THE CUBIC DIRAC OPERATOR FOR INFINITE-DIMENSONAL LIE ALGEBRAS

E. MEINRENKEN

ABSTRACT. Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ be an infinite-dimensional graded Lie algebra, with dim $\mathfrak{g}_i < \infty$, equipped with a non-degenerate symmetric bilinear form B of degree 0. The quantum Weil algebra $\widehat{W}\mathfrak{g}$ is a completion of the tensor product of the enveloping and Clifford algebras of \mathfrak{g} . Provided that the Kac-Peterson class of \mathfrak{g} vanishes, one can construct a cubic Dirac operator $\mathcal{D} \in \widehat{W}(\mathfrak{g})$, whose square is a quadratic Casimir element. We show that this condition holds for symmetrizable Kac-Moody algebras. Extending Kostant's arguments, one obtains generalized Weyl-Kac character formulas for suitable 'equal rank' Lie subalgebras of Kac-Moody algebras. These extend the formulas of G. Landweber for affine Lie algebras.

AMS subject classification: 22E65, 15A66

0. INTRODUCTION

Let \mathfrak{g} be a finite-dimensional complex Lie algebra, equipped with a non-degenerate invariant symmetric bilinear form B. For $\xi \in \mathfrak{g}$, the corresponding generators of the enveloping algebra $U(\mathfrak{g})$ are denoted $s(\xi)$, while those of the Clifford algebra $\operatorname{Cl}(\mathfrak{g})$ are denoted simply by ξ . The quantum Weil algebra [1] is the super algebra

$$\mathcal{W}(\mathfrak{g}) = U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{g}),$$

with even generators $s(\xi)$ and odd generators ξ . Let $\mathcal{D} \in \mathcal{W}(\mathfrak{g})$ be the odd element, written in terms of a basis e_a of \mathfrak{g} as

$$\mathcal{D} = \sum_{a} s(e_a)e^a - \frac{1}{12}\sum_{abc} f_{abc}e^a e^b e^c,$$

where e^a is the *B*-dual basis and f_{abc} are the structure constants. The key property of this element is that its square lies in the center of $\mathcal{W}(\mathfrak{g})$:

(1)
$$\mathcal{D}^2 = \operatorname{Cas}_{\mathfrak{g}} + \frac{1}{24} \operatorname{tr}_{\mathfrak{g}}(\operatorname{Cas}_{\mathfrak{g}}),$$

where $\operatorname{Cas}_{\mathfrak{g}} = \sum_{a} s(e_{a})s(e^{a}) \in U(\mathfrak{g})$ is the quadratic Casimir element. The element \mathcal{D} is called the *cubic Dirac operator*, following Kostant [10]. More generally, Kostant introduced cubic Dirac operators $\mathcal{D}_{\mathfrak{g},\mathfrak{u}}$ for pairs of a quadratic Lie algebra \mathfrak{g} and a quadratic Lie subalgebra \mathfrak{u} . For \mathfrak{g} semi-simple and \mathfrak{u} an equal rank subalgebra, he used this to prove, among other things, generalizations of the Bott-Borel-Weil theorem and of the Weyl character formula (see also [2, 11]).

Date: May 20, 2010.

In this article, we will consider generalizations of this theory to infinite-dimensional Lie algebras. We assume that \mathfrak{g} is \mathbb{Z} -graded, with finite dimensional graded pieces \mathfrak{g}_i , and equipped with a non-degenerate invariant symmetric bilinear form B of degree 0. A priori, the formal expressions defining \mathcal{D} , $\operatorname{Cas}_{\mathfrak{g}}$ are undefined since they involve infinite sums. It is possible to replace these expressions with 'normal-ordered' sums, leading to well-defined elements $\mathcal{D}', \operatorname{Cas}'_{\mathfrak{g}}$ in suitable completion of $\mathcal{W}(\mathfrak{g})$. However, it is no longer true in general that $(\mathcal{D}')^2 - \operatorname{Cas}'_{\mathfrak{g}}$ is a constant, and in any case $\operatorname{Cas}'_{\mathfrak{g}}$ is not a central element. One may attempt to define elements \mathcal{D} , $\operatorname{Cas}_{\mathfrak{g}}$ having these properties by adding lower order correction terms to $\mathcal{D}', \operatorname{Cas}'_{\mathfrak{g}}$. Our main observation is that this is possible if and only the *Kac-Peterson* $class [\psi_{KP}] \in H^2(\mathfrak{g})$ is zero. In fact, given $\rho \in \mathfrak{g}^*_0$ with $\psi_{KP} = d\rho$, the elements $\mathcal{D} = \mathcal{D}' + \rho$ and $\operatorname{Cas}_{\mathfrak{g}} = \operatorname{Cas}'_{\mathfrak{g}} + 2\rho$ have the desired properties. These results are motivated by the work of Kostant-Sternberg [12], who had exhibited the Kac-Peterson class as an obstruction class in their BRST quantization scheme.

