional graded components. The (graded) dual space is the direct sum over
the duals of Vi, with grading (V ∗)i = (V−i)

∗. Given another graded vector space V ′

with dimV ′
i < ∞, we let Hom(V, V ′) be the direct sum over the spaces Hom(V, V ′)i =⊕

r Hom(Vr, V
′
r+i) of finite rank maps of degree i. We let

Ĥom(V, V ′)i =
∏

r

Hom(Vr, V
′
r+i)

be the space of all linear maps V → V ′ of degree i, and Ĥom(V, V ′) their direct sum. If

V = V ′ we write End(V ) = Hom(V, V ) and Ênd(V ) = Ĥom(V, V ). Note that Ênd(V ) is an
algebra with unit I.

Define a splitting V = V− ⊕ V+ where V+ =
⊕

i>0 Vi, V− =
⊕

i≤0 Vi. Denote by π−, π+

the projections to the two summands. The Kac-Peterson cocycle ([6]; see also [5, Exercise
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7.28]) on Ênd(V ) is a Lie algebra cocycle given by the formula,

(2) ψKP (A1, A2) = 1
2 tr(A1π−A2π+) − 1

2 tr(A2π−A1π+).

This is well-defined since the compositions π−Aiπ+ : V → V have finite rank. Observe that
ψKP has degree 0, that is, (2) vanishes unless the degrees of A1, A2 add to zero. On the

Lie subalgebra End(V ) ⊂ Ênd(V ), the Kac-Peterson cocycle restricts to a coboundary:

(3) ψKP (A1, A2) = 1
2 tr(π+[A1, A2]).

1.2. Completion of symmetric and exterior algebras. Let S(V ) be the symmetric
algebra of V , with Z-grading defined by assigning degree i to generators in Vi. Let V ∗

be the graded dual as above. The pairing between S(V ) and S(V ∗) identifies S(V )i as a

subspace of the space of linear maps S(V ∗)−i → K. We define a completion Ŝ(V )i as the
space of all linear maps S(V ∗)−i → K. Equivalently,

Ŝ(V )i =
∏

r≥0

S(V−)i−r ⊗ S(V+)r.

We let Ŝ(V ) be the direct sum over the Ŝ(V )i. The multiplication map of S(V ) extends

to the completion, making Ŝ(V ) into a Z-graded algebra. For each k ≥ 0 one similarly has

a completion Ŝk(V ) ⊂ Ŝ(V ) of each component Sk(V ). Then Ŝ(V )i is the direct product

over all Ŝk(V )i. The space Ŝ2(V ∗)0 may be identified with the space of symmetric bilinear
maps B : V × V → C of degree 0, that is B(Vi, Vj) = 0 for i+ j 6= 0.

In a similar fashion, one defines a completions ∧̂(V )i as the spaces of all linear maps
∧̂(V ∗)−i → K, or equivalently

∧̂(V )i =
∏

r≥0

∧(V−)i−r ⊗ ∧(V+)r.

We let ∧̂(V ) be the Z-graded super algebra given as the direct sum over all ∧̂(V )i. Again,

one also has completions of the individual ∧k(V ). The space ∧̂
2
(V ∗)0 may be identified

with the skew-symmetric bilinear maps V × V → C of degree 0. In particular:

ψKP ∈ ∧̂
2
(Ênd(V )∗)0.

1.3. Clifford algebras. Suppose B is a (possibly degenerate) symmetric bilinear form on
V =

⊕
i Vi of degree 0. Let Cl(V ) be the corresponding Clifford algebra, i.e. the super

algebra with odd generators v ∈ V and relations vw + wv = 2B(v,w) for v,w ∈ V . The
Z-grading on V defines a Z-grading on Cl(V ), compatible with the algebra structure.

Using the restrictions of the bilinear form to V±, we may similarly form the Clifford
algebras Cl(V±). These are Z-graded subalgebras of Cl(V ), and the multiplication map
defines an isomorphism of super vector spaces, Cl(V ) ∼= Cl(V−) ⊗ Cl(V+). Note that
Cl(V+) = ∧(V+) since B restricts to 0 on V+.

We obtain a Z-graded superalgebra Ĉl(V ) as the direct sum over all

Ĉl(V )i =
∏

r≥0

Cl(V−)i−r ⊗ Cl(V+)r.
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Let q0 : ∧ (V ) → Cl(V ) denote the standard quantization map for the Clifford algebra,
defined by super symmetrization:

q0(v1 ∧ · · · ∧ vk) =
1

k!

∑

σ∈Sk

sign(σ)vσ(1) · · · vσ(k),

where Sk is the permutation group on k elements, and sign(σ) = ±1 is the parity of the
permutation σ. The map q0 is an isomorphism of super spaces, preserving the Z-gradings
and taking ∧(V±) to Cl(V±). While q0 itself does not extend to the completions, we obtain
a well-defined normal-ordered quantization map

q : ∧̂(V ) → Ĉl(V )

by taking the direct sum over i ∈ Z and direct product over r ≥ 0 of

q0 ⊗ q0 : ∧ (V−)i−r ⊗ ∧(V+)r → Cl(V−)i−r ⊗ Cl(V+)r.

The quantization map is an isomorphism of Z-graded super vector spaces, with the

property that for λ ∈ ∧̂
k
(V ), µ ∈ ∧̂

l
(V ),

q−1(q(λ)q(µ)) = λ ∧ µ mod ∧̂
k+l−2

(V ).

Any element v ∈ V defines an odd derivation ιv, called contraction, of the super algebra
∧(V ), given on generators by ιv(w) = B(v,w). The same formula also defines a derivation
of the Clifford algebra, again denoted ιv. In both cases, the contractions extend to the

completions. The map q : ∧̂(V ) → Ĉl(V ) intertwines contractions:

q ◦ ιv = ιv ◦ q,

since q0 ◦ ιv = ιv ◦ q
0 and since contractions preserve ∧(V±) and Cl(V±).

Let o(V ) ⊂ End(V ) and ô(V ) ⊂ Ênd(V ) denote the B-skew-symmetric endomorphisms.
Let

(4) ∧̂
2
(V ) → ô(V ), λ 7→ Aλ

be the map defined by Aλ(v) = −2ιvλ. The map (4) is ô(V )-equivariant, that is,

ALXλ = [X,Aλ]

for X ∈ ô(V ).

Lemma 1.1. For all λ ∈ ∧2(V ),

(5) q(λ) = q0(λ) − 1
2 tr(π+Aλ).

Proof. It suffices to check for elements of the form λ = u ∧ v for u, v ∈ V . We have
Au∧v(w) = 2(B(v,w)u − B(u,w)v), hence tr(π+Au∧v) = 2(B(π+u, v) − B(π+v, u)). On
the other hand, by considering the special cases that u, v are both in V−, both in V+, or
u ∈ V−, v ∈ V+ we find

�(6) q(u ∧ v) = q0(u ∧ v) +B(π+v, u) −B(π+u, v).

The map q0 is o(V )-equivariant. For the normal-ordered quantization map this is no
longer the case.
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Proposition 1.2 (Kac-Peterson). [6] For all λ ∈ ∧̂
2
(V ) and X ∈ ô(V ), one has

LXq(λ) = q(LXλ) + ψKP (X,Aλ).