For symmetrizable Kac-Moody algebras, the existence of a corrected Casimir element $\operatorname{Cas}_{\mathfrak{g}}$ is a famous result of Kac [4]. In particular, $[\psi_{KP}] = 0$ in this case. As we will see, Kostant's theory carries over to the symmetrizable Kac-Moody case in a fairly straightforward manner. For suitable 'regular' Kac-Moody subalgebras $\mathfrak{u} \subset \mathfrak{g}$, we thus obtain generalized Weyl-Kac character formulas as sums over multiplets of \mathfrak{u} -representations.

For affine Lie algebras or loop algebras, similar Dirac operators were described in Kac-Todorov [7] and Kazama-Suzuki [8], and more explicitly in Landweber [14] and Wassermann [19]. In fact, Wassermann uses this Dirac operator to give a proof of the Weyl-Kac character formula for affine Lie algebras, while Landweber proves generalized Weyl character formulas for 'equal rank loop algebras'. The cubic Dirac operator \mathcal{D} for general symmetrizable Kac-Moody algebras is very briefly discussed in Kitchloo [9].

1. Completions

In this Section we will define completions of the exterior and Clifford algebras of a graded quadratic vector space. We recall from [6] how the Kac-Peterson cocycle appears in this context.

1.1. **Kac-Peterson cocycle.** Let $V = \bigoplus_{i \in \mathbb{Z}} V_i$ be a \mathbb{Z} -graded vector space over \mathbb{C} , with finite-dimensional graded components. The (graded) dual space is the direct sum over the duals of V_i , with grading $(V^*)_i = (V_{-i})^*$. Given another graded vector space V' with dim $V'_i < \infty$, we let $\operatorname{Hom}(V, V')$ be the direct sum over the spaces $\operatorname{Hom}(V, V')_i = \bigoplus_r \operatorname{Hom}(V_r, V'_{r+i})$ of finite rank maps of degree *i*. We let

$$\widehat{\operatorname{Hom}}(V,V')_i = \prod_r \operatorname{Hom}(V_r,V'_{r+i})$$

be the space of all linear maps $V \to V'$ of degree i, and $\operatorname{Hom}(V, V')$ their direct sum. If V = V' we write $\operatorname{End}(V) = \operatorname{Hom}(V, V)$ and $\operatorname{End}(V) = \operatorname{Hom}(V, V)$. Note that $\operatorname{End}(V)$ is an algebra with unit I.

Define a splitting $V = V_- \oplus V_+$ where $V_+ = \bigoplus_{i>0} V_i$, $V_- = \bigoplus_{i\leq 0} V_i$. Denote by π_-, π_+ the projections to the two summands. The Kac-Peterson cocycle ([6]; see also [5, Exercise

(7.28]) on End(V) is a Lie algebra cocycle given by the formula,

(2)
$$\psi_{KP}(A_1, A_2) = \frac{1}{2} \operatorname{tr}(A_1 \pi_- A_2 \pi_+) - \frac{1}{2} \operatorname{tr}(A_2 \pi_- A_1 \pi_+).$$

This is well-defined since the compositions $\pi_{-}A_{i}\pi_{+} \colon V \to V$ have finite rank. Observe that ψ_{KP} has degree 0, that is, (2) vanishes unless the degrees of A_{1}, A_{2} add to zero. On the Lie subalgebra $\operatorname{End}(V) \subset \operatorname{End}(V)$, the Kac-Peterson cocycle restricts to a coboundary:

(3)
$$\psi_{KP}(A_1, A_2) = \frac{1}{2} \operatorname{tr}(\pi_+[A_1, A_2]).$$

1.2. Completion of symmetric and exterior algebras. Let S(V) be the symmetric algebra of V, with \mathbb{Z} -grading defined by assigning degree i to generators in V_i . Let V^* be the graded dual as above. The pairing between S(V) and $S(V^*)$ identifies $S(V)_i$ as a subspace of the space of linear maps $S(V^*)_{-i} \to \mathbb{K}$. We define a completion $\widehat{S}(V)_i$ as the space of all linear maps $S(V^*)_{-i} \to \mathbb{K}$. Equivalently,

$$\widehat{S}(V)_i = \prod_{r \ge 0} S(V_-)_{i-r} \otimes S(V_+)_r.$$

We let $\widehat{S}(V)$ be the direct sum over the $\widehat{S}(V)_i$. The multiplication map of S(V) extends to the completion, making $\widehat{S}(V)$ into a \mathbb{Z} -graded algebra. For each $k \geq 0$ one similarly has a completion $\widehat{S}^k(V) \subset \widehat{S}(V)$ of each component $S^k(V)$. Then $\widehat{S}(V)_i$ is the direct product over all $\widehat{S}^k(V)_i$. The space $\widehat{S}^2(V^*)_0$ may be identified with the space of symmetric bilinear maps $B: V \times V \to \mathbb{C}$ of degree 0, that is $B(V_i, V_j) = 0$ for $i + j \neq 0$.

In a similar fashion, one defines a completions $\widehat{\wedge}(V)_i$ as the spaces of all linear maps $\widehat{\wedge}(V^*)_{-i} \to \mathbb{K}$, or equivalently

$$\widehat{\wedge}(V)_i = \prod_{r \ge 0} \wedge (V_-)_{i-r} \otimes \wedge (V_+)_r.$$

We let $\widehat{\wedge}(V)$ be the \mathbb{Z} -graded super algebra given as the direct sum over all $\widehat{\wedge}(V)_i$. Again, one also has completions of the individual $\wedge^k(V)$. The space $\widehat{\wedge}^2(V^*)_0$ may be identified with the skew-symmetric bilinear maps $V \times V \to \mathbb{C}$ of degree 0. In particular:

$$\psi_{KP} \in \widehat{\wedge}^2 (\widehat{\operatorname{End}}(V)^*)_0.$$

1.3. Clifford algebras. Suppose B is a (possibly degenerate) symmetric bilinear form on $V = \bigoplus_i V_i$ of degree 0. Let $\operatorname{Cl}(V)$ be the corresponding Clifford algebra, i.e. the super algebra with odd generators $v \in V$ and relations vw + wv = 2B(v, w) for $v, w \in V$. The \mathbb{Z} -grading on V defines a \mathbb{Z} -grading on $\operatorname{Cl}(V)$, compatible with the algebra structure.

Using the restrictions of the bilinear form to V_{\pm} , we may similarly form the Clifford algebras $\operatorname{Cl}(V_{\pm})$. These are \mathbb{Z} -graded subalgebras of $\operatorname{Cl}(V)$, and the multiplication map defines an isomorphism of super vector spaces, $\operatorname{Cl}(V) \cong \operatorname{Cl}(V_{-}) \otimes \operatorname{Cl}(V_{+})$. Note that $\operatorname{Cl}(V_{+}) = \wedge(V_{+})$ since *B* restricts to 0 on V_{+} .

We obtain a \mathbb{Z} -graded superalgebra $\widehat{Cl}(V)$ as the direct sum over all

$$\widehat{\mathrm{Cl}}(V)_i = \prod_{r \ge 0} \mathrm{Cl}(V_-)_{i-r} \otimes \mathrm{Cl}(V_+)_r.$$

Let $q^0: \wedge (V) \to \operatorname{Cl}(V)$ denote the standard quantization map for the Clifford algebra, defined by super symmetrization:

$$q^{0}(v_{1} \wedge \dots \wedge v_{k}) = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{k}} \operatorname{sign}(\sigma) v_{\sigma(1)} \cdots v_{\sigma(k)},$$

where \mathfrak{S}_k is the permutation group on k elements, and $\operatorname{sign}(\sigma) = \pm 1$ is the parity of the permutation σ . The map q^0 is an isomorphism of super spaces, preserving the \mathbb{Z} -gradings and taking $\wedge(V_{\pm})$ to $\operatorname{Cl}(V_{\pm})$. While q^0 itself does not extend to the completions, we obtain a well-defined normal-ordered quantization map

$$q:\widehat{\wedge}(V)\to\widehat{\mathrm{Cl}}(V)$$

by taking the direct sum over $i \in \mathbb{Z}$ and direct product over $r \ge 0$ of

$$q^0 \otimes q^0 \colon \wedge (V_-)_{i-r} \otimes \wedge (V_+)_r \to \operatorname{Cl}(V_-)_{i-r} \otimes \operatorname{Cl}(V_+)_r.$$

The quantization map is an isomorphism of \mathbb{Z} -graded super vector spaces, with the property that for $\lambda \in \widehat{\wedge}^k(V), \ \mu \in \widehat{\wedge}^l(V)$,

$$q^{-1}(q(\lambda)q(\mu)) = \lambda \wedge \mu \mod \widehat{\wedge}^{k+l-2}(V).$$

Any element $v \in V$ defines an odd derivation ι_v , called *contraction*, of the super algebra $\wedge(V)$, given on generators by $\iota_v(w) = B(v, w)$. The same formula also defines a derivation of the Clifford algebra, again denoted ι_v . In both cases, the contractions extend to the completions. The map $q: \widehat{\wedge}(V) \to \widehat{Cl}(V)$ intertwines contractions:

$$q \circ \iota_v = \iota_v \circ q$$

since $q^0 \circ \iota_v = \iota_v \circ q^0$ and since contractions preserve $\wedge(V_{\pm})$ and $\operatorname{Cl}(V_{\pm})$.