Proof. It is enough to prove this for X ∈ o(V ) and λ ∈ ∧2(V ). Since q0 intertwines Lie
derivatives, Lemma 1.1 together with (3) give

LXq(λ) − q(LXλ) = 1
2 tr(π+ALXλ) = 1

2 tr(π+[X,Aλ]) = ψKP (X,Aλ). �

If B is non-degenerate, the map λ 7→ Aλ defines an isomorphism ∧2(V ) → o(V ). Let

λ : o(V ) → ∧2(V ), A 7→ λ(A)

be the inverse map. It extends to a map ô(V ) → ∧̂
2
(V ) of the completions. In a basis ea

of V , with B-dual basis ea (i.e. B(ea, e
b) = δb

a), one has

λ(A) =
1

4

∑

a

A(ea) ∧ e
a.

IfA ∈ o(V ), the elements γ0(A) = q0(λ(A)) are defined. As is well-known, [γ0(A1), γ
0(A2)] =

γ0([A1, A2]) for Ai ∈ o(V ), and

LA = [γ0(A), ·].

If A ∈ ô(V ), one still has LA = [γ′(A), ·] with

γ′(A) = q(λ(A)),

but the map γ′ is no longer a Lie algebra homomorphism. Instead, Proposition 1.2 shows
[6]

(7) [γ′(A1), γ
′(A2)] = γ′([A1, A2]) + ψKP (A1, A2)

for A1, A2 ∈ ô(V ).

2. Graded Lie algebras

We will now specialize to the case that V = g is a Z-graded Lie algebra. We show that in
the quadratic case, the obstruction to defining a reasonable ‘Casimir operator’ is precisely
the Kac-Peterson class of g.

2.1. Kac-Peterson cocycle of g. Let g =
⊕

i gi be a graded Lie algebra, with dim gi <∞.
That is, we assume that the grading is compatible with the bracket: [gi, gj ]g ⊂ gi+j. The
map adξ : g → g defines a homomorphism of graded Lie algebras

ad: g → Ênd(g).

Recall that g∗ =
⊕

i(g
∗)i denotes the restricted dual where (g∗)i = (g−i)

∗. The algebra
∧(g∗) carries contraction operators and Lie derivatives ιξ, Lξ for ξ ∈ g, given on generators
by ιξµ = 〈µ, ξ〉 and Lξµ = (− adξ)

∗µ. If dim g <∞ it also carries a differential d, given on
generators by

dµ = 2λ(µ)

where λ(µ) is defined by ιξλ(µ) = 1
2Lξµ. On generators,

(dµ)(ξ1, ξ2) = −〈µ, [ξ1, ξ2]g〉.
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In the infinite-dimensional case, λ(µ) and hence d are well-defined on the completion ∧̂(g∗).
The operators ιξ, Lξ,d make ∧̂(g∗) into a g-differential algebra.

Define

ψKP (ξ1, ξ2) := ψKP (adξ1 , adξ2)

for ξi ∈ g. Thus ψKP ∈ ∧̂
2
(g∗)0 is a degree 2 Lie algebra cocycle of g, called the Kac-

Peterson cocycle of g. Its class [ψKP ] ∈ H2(g) will be called the Kac-Peterson class of the
graded Lie algebra g. Note that d has Z-degree 0, so that it restricts to a differential on
each ∧̂(g∗)i. Hence, if ψKP admits a primitive in g∗, then it admits a primitive in g∗0.

Example 2.1. [6] Suppose k is a finite-dimensional Lie algebra, and let g = k[z, z−1] the loop
algebra with its usual Z-grading. Let BKil(x, y) = trk(adx ady) for x, y ∈ k be the Killing
form on k. One finds

ψKP (ξ, ζ) = Res BKil
(∂ξ
∂z
, ζ

)

for ξ, ζ ∈ k[z, z−1], where Res picks out the coefficient of z−1. One may check that unless
BKil = 0, the Kac-Peterson class [ψKP ] is non-zero.

Example 2.2 (Heisenberg algebra). Let g be the Lie algebra with basis K, e1, f1, e2, f2, . . .,
where K is a central element and [ei, fj]g = δijK. Define a grading on g such that ei has
degree i and fi has degree −i, while K has degree 0. One finds ψKP = 0.

Example 2.3. Suppose g is a finite-dimensional semi-simple Lie algebra. Choose a Cartan
subalgebra h and a system ∆+ ⊂ h∗ of positive roots. Let g carry the principal grading,
i.e. g0 = h while gi, i 6= 0 is the direct sum of root spaces for roots of height i. Using (3)
one finds that ψKP = dρ, where ρ = 1

2

∑
α∈∆+ α.

2.2. Enveloping algebras. The Z-grading on g defines a Z-grading on the enveloping al-
gebra U(g). Both g+ =

⊕
i>0 gi and g− =

⊕
i≤0 gi are graded Lie subalgebras, thus U(g±)

are graded subalgebras of U(g). By the Poincaré-Birkhoff-Witt theorem, the multiplica-
tion map defines an isomorphism of vector spaces, U(g) = U(g−) ⊗ U(g+). We define a

completion Û(g) as a direct sum over

Û(g)i =
∏

r≥0

U(g−)i−r ⊗ U(g+)r.

The multiplication map extends to the completion, making Û(g) into a graded algebra. Let
q0 : S(g) → U(g) be the isomorphism given by the standard (PBW) symmetrization map,

q0(ξ1 · · · ξk) =
1

k!

∑

σ∈Sk

ξσ(1) · · · ξσ(k).

This preserves Z-degrees and takes S(g±) to U(g±). While the map itself does not extend
to the completions, we define a normal-ordered symmetrization (quantization) map

q : Ŝ(g) → Û(g)

by taking the direct sum over i and direct product over r of the maps

q0 ⊗ q0 : S(g−)i−r ⊗ S(g+)r → U(g−)i−r ⊗ U(g+)r.
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Then q is an isomorphism of Z-graded vector spaces. Let

S2(g) → Hom(g∗, g), p 7→ Ap

be the linear map given for p = uv, u, v ∈ g by

Ap(µ) = 〈µ, u〉v + 〈µ, v〉u.

It extends to a g-equivariant linear map Ŝ2(g) → Ĥom(g∗, g). Let

br: Hom(g∗, g) → g

be the linear map, given by the identification Hom(g∗, g) ∼= g⊗g followed by the Lie bracket.
In a basis ea of g with dual basis ea ∈ g∗, br(A) =

∑
a[A(ea), ea]g. The counterpart to

Lemma 1.1 reads:

Lemma 2.4. For p ∈ S2(g),

q(p) = q0(p) − 1
2 br(π+Ap).

Proof. It suffices to check for p = uv, where the formula reduces to (cf. (6))

(8) q(uv) = q0(uv) + 1
2 [u, π+v]g + 1

2 [v, π+u]g,

but this is straightforward in each of the cases that u, v are both in g+, both in g−, or
u ∈ g+, v ∈ g−. �

In contrast to q0, the map q is not g-equivariant. Similar to Proposition 1.2 we have:

Proposition 2.5. On Ŝ2(g),

Lξ(q(p)) − q(Lξ(p)) = 1
2 br

(
(π+ adξ π− − π− adξ π+)Ap

)
.

The right hand side is well-defined, since π− adξ π+ and π+ adξ π− are in Hom(g, g), hence
(π+ adξ π− − π− adξ π+)Ap ∈ Hom(g∗, g).

Proof. It suffices to verify this for p ∈ S2(g), so that Ap has finite rank. Since Lξq
0(p) −

q0(Lξp) = 0, Lemma 2.4 gives

Lξq(p) − q(Lξp) = −1
2

(
Lξ br(π+Ap) − br(π+ALξp)

)

= −1
2 br

(
[Lξ, π+Ap] − π+[Lξ, Ap]

)

= −1
2 br

(
Lξπ+Ap − π+LξAp

)

= 1
2 br

(
(π+Lξπ− − π−Lξπ+)Ap

)
.