Let $\mathfrak{o}(V) \subset \operatorname{End}(V)$ and $\widehat{\mathfrak{o}}(V) \subset \operatorname{End}(V)$ denote the *B*-skew-symmetric endomorphisms. Let

(4)
$$\widehat{\wedge}^2(V) \to \widehat{\mathfrak{o}}(V), \quad \lambda \mapsto A_\lambda$$

be the map defined by $A_{\lambda}(v) = -2\iota_v\lambda$. The map (4) is $\hat{\mathfrak{o}}(V)$ -equivariant, that is,

$$A_{L_X\lambda} = [X, A_\lambda]$$

for $X \in \widehat{\mathfrak{o}}(V)$.

Lemma 1.1. For all $\lambda \in \wedge^2(V)$,

(5)
$$q(\lambda) = q^0(\lambda) - \frac{1}{2}\operatorname{tr}(\pi_+ A_\lambda).$$

Proof. It suffices to check for elements of the form $\lambda = u \wedge v$ for $u, v \in V$. We have $A_{u \wedge v}(w) = 2(B(v, w)u - B(u, w)v)$, hence $\operatorname{tr}(\pi_+ A_{u \wedge v}) = 2(B(\pi_+ u, v) - B(\pi_+ v, u))$. On the other hand, by considering the special cases that u, v are both in V_- , both in V_+ , or $u \in V_-, v \in V_+$ we find

(6)
$$q(u \wedge v) = q^0(u \wedge v) + B(\pi_+ v, u) - B(\pi_+ u, v).$$

The map q^0 is $\mathfrak{o}(V)$ -equivariant. For the normal-ordered quantization map this is no longer the case.

Proposition 1.2 (Kac-Peterson). [6] For all $\lambda \in \widehat{\wedge}^2(V)$ and $X \in \widehat{\mathfrak{o}}(V)$, one has

$$L_X q(\lambda) = q(L_X \lambda) + \psi_{KP}(X, A_\lambda).$$

Proof. It is enough to prove this for $X \in \mathfrak{o}(V)$ and $\lambda \in \wedge^2(V)$. Since q^0 intertwines Lie derivatives, Lemma 1.1 together with (3) give

$$L_X q(\lambda) - q(L_X \lambda) = \frac{1}{2} \operatorname{tr}(\pi_+ A_{L_X \lambda}) = \frac{1}{2} \operatorname{tr}(\pi_+ [X, A_\lambda]) = \psi_{KP}(X, A_\lambda).$$

If B is non-degenerate, the map $\lambda \mapsto A_{\lambda}$ defines an isomorphism $\wedge^2(V) \to \mathfrak{o}(V)$. Let

$$\lambda \colon \mathfrak{o}(V) \to \wedge^2(V), \ A \mapsto \lambda(A)$$

be the inverse map. It extends to a map $\hat{\mathfrak{o}}(V) \to \hat{\wedge}^2(V)$ of the completions. In a basis e_a of V, with *B*-dual basis e^a (i.e. $B(e_a, e^b) = \delta^b_a$), one has

$$\lambda(A) = \frac{1}{4} \sum_{a} A(e_a) \wedge e^a.$$

If $A \in \mathfrak{o}(V)$, the elements $\gamma^0(A) = q^0(\lambda(A))$ are defined. As is well-known, $[\gamma^0(A_1), \gamma^0(A_2)] = \gamma^0([A_1, A_2])$ for $A_i \in \mathfrak{o}(V)$, and

$$L_A = [\gamma^0(A), \cdot].$$

If $A \in \widehat{\mathfrak{o}}(V)$, one still has $L_A = [\gamma'(A), \cdot]$ with
 $\gamma'(A) = q(\lambda(A)),$

but the map γ' is no longer a Lie algebra homomorphism. Instead, Proposition 1.2 shows [6]

(7)
$$[\gamma'(A_1), \gamma'(A_2)] = \gamma'([A_1, A_2]) + \psi_{KP}(A_1, A_2)$$

for $A_1, A_2 \in \widehat{\mathfrak{o}}(V)$.

2. Graded Lie Algebras

We will now specialize to the case that $V = \mathfrak{g}$ is a \mathbb{Z} -graded Lie algebra. We show that in the quadratic case, the obstruction to defining a reasonable 'Casimir operator' is precisely the Kac-Peterson class of \mathfrak{g} .

2.1. Kac-Peterson cocycle of \mathfrak{g} . Let $\mathfrak{g} = \bigoplus_i \mathfrak{g}_i$ be a graded Lie algebra, with dim $\mathfrak{g}_i < \infty$. That is, we assume that the grading is compatible with the bracket: $[\mathfrak{g}_i, \mathfrak{g}_j]_{\mathfrak{g}} \subset \mathfrak{g}_{i+j}$. The map $\mathrm{ad}_{\xi} : \mathfrak{g} \to \mathfrak{g}$ defines a homomorphism of graded Lie algebras

$$\operatorname{ad} \colon \mathfrak{g} \to \operatorname{End}(\mathfrak{g}).$$

Recall that $\mathfrak{g}^* = \bigoplus_i (\mathfrak{g}^*)_i$ denotes the restricted dual where $(\mathfrak{g}^*)_i = (\mathfrak{g}_{-i})^*$. The algebra $\wedge(\mathfrak{g}^*)$ carries contraction operators and Lie derivatives ι_{ξ} , L_{ξ} for $\xi \in \mathfrak{g}$, given on generators by $\iota_{\xi}\mu = \langle \mu, \xi \rangle$ and $L_{\xi}\mu = (-\operatorname{ad}_{\xi})^*\mu$. If dim $\mathfrak{g} < \infty$ it also carries a differential d, given on generators by

$$d\mu = 2\lambda(\mu)$$

where $\lambda(\mu)$ is defined by $\iota_{\xi}\lambda(\mu) = \frac{1}{2}L_{\xi}\mu$. On generators,
 $(d\mu)(\xi_1,\xi_2) = -\langle \mu, [\xi_1,\xi_2]_{\mathfrak{g}} \rangle.$

In the infinite-dimensional case, $\lambda(\mu)$ and hence d are well-defined on the completion $\widehat{\wedge}(\mathfrak{g}^*)$. The operators ι_{ξ}, L_{ξ}, d make $\widehat{\wedge}(\mathfrak{g}^*)$ into a \mathfrak{g} -differential algebra.

Define

$$\psi_{KP}(\xi_1,\xi_2) := \psi_{KP}(\mathrm{ad}_{\xi_1},\mathrm{ad}_{\xi_2})$$

for $\xi_i \in \mathfrak{g}$. Thus $\psi_{KP} \in \widehat{\wedge}^2(\mathfrak{g}^*)_0$ is a degree 2 Lie algebra cocycle of \mathfrak{g} , called the *Kac-Peterson cocycle of* \mathfrak{g} . Its class $[\psi_{KP}] \in H^2(\mathfrak{g})$ will be called the Kac-Peterson class of the graded Lie algebra \mathfrak{g} . Note that d has \mathbb{Z} -degree 0, so that it restricts to a differential on each $\widehat{\wedge}(\mathfrak{g}^*)_i$. Hence, if ψ_{KP} admits a primitive in \mathfrak{g}^* , then it admits a primitive in \mathfrak{g}_0^* .

Example 2.1. [6] Suppose \mathfrak{k} is a finite-dimensional Lie algebra, and let $\mathfrak{g} = \mathfrak{k}[z, z^{-1}]$ the loop algebra with its usual \mathbb{Z} -grading. Let $B^{\text{Kil}}(x, y) = \text{tr}_{\mathfrak{k}}(\text{ad}_x \text{ ad}_y)$ for $x, y \in \mathfrak{k}$ be the Killing form on \mathfrak{k} . One finds

$$\psi_{KP}(\xi,\zeta) = \operatorname{Res} B^{\operatorname{Kil}}\left(\frac{\partial\xi}{\partial z},\zeta\right)$$

for $\xi, \zeta \in \mathfrak{k}[z, z^{-1}]$, where Res picks out the coefficient of z^{-1} . One may check that unless BKil = 0, the Kac-Peterson class $[\psi_{KP}]$ is non-zero.

Example 2.2 (Heisenberg algebra). Let \mathfrak{g} be the Lie algebra with basis $K, e_1, f_1, e_2, f_2, \ldots$, where K is a central element and $[e_i, f_j]_{\mathfrak{g}} = \delta_{ij}K$. Define a grading on \mathfrak{g} such that e_i has degree i and f_i has degree -i, while K has degree 0. One finds $\psi_{KP} = 0$.

Example 2.3. Suppose \mathfrak{g} is a finite-dimensional semi-simple Lie algebra. Choose a Cartan subalgebra \mathfrak{h} and a system $\Delta^+ \subset \mathfrak{h}^*$ of positive roots. Let \mathfrak{g} carry the principal grading, i.e. $\mathfrak{g}_0 = \mathfrak{h}$ while $\mathfrak{g}_i, i \neq 0$ is the direct sum of root spaces for roots of height *i*. Using (3) one finds that $\psi_{KP} = \mathrm{d}\rho$, where $\rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$.

2.2. Enveloping algebras. The \mathbb{Z} -grading on \mathfrak{g} defines a \mathbb{Z} -grading on the enveloping algebra $U(\mathfrak{g})$. Both $\mathfrak{g}_+ = \bigoplus_{i>0} \mathfrak{g}_i$ and $\mathfrak{g}_- = \bigoplus_{i\leq 0} \mathfrak{g}_i$ are graded Lie subalgebras, thus $U(\mathfrak{g}_{\pm})$ are graded subalgebras of $U(\mathfrak{g})$. By the Poincaré-Birkhoff-Witt theorem, the multiplication map defines an isomorphism of vector spaces, $U(\mathfrak{g}) = U(\mathfrak{g}_-) \otimes U(\mathfrak{g}_+)$. We define a completion $\widehat{U}(\mathfrak{g})$ as a direct sum over

$$\widehat{U}(\mathfrak{g})_i = \prod_{r \ge 0} U(\mathfrak{g}_-)_{i-r} \otimes U(\mathfrak{g}_+)_r.$$