�

2.3. Quadratic Lie algebras. We assume that g =
⊕

i∈Z
gi comes equipped with a non-

degenerate ad-invariant symmetric bilinear form B of degree 0. Thus, B(gi, gj) = 0 for
i+ j 6= 0, while B defines a non-degenerate pairing between gi, g−i. We will often use B to
identify g∗ with g. The examples we have in mind are the following:

(a) Let k be a finite-dimensional Lie algebra, with an invariant symmetric bilinear form
Bk. Then B extends to an inner product on the loop algebra g = k[z, z−1].
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(b) Let l =
⊕

i∈Z
li be a graded Lie algebra, with finite-dimensional homogeneous com-

ponents, and l∗ =
⊕

i∈Z
l∗i its restricted dual, with grading (l∗)i = l∗−i. The semi-

direct product g = l ⋉ l∗, with B given by the pairing, satisfies our assumptions.
This case was studied by Kostant and Sternberg in [12].

(c) Let g =
⊕

i∈Z
gi be a symmetrizable Kac-Moody Lie algebra, with grading the

principal grading (defined by the height of roots). Then g carries a ‘standard’
non-degenerate invariant symmetric bilinear form, see [5]. We will return to the
Kac-Moody case in Section 6.

Under the identification ∧̂
2
(g) ∼= ô(g), the Kac-Peterson cocycle ψKP corresponds to an

element
ΨKP ∈ ô(g), ψKP (ξ, ζ) = B(ΨKP (ξ), ζ).

Since ψKP has Z-degree 0, the transformation ΨKP preserves each gi. Since ψKP is a
cocycle, ΨKP is a derivation of the Lie bracket on g. Moreover, ψKP is a coboundary if
and only if the derivation ΨKP is inner:

(9) ψKP = dρ ⇔ ΨKP = [ρ♯, ·]g,

where ρ♯ is the image of ρ ∈ g∗0 under the isomorphism B♯ : g∗ → g.

Example 2.6. Let g = k[z, z−1], with k semi-simple, and with bilinear form defined in terms
of the Killing form on k as B(ξ, ζ) = Res(z−1BKil(ξ, ζ)), for ξ, ζ ∈ k[z, z−1]. Then ΨKP is
the degree operator:

ΨKP (ξ) = z
∂ξ

∂z
.

2.4. Casimir elements. Let p ∈ Ŝ2(g) be the element

p =
∑

a

eae
a ∈ Ŝ2(g),

where ea is a homogeneous basis of g, with B-dual basis ea. The corresponding transfor-
mation Ap ∈ Hom(g∗, g) ∼= End(g) is 2 Idg. We refer to

Cas′g = q(p) ∈ Û(g)

as the normal-ordered Casimir element. It is not an element of the center, in general:

Theorem 2.7. The normal-ordered Casimir element satisfies

Lξ Cas′g = 2ΨKP (ξ),

for all ξ ∈ g.

Proof. From the definition of br, one finds

B(br(A), ζ) = tr(adζ A)

for all A ∈ End(g) and ζ ∈ g. Since Ap = 2 Idg and Lξp = 0, Proposition 2.5 therefore gives

B(Lξ Cas′g, ζ) = B(br(π+ adξ π− − π− adξ π+), ζ)

= tr(adζ π+ adξ π− − adζ π− adξ π+)

= 2ψKP(ξ, ζ)

= 2B(ΨKP(ξ), ζ). �
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The normal-ordered Casimir element Cas′g admits a linear correction to a central element
if and only if the Kac-Peterson class is zero. More precisely:

Corollary 2.8. For ρ ∈ g∗0,

(10) Casg := Cas′g +2ρ♯

lies in the center of Û(g) if and only if ψKP = dρ.

Proof. This is a direct consequence of Theorem 2.7, since ψKP = dρ if and only if Lξρ
♯ =

−ΨKP (ξ), see Equation (9). �

Example 2.9. For a loop algebra g = k[z, z−1], with k a semi-simple Lie algebra, the Kac-
Peterson coycle of g defines a non-trivial cohomology class. Hence it is impossible to make
Cas′g invariant by adding linear terms. On the other hand, for a symmetrizable Kac-Moody

algebra g, a classical result of Kac shows that Cas′g becomes invariant after a ρ-shift. Hence
the Kac-Peterson class of such a g is trivial. See Section 6 below.

2.5. The structure constants tensor and its quantization. Recall the definition of

λ : ô(g) → ∧̂
2
(g). We will write

λ(ξ) = λ(adξ),

that is ιξλ(ζ) = 1
2 [ξ, ζ]g. In a basis ea of g, with B-dual basis ea, we have λ(ξ) =

1
4

∑
a[ξ, ea]g ∧ e

a.

Lemma 2.10. There is a unique element φ ∈ ∧̂
3
(g)0 with the property

(11) ιξ1ιξ2ιξ3φ = 1
2B([ξ1, ξ2]g, ξ3), ξ1, ξ2, ξ3 ∈ g.

Proof. The right-hand side is a skew-symmetric trilinear form of degree 0 on g. Hence it

defines an element of ∧̂
3
(g). �

Equivalently, ιξφ = 2λ(ξ), ξ ∈ g. In a basis,

(12) φ = −
1

12

∑

abc

fabce
a ∧ eb ∧ ec,

where fabc = B([ea, eb]g, ec) are the structure constants. From the definition, it is clear that
φ is g-invariant. This need no longer be true of its normal-ordered quantization. Write

γ′(ξ) = q(λ(ξ)), φ′Cl = q(φ),

so that Lξ = [γ′(ξ), ·)]. Denote by ψ
♯
KP ∈ ∧̂

2
(g) the image of ψKP ∈ ∧̂

2
(g∗) under the

isomorphism B♯ : ∧̂(g∗) → ∧̂(g).

Proposition 2.11. The element φ′Cl ∈ Ĉl(g) satisfies

Lξφ
′
Cl = ΨKP (ξ),

and its square is given by the formula

(φ′Cl)
2 = q(ψ♯

KP ) +
1

24
trg0

(Casg0
).

Here Casg0
∈ U(g0) is the quadratic Casimir element for g0, and trg0

(Casg0
) is its trace in

the adjoint representation.
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Proof. The first formula follows from the second, since

Lξφ
′
Cl = [γ′(ξ), φ′Cl] = ιξ(φ

′
Cl)

2.

Since

ιξ(φ
′
Cl)

2 = [γ′(ξ), φ′Cl] = Lξφ
′
Cl = ΨKP (ξ) = ιξq(ψ

♯
KP ),

the difference (φ′Cl)
2 − q(ψ♯

KP ) is a constant. Let φr be the component of φ in (∧g−)−r ⊗
(∧g+)r. The commutator of φ′Cl with a term q(φr) for r > 0 is contained in the right ideal
generated by g+, and hence does not contribute to the constant. Hence the constant equals
q(φ0)

2, where φ0 ∈ ∧3g0 is the structure constants tensor of g0 ⊂ g. By [1, 10] this constant
is given by 1

24 trg0
(Casg0

). �

Corollary 2.12. Suppose ψKP = dρ for some ρ ∈ g∗0. Define elements of Ĉl(g) by

φCl := φ′Cl + ρ♯, γ(ξ) = γ′(ξ) + 〈ρ, ξ〉,

for ξ ∈ g. The following commutator relations hold in Ĉl(g):

[ξ, ζ] = 2B(ξ, ζ),

[γ(ξ), φCl] = 0,

[ξ, φCl] = 2γ(ξ),

[γ(ξ), γ(ζ)] = γ([ξ, ζ]g),

[γ(ξ), ζ] = [ξ, ζ]g,

[φCl, φCl] = 2B(ρ♯, ρ♯) +
1

12
trg0

(Casg0
).