The multiplication map extends to the completion, making $\widehat{U}(\mathfrak{g})$ into a graded algebra. Let $q^0: S(\mathfrak{g}) \to U(\mathfrak{g})$ be the isomorphism given by the standard (PBW) symmetrization map,

$$q^{0}(\xi_{1}\cdots\xi_{k}) = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{k}} \xi_{\sigma(1)}\cdots\xi_{\sigma(k)}.$$

This preserves \mathbb{Z} -degrees and takes $S(\mathfrak{g}_{\pm})$ to $U(\mathfrak{g}_{\pm})$. While the map itself does not extend to the completions, we define a normal-ordered symmetrization (quantization) map

$$q\colon S(\mathfrak{g})\to U(\mathfrak{g})$$

by taking the direct sum over i and direct product over r of the maps

$$q^0 \otimes q^0 \colon S(\mathfrak{g}_{-})_{i-r} \otimes S(\mathfrak{g}_{+})_r \to U(\mathfrak{g}_{-})_{i-r} \otimes U(\mathfrak{g}_{+})_r.$$

 $\mathbf{6}$

Then q is an isomorphism of \mathbb{Z} -graded vector spaces. Let

$$S^2(\mathfrak{g}) \to \operatorname{Hom}(\mathfrak{g}^*, \mathfrak{g}), \ p \mapsto A_p$$

be the linear map given for $p = uv, u, v \in \mathfrak{g}$ by

$$A_p(\mu) = \langle \mu, u \rangle v + \langle \mu, v \rangle u.$$

It extends to a \mathfrak{g} -equivariant linear map $\widehat{S}^2(\mathfrak{g}) \to \widehat{\mathrm{Hom}}(\mathfrak{g}^*, \mathfrak{g})$. Let

br:
$$\operatorname{Hom}(\mathfrak{g}^*, \mathfrak{g}) \to \mathfrak{g}$$

be the linear map, given by the identification $\operatorname{Hom}(\mathfrak{g}^*, \mathfrak{g}) \cong \mathfrak{g} \otimes \mathfrak{g}$ followed by the Lie bracket. In a basis e_a of \mathfrak{g} with dual basis $e^a \in \mathfrak{g}^*$, $\operatorname{br}(A) = \sum_a [A(e^a), e_a]_{\mathfrak{g}}$. The counterpart to Lemma 1.1 reads:

Lemma 2.4. For $p \in S^2(\mathfrak{g})$,

$$q(p) = q^{0}(p) - \frac{1}{2}\operatorname{br}(\pi_{+}A_{p}).$$

Proof. It suffices to check for p = uv, where the formula reduces to (cf. (6))

(8)
$$q(uv) = q^{0}(uv) + \frac{1}{2}[u, \pi_{+}v]_{\mathfrak{g}} + \frac{1}{2}[v, \pi_{+}u]_{\mathfrak{g}},$$

but this is straightforward in each of the cases that u, v are both in \mathfrak{g}_+ , both in \mathfrak{g}_- , or $u \in \mathfrak{g}_+, v \in \mathfrak{g}_-$.

In contrast to q^0 , the map q is not g-equivariant. Similar to Proposition 1.2 we have:

Proposition 2.5. On $\widehat{S}^2(\mathfrak{g})$,

$$L_{\xi}(q(p)) - q(L_{\xi}(p)) = \frac{1}{2} \operatorname{br} \left((\pi_{+} \operatorname{ad}_{\xi} \pi_{-} - \pi_{-} \operatorname{ad}_{\xi} \pi_{+}) A_{p} \right).$$

The right hand side is well-defined, since $\pi_- \operatorname{ad}_{\xi} \pi_+$ and $\pi_+ \operatorname{ad}_{\xi} \pi_-$ are in Hom $(\mathfrak{g}, \mathfrak{g})$, hence $(\pi_+ \operatorname{ad}_{\xi} \pi_- - \pi_- \operatorname{ad}_{\xi} \pi_+)A_p \in \operatorname{Hom}(\mathfrak{g}^*, \mathfrak{g}).$

Proof. It suffices to verify this for $p \in S^2(\mathfrak{g})$, so that A_p has finite rank. Since $L_{\xi}q^0(p) - q^0(L_{\xi}p) = 0$, Lemma 2.4 gives

$$L_{\xi}q(p) - q(L_{\xi}p) = -\frac{1}{2} (L_{\xi} \operatorname{br}(\pi_{+}A_{p}) - \operatorname{br}(\pi_{+}A_{L_{\xi}p}))$$

$$= -\frac{1}{2} \operatorname{br} ([L_{\xi}, \pi_{+}A_{p}] - \pi_{+}[L_{\xi}, A_{p}])$$

$$= -\frac{1}{2} \operatorname{br} (L_{\xi}\pi_{+}A_{p} - \pi_{+}L_{\xi}A_{p})$$

$$= \frac{1}{2} \operatorname{br} ((\pi_{+}L_{\xi}\pi_{-} - \pi_{-}L_{\xi}\pi_{+})A_{p}).$$

2.3. Quadratic Lie algebras. We assume that $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ comes equipped with a nondegenerate ad-invariant symmetric bilinear form B of degree 0. Thus, $B(\mathfrak{g}_i, \mathfrak{g}_j) = 0$ for $i + j \neq 0$, while B defines a non-degenerate pairing between $\mathfrak{g}_i, \mathfrak{g}_{-i}$. We will often use B to identify \mathfrak{g}^* with \mathfrak{g} . The examples we have in mind are the following:

(a) Let \mathfrak{k} be a finite-dimensional Lie algebra, with an invariant symmetric bilinear form $B_{\mathfrak{k}}$. Then B extends to an inner product on the loop algebra $\mathfrak{g} = \mathfrak{k}[z, z^{-1}]$.

- (b) Let $\mathfrak{l} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{l}_i$ be a graded Lie algebra, with finite-dimensional homogeneous components, and $\mathfrak{l}^* = \bigoplus_{i \in \mathbb{Z}} \mathfrak{l}_i^*$ its restricted dual, with grading $(\mathfrak{l}^*)_i = \mathfrak{l}_{-i}^*$. The semidirect product $\mathfrak{g} = \mathfrak{l} \ltimes \mathfrak{l}^*$, with *B* given by the pairing, satisfies our assumptions. This case was studied by Kostant and Sternberg in [12].
- (c) Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ be a symmetrizable Kac-Moody Lie algebra, with grading the principal grading (defined by the height of roots). Then \mathfrak{g} carries a 'standard' non-degenerate invariant symmetric bilinear form, see [5]. We will return to the Kac-Moody case in Section 6.

Under the identification $\widehat{\wedge}^2(\mathfrak{g}) \cong \widehat{\mathfrak{o}}(\mathfrak{g})$, the Kac-Peterson cocycle ψ_{KP} corresponds to an element

$$\Psi_{KP} \in \widehat{\mathfrak{o}}(\mathfrak{g}), \quad \psi_{KP}(\xi, \zeta) = B(\Psi_{KP}(\xi), \zeta).$$

Since ψ_{KP} has \mathbb{Z} -degree 0, the transformation Ψ_{KP} preserves each \mathfrak{g}_i . Since ψ_{KP} is a cocycle, Ψ_{KP} is a derivation of the Lie bracket on \mathfrak{g} . Moreover, ψ_{KP} is a coboundary if and only if the derivation Ψ_{KP} is inner:

(9)
$$\psi_{KP} = \mathrm{d}\rho \quad \Leftrightarrow \quad \Psi_{KP} = [\rho^{\sharp}, \cdot]_{\mathfrak{g}},$$

where ρ^{\sharp} is the image of $\rho \in \mathfrak{g}_0^*$ under the isomorphism $B^{\sharp} \colon \mathfrak{g}^* \to \mathfrak{g}$.

Example 2.6. Let $\mathfrak{g} = \mathfrak{k}[z, z^{-1}]$, with \mathfrak{k} semi-simple, and with bilinear form defined in terms of the Killing form on \mathfrak{k} as $B(\xi, \zeta) = \operatorname{Res}(z^{-1}B^{\operatorname{Kil}}(\xi, \zeta))$, for $\xi, \zeta \in \mathfrak{k}[z, z^{-1}]$. Then Ψ_{KP} is the degree operator:

$$\Psi_{KP}(\xi) = z \frac{\partial \xi}{\partial z}$$

2.4. Casimir elements. Let $p \in \widehat{S}^2(\mathfrak{g})$ be the element

$$p = \sum_{a} e_a e^a \in \widehat{S}^2(\mathfrak{g})$$

where e_a is a homogeneous basis of \mathfrak{g} , with *B*-dual basis e^a . The corresponding transformation $A_p \in \operatorname{Hom}(\mathfrak{g}^*, \mathfrak{g}) \cong \operatorname{End}(\mathfrak{g})$ is $2 \operatorname{Id}_{\mathfrak{g}}$. We refer to

$$\operatorname{Cas}_{\mathfrak{g}}' = q(p) \in \widehat{U}(\mathfrak{g})$$

as the normal-ordered Casimir element. It is not an element of the center, in general:

Theorem 2.7. The normal-ordered Casimir element satisfies

$$L_{\xi} \operatorname{Cas}'_{\mathfrak{g}} = 2\Psi_{KP}(\xi),$$

for all $\xi \in \mathfrak{g}$.