Thus Ĉl(g) becomes a g-differential algebra (see e.g. [16]) with differential d = [φCl, ·],
contractions ιξ = 1

2 [ξ, ·], and Lie derivatives Lξ = [γ(ξ), ·].

Proof. Observe first that λ(ρ♯) = −ψKP , since

ιζιξλ(ρ♯) = ιζ [ξ, ρ
♯]g = B(ζ, [ξ, ρ♯]g) = −〈ρ, [ξ, ζ]g〉.

Consequently [ρ♯, φ′Cl] = −q(ψKP ), which implies the formula for [φCl, φCl]. The other
assertions are verified similarly. �

Still assuming ψKP = dρ, consider the algebra morphism

(13) γ : U(g) → Ĉl(g)

extending the Lie algebra homomorphism ξ 7→ γ(ξ).

Proposition 2.13. The map (13) extends to an algebra morphism

γ : Û(g) → Ĉl(g).

Proof. We claim that for all i > 0, γ(gi) is contained in

(14)
∐

r≥0

Cl(g−)−rCl(g+)i+r ⊂ Ĉl(g)i
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(i.e. the components in Cl(g+) have degree ≥ i). Indeed, suppose ξ ∈ gi with i > 0. In
particular, 〈ρ, ξ〉 = 0. Let ea ∈ g be a basis consisting of homogeneous elements, and ea the
dual basis. Since 〈ρ, ξ〉 = 0, and since [ξ, ea]g Clifford commutes with ea, we have

γ(ξ) =
1

2

∑
+
([ξ, ea]ea − ea[ξ, ea]) +

1

4

∑
0
[ξ, ea]e

a

where
∑

+ is a summation over indices with ea ∈ g+, and
∑

0 is a summation over indices
with ea ∈ g0. The second and third term in this expression are in (14), as are the summands
[ξ, ea]ea from the first sum for ea ∈ gs with s ≥ i. In the remaining case s < i we have
[ξ, ea] ∈ gi−s ⊂ g+, and hence [ξ, ea]ea ∈ Cl(g+)i. This proves the claim. By induction, one
deduces that

γ(U(g+)i) ⊂
∏

r≥0

Cl(g−)−rCl(g+)i+r.

Similarly, if j ≤ 0,

γ(U(g−)j) ⊂
∏

r≥0

Cl(g−)j−rCl(g+)r.

It follows that

γ(U(g−)−rU(g+)i+r) ⊂
∐

m≥0

Cl(g−)−r−mCl(g+)i+r+m.

Summing over all r ≥ 0, one obtains a well-defined map Û(g)i → Ĉl(g)i. �

3. Double extension

For the loop algebra g = k[z, z−1] of a semisimple Lie algebra k, the Kac-Peterson class
is non-trivial. On the other hand, the usual double extension g̃ of g is a symmetrizable
Kac-Moody algebra, hence its Kac-Peterson class is zero. In fact, one has a similar double
extension in the general case, as we now explain.

We continue to work with the assumptions from the last sections; in particular g carries
an invariant non-degenerate symmetric bilinear form B of degree 0. As noted above, the
Kac-Peterson cocycle ψKP gives rise to a skew-symmetric derivation ΨKP ∈ ô(g). By a
general construction of Medina-Revoy [15], such a derivation can be used to define a double
extension

g̃ = g ⊕ Cδ ⊕ CK,

with the following bracket: For ξ, ξ1, ξ2 ∈ g,

[ξ1, ξ2]g̃ = [ξ1, ξ2]g + ψKP (ξ1, ξ2)K,

[δ, ξ]g̃ = ΨKP (ξ),

[δ,K]g̃ = 0,

[ξ,K]g̃ = 0

The bilinear form B on g extends to a non-degenerate invariant bilinear form on g̃, in such
a way that g and Cδ ⊕ CK are orthogonal and

B̃(δ,K) = 1, B̃(δ, δ) = B̃(K,K) = 0.
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Introduce the grading g̃i = gi for i 6= 0 and g̃0 = g0 ⊕ Cδ ⊕ CK. The resulting splitting is

g̃− = g− ⊕ Cδ ⊕ CK, g̃+ = g+.

Let ψ̃KP be the Kac-Peterson cocycle for this splitting, Ψ̃KP the associated derivation, and
denote by π̃± : g̃ → g± the projections along g̃∓. The adjoint representation for g̃ will be
denoted ãd.

Proposition 3.1. The derivation Ψ̃KP is inner:

Ψ̃KP = [δ, ·]g̃.

Equivalently ψ̃KP = dρ where ρ = B̃(δ, ·).

Proof. The desired equation Ψ̃KP = [δ, ·]g̃ means that Ψ̃KP (ξ) = ΨKP (ξ), Ψ̃KP (δ) =

0, Ψ̃KP (K) = 0. Equivalently, we have to show that ψ̃KP (ξ1, ξ2) = ψKP (ξ1, ξ2) for ξ1, ξ2 ∈

g, while both K, δ are in the kernel of ψ̃KP . The last claim follows from

π̃−ãdδπ̃+ = 0 = π̃+ãdδπ̃−,

and similarly for adK , since adδ and adK preserve degrees. On the other hand, one checks
that for ξ1, ξ2 ∈ g, the composition

π+ adξ1 π− adξ2 π+ : g+ → g+

of operators on g coincides with the composition

π̃+ãdξ1 π̃−ãdξ2 π̃+ : g+ → g+

of operators on g̃. Hence the Kac-Peterson coycles agree on elements of g ⊂ g̃. �

4. The cubic Dirac operator

We will define the cubic Dirac operator as an element of a completion of the quantum Weil
algebra W(g) = U(g) ⊗ Cl(g). Following [1], we take the viewpoint that the commutator

with D defines a differential, making Ŵ(g) into a g-differential algebra.

4.1. Weil algebra. We begin with an arbitrary Z-graded Lie algebra g with dim gi < ∞.
As usual g∗ denotes the restricted dual. Consider the tensor product W (g∗) = S(g∗)⊗∧(g∗)
with grading

W k(g∗) =
⊕

2r+s=k

Sr(g∗) ⊗ ∧s(g∗).

For µ ∈ g∗ we denote by s(µ) = µ⊗ 1 the degree 2 generators and by µ = 1⊗ µ the degree
1 generators. Any ξ ∈ g defines contraction operators ιξ; these are derivations of degree
−1 given on generators by ιξµ = µ(ξ), ιξs(µ) = 0. The co-adjoint action on g∗ defines

Lie derivatives Lξ = LS
ξ ⊗ 1 + 1 ⊗ L∧

ξ . If dim(g) < ∞, the algebra W (g) carries a Weil

differential dW , given on generators by1

(15) dWµ = 2(s(µ) + λ(µ)), dW s(µ) =
∑

a
s(Leaµ)ea.

1The conventions for the differential follow [16, §6.11]. They are arranged to make the relation with the
quantum Weil algebra appear most natural. One recovers the more standard conventions used in e.g. [3]
and [1] by a simple rescaling of variables.
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Here ea is a basis of g with dual basis ea ∈ g∗.
In the general case, we need to pass to a completion in order for the differential to be

defined. Define a second Z-grading on W (g∗), in such a way that the generators s(µ), µ for
µ ∈ (g∗)i = (g−i)

∗ have degree i. Letting g∗+ =
⊕

i>0(g
∗)i and g∗− =

⊕
i≤0(g

∗)i we define a

completion Ŵ (g∗) as the graded algebra with

Ŵ (g∗)i =
∏

r≥0

W (g∗−)i−r ⊗W (g∗+)r.

(Equivalently, Ŵ (g∗)i is the space of all linear maps (S(g) ⊗ ∧(g))−i → K.) The Weil

differential dW is define on generators by the formulas (15). Together with the natural

extensions of ιξ, Lξ this makes Ŵ (g∗) into a g-differential algebra.

4.2. Quantum Weil algebra. Suppose now that g carries an invariant symmetric bilinear

form B of degree 0. We use B to identify g∗ with g, and will thus write W (g), Ŵ (g) and
so on. The non-commutative quantum Weil algebra is the tensor product

W(g) = U(g) ⊗ Cl(g).

It is a super algebra, with even generators s(ζ) = ζ ⊗ 1 and odd generators ζ = 1 ⊗ ζ.
Any ξ ∈ g defines Lie derivatives Lξ = LU

ξ ⊗ 1 + 1 ⊗ LCl
ξ and contraction operators ιξ,

given as odd derivations with ιξζ = B(ξ, ζ), ιξs(ζ) = 0. Super symmetrization defines an
isomorphism

(16) q0 : W (g) → W(g),

given simply as the tensor product of q0 : S(g) → U(g) and q0 : ∧ (g) → Cl(g). Note that

(16) intertwines the contractions and Lie derivatives. We define a completion Ŵ(g) as the
graded super algebra with

Ŵ(g)i =
∏

r≥0

W(g−)i−r ⊗W(g+)r.

The ‘normal-ordered’ quantization map q : Ŵ (g) → Ŵ(g) is defined by summing over all

q0 ⊗ q0 : W (g−)i−r ⊗W (g+)r → W(g−)i−r ⊗W(g+)r.

It extends the quantization maps q : Ŝ(g) → Û(g) and q : ∧̂(g) → Ĉl(g).

4.3. The element q(D). If dim g <∞, one obtains a differential dW on Wg, as a derivation
given on generators by formulas similar to (15),

dWζ = 2(s(ζ) + q0(λ(ζ))), dWs(ζ) =
∑

a
s(Leaζ)e

a,

see [1]. In fact, dW = [q0(D), ·], where D ∈W 3(g) is the element

D =
∑

a

s(ea)e
a + φ,

with φ ∈ ∧3g ⊂ W 3(g) the structure constants tensor. The fact that dW squares to zero
means that q0(D) squares to a central element, and indeed one finds

q0(D)2 = Casg +
1

24
trg(Casg).
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If dim g = ∞, the element D is well-defined as an element of the completion Ŵ 3(g), but
q0(D) is ill-defined. On the other hand,

D′ = q(D) =
∑

a

s(ea)e
a + φ′Cl

is defined but does not square to a central element.

Proposition 4.1. The square of D′ = q(D) is given by

(D′)2 = Cas′g +q(ψ♯
KP ) +

1

24
trg0

(Casg0
).

Proof. We have

LξD
′ = Lξφ

′
Cl = ΨKP (ξ) = ιξq(ψ

♯
KP )

because
∑

a s(ea)e
a ∈ Ŵ(g) is g-invariant. Using that

ιξD
′ = s(ξ) + ιξ(q(φ)) = s(ξ) + γ′(ξ)

are generators for the g-action on Ŵ(g), we have

ιξ((D
′)2 − q(ψ♯

KP )) = [ιξD
′,D′] − q(ψ♯

KP ) = 0.

This shows (D′)2 − q(ψ♯
KP ) ∈ Û(g) ⊂ Ŵ(g). To find this element we calculate, denoting by

. . . terms in the kernel of the projection Ŵ(g) → Û(g),

(D′)2 =
∑

ab

s(ea)s(eb)e
aeb + (φ′Cl)

2 + . . .

= 1
2

∑

ab

s(ea)s(eb)[e
a, eb] +

1

24
trg0

(Casg0
) + . . .

= Cas′g +
1

24
trg0

(Casg0
) + . . . �

If the Kac-Peterson class is trivial, one obtains an element D with better properties.

Corollary 4.2. Suppose that ψKP = dρ for some ρ ∈ g∗0. Define

D = D′ + ρ♯, γW(ξ) = s(ξ) + γ′Cl(ξ) + 〈ρ, ξ〉,

and put Casg = Cas′g +2ρ♯ as before. Then

D2 = Casg⊗1 +
1

24
trg0

(Casg0
) +B(ρ♯, ρ♯).

One has the following commutator relations in Ŵ(g),

[D,D] = 2Casg⊗1 +
1

12
trg0

(Casg0
) + 2B(ρ♯, ρ♯),

[γW(ξ),D] = 0,

[ξ,D] = 2γW (ξ),

[γW(ξ), γW (ζ)] = γW([ξ, ζ]g),

[γW(ξ), ζ] = [ξ, ζ]g,

[ξ, ζ] = 2B(ξ, ζ).
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Thus Ŵ(g) becomes a g-differential algebra, with differential, Lie derivatives and contrac-
tions given by

dW = [D, ·], LW
ξ = [γW(ξ), ·], ιWξ = 1

2 [ξ, ·].

We will refer to D ∈ Ŵ(g) as the cubic Dirac operator, following Kostant [10].

5. Relative Dirac operators

In his paper [10], Kostant introduced more generally Dirac operators for any pair of a
quadratic Lie algebra g and a quadratic Lie subalgebra u. We consider now an extension
of his results to infinite-dimensional graded Lie algebras.

Let g, B be as in the last Section, and suppose u ⊆ g is a graded quadratic subalgebra.
That is, ui ⊆ gi for all i, and the non-degenerate symmetric bilinear form B on g restricts
to a non-degenerate bilinear form on u. We have an orthogonal decomposition

g = u ⊕ p

where p = u⊥. For any ξ ∈ u, the operator adξ ∈ ô(g) breaks up as a sum

adξ = adu
ξ + adp

ξ, ξ ∈ u

of operators adu
ξ ∈ ô(u) and adp

ξ ∈ ô(p). Accordingly,

λ(ξ) = λu(ξ) + λp(ξ), ξ ∈ u

with λu(ξ) ∈ ∧̂
2
(u) and λp(ξ) ∈ ∧̂

2
(p). Denote by γ′u(ξ), γ′p(ξ) their images under

q : Ŵ (g) → Ŵ(g). We have (cf. (7))

[γ′p(ξ), γ
′
p(ζ)] = γ′p([ξ, ζ]) + ψ

p
KP (ξ, ζ),

where ψp
KP (ξ, ζ) = ψ

p
KP (adp

ξ , ad
p
ζ) defines a cocycle ψp

KP ∈ ∧̂
2
(u∗). If ψp

KP = dρp for some

ρp ∈ u∗0, then

γp(ξ) = γ′p(ξ) + 〈ρp, ξ〉

gives a Lie algebra homomorphism u → Ĉl(p), generating the adjoint action of u. One

obtains an algebra homomorphism j : W(u) → Ŵ(g), given on generators by

j(ξ) = ξ, j(s(ξ)) = s(ξ) + γp(ξ), ξ ∈ u.

Proposition 5.1. The homomorphism W(u) → Ŵ(g) extends to an algebra homomorphism
for the completion:

j : Ŵ(u) → Ŵ(g).

It intertwines Lie derivatives and contraction by elements ξ ∈ u.

Proof. The first part follows by an argument parallel to that for Proposition 2.13. The
second part follows from

j ◦ Lξ = j ◦ [s(ξ) + γ′u(ξ), ·] = [s(ξ) + γ′g(ξ), ·] ◦ j = Lξ ◦ j

and similarly j ◦ ιξ = 1
2j ◦ [ξ, ·] = 1

2 [ξ, ·] ◦ j = ιξ ◦ j. �
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Let

W(g, u) = (U(g) ⊗ Cl(p))u

be the u-basic part of W(g), i.e. the subalgebra of elements annilated by all Lξ and all ιξ
for ξ ∈ u. Similarly let Ŵ(g, u) be the u-basic part of Ŵ(g).

Proposition 5.2. The subalgebra Ŵ(g, u) is the commutant of the range j(Ŵ(u)).

Proof. Since ιξ = 1
2 [ξ, ·], an element of Ŵ(g) commutes with the generators j(ξ) for ξ ∈ u

precisely if it lies in the u-horizontal subspace, given as the completion of U(g)⊗Cl(p). The
elements j(s(ξ)) = s(ξ) + γ′p(ξ) generate the u-action on that subspace. Hence, an element

of Ŵ(g) commutes with all j(ξ), j(s(ξ)) if and only if it is u-basic. �

We will now make the stronger assumption that the Kac-Peterson classes of both g, u are
zero. Let ρ ∈ g∗0, ρu ∈ u∗0 be elements such that

ψKP = dρ, ψu
KP = dρu,

and take ρp := ρ|u0
− ρu ∈ u∗0 so that ψp

KP = dρp. Put

γ(ζ) = γ′(ζ) + 〈ρ, ζ〉, γu(ξ) = γ′u(ξ) + 〈ρu, ξ〉

for all ζ ∈ g, ξ ∈ u, and let

D = D′ + ρ♯ ∈ Ŵ(g), Du = D′
u + ρ♯

u ∈ Ŵ(u)

be the cubic Dirac operators for g, u. The commutator with these elements defines differ-
entials on the two Weil algebras.

Lemma 5.3. The map j : Ŵ(u) → Ŵ(g) is a homomorphism of u-differential algebras.

Proof. It remains to show that the map j intertwines differentials. It suffices to check on
generators. For ξ ∈ u,

j(dξ) = j(su(ξ) + γu(ξ)) = s(ξ) + γp(ξ) + γu(ξ) = s(ξ) + γ(ξ) = dj(ξ),

and similarly j(dsu(ξ)) = dj(su(ξ)). �

We define the relative cubic Dirac operator Dg,u as a difference,

(17) Dg,u = D − j(Du).

Proposition 5.4. The element Dg,u lies in Ŵ(g, u), and squares to an element of the center

of Ŵ(g, u). Explicitly,

D2
g,u = Casg−j(Casu) +

1

24
trg0

(Casg0
) −

1

24
tru0

(Casu0
) +B(ρ♯, ρ♯) −B(ρ♯

u, ρ
♯
u).

Proof. Using that j intertwines contractions ιξ, ξ ∈ u, we find

ιξDg,u = ιξD − j(ιξDu)

= s(ξ) + γ(ξ) − j(su(ξ) + γu(ξ))

= γ(ξ) − γp(ξ) − γu(ξ) = 0.
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Thus Dg,u is u-horizontal, and it is clearly u-invariant as well. Thus Dg,u ∈ Ŵ(g, u). In
particular, Dg,u commutes with j(Du). Consequently, [D, D] = j([Du,Du]) + [Dg,u,Dg,u],
that is

D2
g,u = D2 − j(D2

u).

Now use Corollary 4.2. �

6. Application to Kac-Moody algebras

In his paper [10], Kostant used the cubic Dirac operator Dg,u to prove generalized Weyl
character formulas for any pair of a semi-simple Lie algebra g and equal rank subalgebra u.
In this Section, we show that much of this theory carries over to symmetrizable Kac-Moody
algebras, with only minor adjustments.

6.1. Notation and basic facts. Let us recall some notation and basic facts; our main
references are the books by Kac [5] and Kumar [13].

Let A = (aij)1≤i,j≤l be a generalized Cartan matrix, and let (h,Π,Π∨) be a realization
of A. Thus h is a vector space of dimension 2l − rk(A), and Π = {α1, . . . , αl} ⊂ h∗

(the set of simple roots) and Π∨ = {α∨
1 , . . . , α

∨
l } ⊂ h (the corresponding co-roots) satisfy

〈αj , α
∨
i 〉 = aij . The Kac-Moody algebra g = g(A) is the Lie algebra generated by elements

h ∈ h and elements ej , fj for j = 1, . . . , l, subject to relations

[h, ei] = 〈αi, h〉ei, [h, fi] = −〈αi, h〉fi, [h, h′] = 0, [ei, fj ] = δijα
∨
i ,

ad(ei)
1−aij (ej) = 0, ad(fi)

1−aij (fj) = 0, i 6= j.

The non-zero weights α ∈ h∗ for the adjoint action of h on g are called the roots, the
corresponding root spaces are denoted gα. The set ∆ of roots is contained in the lattice

Q =
⊕l

j=1 Zαj ⊂ h∗. Let Q+ =
⊕l

j=1 Z≥0αj , and put ∆+ = ∆∩Q+ and ∆− = −∆+. One

has ∆ = ∆+ ∪ ∆−.
Let W be the Weyl group of g, i.e. the group of transformations of h generated by the

simple reflections ξ 7→ ξ − 〈αj , ξ〉α
∨
j . The dual action of W as a reflection group on h∗

preserves ∆. Let ∆re be the set of real roots, i.e. roots that are W -conjugate to roots in Π,
and let ∆im be its complement, the imaginary roots. For α ∈ ∆re one has dim gα = 1.

The length l(w) of a Weyl group element may be characterized as the cardinality of the
set

∆+
w = ∆+ ∩ w∆−

of positive roots that become negative under w−1 [13, Lemma 1.3.14]. We remark that
∆+

w ⊂ ∆re [5, §5.2].
Fix a real subspace hR ⊂ h containing Π∨. Let C ⊂ hR be the dominant chamber and X

the Tits cone [5, §3.12]. Thus C is the set of all ξ ∈ hR such that 〈α, ξ〉 ≥ 0 for all α ∈ Π,
while X is characterized by the property that 〈α, ξ〉 < 0 for at most finitely many α ∈ ∆.
The W -action preserves X, and C is a fundamental domain in the sense that every W -orbit
in X intersects C in a unique point.

For any µ =
∑l

j=1 kjαj ∈ Q one defines ht(µ) =
∑l

j=1 kj . The principal grading on g

is defined by letting gi for i 6= 0 be the direct sum of root spaces gα with ht(α) = i, and
g0 = h. Letting n± =

⊕
α∈∆± gα, it follows that g+ = n+ and g− = n− ⊕ h.
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6.2. The Kac-Peterson cocycle. Suppose from now on that A is symmetrizable, that
is, there exists a diagonal matrix D = diag(ǫ1, . . . , ǫl) such that D−1A is symmetric. In
this case, g carries a non-degenerate symmetric invariant bilinear form B with the property
B(α∨

j , ξ) = ǫj〈αj , ξ〉, ξ ∈ h [5, §2.2]. One refers to B as a standard bilinear form. Choose

ρ ∈ h∗ with 〈ρ, α∨
j 〉 = 1 for j = 1, . . . , l.

Proposition 6.1. The Kac-Peterson cocycle of the symmetrizable Kac-Moody algebra g is
exact. In fact,

ψKP = dρ.

Proof. Use B to define Cas′g. As shown by Kac [5, Theorem 2.6] the operator Casg :=

Cas′g +2ρ♯ is g-invariant. By Corollary 2.8 above this is equivalent to ψKP = dρ. �

6.3. Regular subalgebras. We now introduce a suitable class of ‘equal rank’ subalgebras.
Following Morita and Naito [17, 18], consider a linearly independent subset Πu ⊂ ∆re,+ with
the property that the difference of any two elements in Πu is not a root. We denote by
u ⊂ g the Lie subalgebra generated by h together with the root spaces g±β for β ∈ Πu. Let

p = u⊥, so that g = u ⊕ p.

Examples 6.2. (a) If Πu = ∅ one obtains u = h. (b) Suppose g is an affine Kac-Moody
algebra, i.e. the double extension of a loop algebra k[z, z−1] of a semi-simple Lie algebra
k. Let l ⊂ k be an equal rank subalgebra of k. Let Πl ⊂ ∆+

k be the simple roots of l, and

Πu ⊂ ∆+ the corresponding affine roots. Then u = l[z, z−1]. This is the setting considered
in Landweber’s paper [14].

It was shown in [17, 18] that u is a direct sum (as Lie algebras) of a symmetrizable
Kac-Moody algebra ũ with a subalgebra of h.2 Furthermore, the standard bilinear form B

on g restricts to a standard bilinear form on ũ.
For any root α ∈ ∆ put nu(α) = dim uα and np(α) = dim(pα). Thus n(α) = nu(α)+np(α)

is the multiplicity of α in g. Let ∆u (resp. ∆p) be the set of roots such that nu(α) > 0
(resp. np(α) > 0). Thus ∆u is the set of roots of u. Let Wu ⊂ W be the Weyl group of u

(generated by reflections for elements of Πu), and define a subset

Wp = {w ∈W | w−1∆+
u ⊂ ∆+}.

Lemma 6.3. We have w ∈ Wp ⇔ ∆+
w ⊂ ∆p. Every w ∈ W can be uniquely written as a

product w = w1w2 with w1 ∈Wu and w2 ∈Wp.

Proof. By definition, w ∈Wp if and only if the intersection ∆+
u ∩w∆− = ∆u∩∆+

w is empty.
Since ∆+

w consists of real roots, this means ∆+
w ⊂ ∆p. For the second claim, let Cu ⊂ Xu

be the chamber and Tits cone for u. One has w ∈ Wp if and only if w−1∆+
u ⊂ ∆+, if and

only if wC ⊂ Cu. Let w ∈ W be given. Then wC ⊂ X ⊂ Xu is contained in a unique
chamber of u. Hence there is a unique w1 ∈ Wu such that wC ⊂ w1Cu. Equivalently,
w2 := w−1

1 w ∈Wp. �

2In fact, Naito [18] constructs an explicit subspace eh ⊂ h such that the Lie algebra eg generated by eh and
the g±β, β ∈ Πu is a Kac-Moody algebra. He also considers subsets Πu that do not necessarily consist of
real roots, and finds that the resulting ũ is a symmetrizable generalized Kac-Moody algebra.
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We have a decomposition p = p+⊕p−, where p± = p∩n±. The splitting defines a spinor
module Sp = ∧p− over Cl(p), where the elements of p+ act by contraction and those of p−
by exterior multiplication. The Clifford action on this module extends to the completion

Ĉl(Sp).
Fix ρu ∈ h∗ with 〈ρu, β

∨〉 = 1 for all β ∈ Πu. Let ρp = ρ|u − ρu, defining a Lie algebra

homomorphism γp = γ′p+ρp : u → Ĉl(p). By composition with the spinor action one obtains
an integrable u-representation

πS : u → End(Sp).

Proposition 6.4. The restriction of πS to h ⊂ u differs from the adjoint representation of
h by a ρp-shift:

πS(ξ) = 〈ρp, ξ〉 + ad(ξ), ξ ∈ h.

Hence, the weights for the action of h on Sp are of the form

ρp −
∑

α∈∆+
p

kαα,

where 0 ≤ kα ≤ np(α). The parity of the corresponding weight space is
∑

α kα mod 2. For
all w ∈Wp, the element

wρ− ρu

is a weight of Sp, of multiplicity 1. The parity of the weight space Sp equals l(w) mod 2.

Proof. For each α ∈ ∆+
p , fix a basis e

(s)
α , s = 1, . . . , np(α) of pα, and let e

(s)
−α be the B-dual

basis of p−α. By definition, we have γp(ξ) = 〈ρp, ξ〉 + γ′p(ξ) with

γ′p(ξ) = −1
2

∑

α∈∆+
p

np(α)∑

s=1

〈α, ξ〉 e
(s)
−αe

(s)
α .

The action of γ′p(ξ) on the spinor module is just the adjoint action of ξ. This proves the
first assertion. It is now straightforward to read off the weights of the action on Sp. For
all w ∈ W one has ρ − wρ =

∑
α∈∆+

w
α (cf. [13, Corollary 1.3.22]). If w ∈ Wp, so that

∆+
w ⊂ ∆+

p , it follows that wρ − ρu = wρ − ρ + ρp = ρp −
∑

α∈∆+
w
α is a weight of Sp. We

now use
Sh⊥ = Sp ⊗ Su∩h⊥

as modules over Cl(h⊥) = Cl(p) ⊗ Cl(u ∩ h⊥). Hence, the tensor product with a generator
of the line (Su∩h⊥)ρu defines an isomorphism of the weight space (Sp)wρ−ρu with (Sh⊥)wρ;
but the latter is 1-dimensional, and its parity is given by l(w) mod 2 (cf. [13, Lemma
3.2.6]). �

6.4. Action of the cubic Dirac operator. The subalgebra u inherits a Z-grading from
g, with ui the direct sum of root spaces uα for α =

∑
r krβr and i =

∑
r krmr. It is thus the

grading of type m = (m1, . . . ,mr) [5, §1.5] with mr = ht(βr). Let Ŵ(u) be the completion
of the quantum Weil algebra for this grading. (It is just the same as the completion defined
by the principal grading of u).

Let P ⊂ h∗ be the weight lattice of g, and P+ ⊂ P the dominant weights. Thus µ ∈ P if
and only if 〈µ, α∨

j 〉 ∈ Z for j = 1, . . . , l, and µ ∈ P+ if these pairings are all non-negative.
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For any µ ∈ P+ let L(µ) be the irreducible integrable representation of g of highest weight
µ. By [5, §11.4], L(µ) carries a unique (up to scalar) Hermitian form for which the elements
of the real form of g are represented as skew-adjoint operators. The weights ν of L(µ)
satisfy µ − ν ∈ Q+, hence there is a Z-grading on L(µ) such that elements of L(µ)ν have
degree j = − ht(µ − ν). The g-action is compatible with the gradings, i.e. the action map
g ⊗ L(µ) → L(µ) preserves gradings. The spinor module Sp = ∧p− carries the Z-grading
defined by the Z-grading on p−, and the module action Cl(p)⊗Sp → Sp preserves gradings.
The action of W(g, u) on the graded vector space L(µ) ⊗ Sp extends to an action of the

completion Ŵ(g, u). We denote by

DL(µ) ∈ Ênd(L(µ) ⊗ Sp)

the image of Dg,u under this representation. Then DL(µ) is an odd, skew-adjoint operator.
Since DL(µ) commutes with the diagonal action of u on L(µ) ⊗ Sp, its kernel ker(DL(µ))

is a Z2-graded u-representation.
Let P+

u ⊂ Pu ⊂ h∗ be the set of dominant weights for u. For any ν ∈ P+
u , let M(ν) be

the corresponding irreducible highest weight representation of u. Parallel to [10, Theorem
4.24] we have:

Theorem 6.5. The kernel of the operator DL(µ) is a direct sum,

ker(DL(µ)) =
⊕

w∈Wp

M(w(µ + ρ) − ρu).

Here the even (resp. odd) part of the kernel is the sum over the w ∈ Wp such that l(w) is
even (resp. odd).

Proof. Given an integrable u-representation, and any u-dominant weight ν ∈ P+
u , let the

subscript [ν] denote the corresponding isotypical subspace. We are interested in ker(DL(µ))[ν].
Since DL(µ) is skew-adjoint, its kernel coincides with that of its square:

ker(DL(µ)) = ker(D2
L(µ)).

The action of Casg on L(µ) is as a scalar B(µ + ρ, µ + ρ) − B(ρ, ρ), and similarly for the
action of Casu on M(ν). Hence

D2
L(µ) = B(µ+ ρ, µ+ ρ) − j(Casu) −B(ρu, ρu)

acts on (L(µ) ⊗ Sp)[ν] as a scalar, B(µ+ ρ, µ+ ρ) −B(ν + ρu, ν + ρu). This shows that

ker(DL(µ))[ν] =
⊕′

ν
(L(µ) ⊗ Sp)[ν],

where the sum
⊕′

ν is over all ν ∈ ∆u satisfying B(µ + ρ, µ + ρ) = B(ν + ρu, ν + ρu). We
want to identify this sum as a sum over Wp.

Suppose ν is any weight with (L(µ) ⊗ Sp)ν 6= 0. We will show B(ν + ρu, ν + ρu) ≤
B(µ + ρ, µ + ρ). By [5, Prop. 11.4(b)], an element ν ∈ Pu for which equality holds is
automatically in P+

u , and the multiplicity ofM(ν) in L(µ)⊗Sp is then equal to the dimension
of the highest weight space (L(µ) ⊗ Sp)ν . Write ν = ν1 + ν2 where L(µ)ν1

and (Sp)ν2
are

non-zero. By our description of the set of weights of Sp, the element ν2 + ρu is among the
weights of the g-representation L(ρ), and in particular lies in the dual Tits cone X∨ of g.
Since the Tits cone is convex, and ν1 ∈ X∨, it follows that ν1 + (ν2 + ρu) = ν + ρu ∈ X∨.
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Consequently, there exists w ∈ W such that w−1(ν + ρu) ∈ C∨ ⊂ h∗. Since ν2 + ρu is a
weight of L(ρ), so is its image under w−1. Hence

κ2 = ρ− w−1(ν2 + ρu) ∈ Q+.

On the other hand, since w−1ν1 is a weight of L(µ), we also have κ1 = µ − w−1ν1 ∈ Q+.
Adding, we obtain

µ+ ρ = κ+ w−1(ν + ρu).

with κ = κ1 + κ2 ∈ Q+. Since the pairing of κ with w−1(ν + ρu) ∈ C∨ is non-negative, the
inequality B(µ+ ρ, µ+ ρ) ≥ B(ν + ρu, ν + ρu) follows. Equality holds if and only if κ = 0,
i.e. κ1 = 0 and κ2 = 0, i.e. ν2 = wρ− ρu and ν1 = wµ. The h-weight spaces (Sp)wρ−ρu and
L(µ)wµ are 1-dimensional, hence so is their tensor product, (L(µ) ⊗ Sp)ν . It follows that ν
appears with multiplicity 1.

This shows that M(ν) appears in ker(DL(µ)) if and only if it can be written in the form
ν = w(µ + ρ) − ρu, for some w ∈ Wp, and in this case it appears with multiplicity 1.
Note finally that w with this property is unique, since µ+ ρ is regular. The parity of the
ν-isotypical component follows since (Sp)wρ−ρu has parity equal to that of l(w). �

The weights

ν = w(µ+ ρ) − ρu, w ∈Wp

are referred to as the multiplet corresponding to µ. Note that for given µ, the value of the
quadratic Casimir Casu on the representations M(w(µ + ρ) − ρu) is given by the constant
value B(µ+ ρ, µ+ ρ) −B(ρu, ρu), independent of w.

6.5. Characters. For any weight ν ∈ h∗, we write e(ν) for the corresponding formal ex-
ponential. We will regard the spinor module as a super representation, using the usual
Z2-grading of the exterior algebra. The even and odd part are denoted S0̄

p and S1̄
p, and its

formal character ch(Sp) =
∑

ν(dim(S0̄
p)ν − dim(S1̄

p)ν) e(ν). Here (S0̄
p)ν and (S1̄

p)ν are the h

weight spaces, and e(ν) is the formal character defined by ν (cf. [5, §10.2]).

Proposition 6.6. The super character of the spin representation of u on p is given by the
formula

ch(Sp) = e(ρp)
∏

α∈∆+
p

(1 − e(−α))np (α).

Proof. For each root space p−α, the character of the adjoint action of h on ∧p−α equals
(1−e(−α))np (α). The character of the adjoint action on ∧p− =

⊗
α∈∆+

p
∧p−α is the product

of the characters on ∧p−α. By Proposition 6.4 the action of h as a subalgebra of u differs
from the adjoint action by a ρp-shift accounting for an extra factor e(ρp). �

Consider L(µ) ⊗ Sp as a super representation of u. Its formal super character is

ch(L(µ) ⊗ Sp) = ch(L(µ))ch(Sp).

On the other hand, since DL(µ) is an odd skew-adjoint operator on this space, this coincides
with

ch(ker(DL(µ))) =
∑

w∈p

(−1)l(w)
ch(M(w(µ+ ρ) − ρu)).
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This gives the generalized Weyl-Kac character formula,

ch(L(µ)) =

∑
w∈Wp

(−1)l(w)ch(M(w(µ+ ρ) − ρu))

e(ρp)
∏

α∈∆+
p
(1 − e(−α))np (α)

,

valid for quadratic subalgebras u ⊂ g of the form considered above. For u = h one recovers
the usual Weyl-Kac character formula [5, §10.4] for symmetrizable Kac-Moody algebras.
Note that the Weyl-Kac character formula also holds for the non-symmetrizable case, see
Kumar [13, Chapter 3.2]. We do not know how to treat this general case using cubic Dirac
operators.

Example 6.7. As a concrete example, consider the Kac-Moody algebra of hyperbolic type,
associated to the generalized Cartan matrix

(
2 −3

−3 2

)

(cf. [5, Exercise 5.28]). The Weyl group W is generated by the reflections r1, r2 correspond-
ing to α1, α2. The set P+ of dominant weights is generated by ̟1 = −1

5(2α1 + 3α2) and

̟2 = −1
5(2α2 + 3α1). One has ρ = ̟1 +̟2 = −(α1 + α2).

Put Πu = {β1, β2} with

β1 = α1, β2 = r2(α1) = α1 + 3α2.

Since β2 − β1 = 3α2 is not a root, Πu is the set of simple roots for a Kac-Moody Lie
subalgebra u ⊂ g. One finds that ρu = ̟1, and the fundamental u-weights spanning P+

u

are τ1 = ̟1 −
1
3̟2 and τ2 = 1

3̟2.
The Weyl group Wu is generated by the reflections defined by β1, β2, i.e. by r1 and r2r1r2.

A general element of Wu is thus a word in r1, r2, with an even number of r2’s. One has

Wp = {1, r2},

giving duplets of u-representations. Write weights µ ∈ P+ in the form µ = k1̟1 + k2̟2.
Then the corresponding duplet is given by the weights

µ+ ρ− ρu = k1̟1 + (k2 + 1)̟2 = k1τ1 + (k1 + 3k2 + 3)τ2

r2(µ+ ρ) − ρu = (k1 + 3(k2 + 1))̟1 − (k2 + 1)̟2 = (k1 + 3k2 + 3)τ1 + k2τ2.
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