Proof. From the definition of br, one finds

$$B(\operatorname{br}(A),\zeta) = \operatorname{tr}(\operatorname{ad}_{\zeta} A)$$

for all
$$A \in \operatorname{End}(\mathfrak{g})$$
 and $\zeta \in \mathfrak{g}$. Since $A_p = 2 \operatorname{Id}_{\mathfrak{g}}$ and $L_{\xi}p = 0$, Proposition 2.5 therefore gives

$$B(L_{\xi} \operatorname{Cas}'_{\mathfrak{g}}, \zeta) = B(\operatorname{br}(\pi_{+} \operatorname{ad}_{\xi} \pi_{-} - \pi_{-} \operatorname{ad}_{\xi} \pi_{+}), \zeta)$$

$$= \operatorname{tr}(\operatorname{ad}_{\zeta} \pi_{+} \operatorname{ad}_{\xi} \pi_{-} - \operatorname{ad}_{\zeta} \pi_{-} \operatorname{ad}_{\xi} \pi_{+})$$

$$= 2\psi_{\operatorname{KP}}(\xi, \zeta)$$

$$= 2B(\Psi_{\operatorname{KP}}(\xi), \zeta).$$

The normal-ordered Casimir element $\operatorname{Cas}'_{\mathfrak{g}}$ admits a linear correction to a central element if and only if the Kac-Peterson class is zero. More precisely:

Corollary 2.8. For $\rho \in \mathfrak{g}_0^*$,

(10)
$$\operatorname{Cas}_{\mathfrak{g}} := \operatorname{Cas}'_{\mathfrak{g}} + 2\rho^{\sharp}$$

lies in the center of $\widehat{U}(\mathfrak{g})$ if and only if $\psi_{KP} = d\rho$.

Proof. This is a direct consequence of Theorem 2.7, since $\psi_{KP} = d\rho$ if and only if $L_{\xi}\rho^{\sharp} = -\Psi_{KP}(\xi)$, see Equation (9).

Example 2.9. For a loop algebra $\mathfrak{g} = \mathfrak{k}[z, z^{-1}]$, with \mathfrak{k} a semi-simple Lie algebra, the Kac-Peterson coycle of \mathfrak{g} defines a non-trivial cohomology class. Hence it is impossible to make $\operatorname{Cas}'_{\mathfrak{g}}$ invariant by adding linear terms. On the other hand, for a symmetrizable Kac-Moody algebra \mathfrak{g} , a classical result of Kac shows that $\operatorname{Cas}'_{\mathfrak{g}}$ becomes invariant after a ρ -shift. Hence the Kac-Peterson class of such a \mathfrak{g} is trivial. See Section 6 below.

2.5. The structure constants tensor and its quantization. Recall the definition of $\lambda: \hat{\mathfrak{o}}(\mathfrak{g}) \to \hat{\wedge}^2(\mathfrak{g})$. We will write

$$\lambda(\xi) = \lambda(\mathrm{ad}_{\xi}),$$

that is $\iota_{\xi}\lambda(\zeta) = \frac{1}{2}[\xi,\zeta]_{\mathfrak{g}}$. In a basis e_a of \mathfrak{g} , with *B*-dual basis e^a , we have $\lambda(\xi) = \frac{1}{4}\sum_{a}[\xi,e_a]_{\mathfrak{g}}\wedge e^a$.

Lemma 2.10. There is a unique element $\phi \in \widehat{\wedge}^3(\mathfrak{g})_0$ with the property

(11)
$$\iota_{\xi_1}\iota_{\xi_2}\iota_{\xi_3}\phi = \frac{1}{2}B([\xi_1,\xi_2]_{\mathfrak{g}},\xi_3), \quad \xi_1,\xi_2,\xi_3 \in \mathfrak{g}$$

Proof. The right-hand side is a skew-symmetric trilinear form of degree 0 on \mathfrak{g} . Hence it defines an element of $\widehat{\wedge}^3(\mathfrak{g})$.

Equivalently, $\iota_{\xi}\phi = 2\lambda(\xi), \ \xi \in \mathfrak{g}$. In a basis,

(12)
$$\phi = -\frac{1}{12} \sum_{abc} f_{abc} e^a \wedge e^b \wedge e^c,$$

where $f_{abc} = B([e_a, e_b]_{\mathfrak{g}}, e_c)$ are the structure constants. From the definition, it is clear that ϕ is \mathfrak{g} -invariant. This need no longer be true of its normal-ordered quantization. Write

$$\gamma'(\xi) = q(\lambda(\xi)), \quad \phi'_{\mathrm{Cl}} = q(\phi)$$

so that $L_{\xi} = [\gamma'(\xi), \cdot)]$. Denote by $\psi_{KP}^{\sharp} \in \widehat{\wedge}^2(\mathfrak{g})$ the image of $\psi_{KP} \in \widehat{\wedge}^2(\mathfrak{g}^*)$ under the isomorphism $B^{\sharp} \colon \widehat{\wedge}(\mathfrak{g}^*) \to \widehat{\wedge}(\mathfrak{g})$.

Proposition 2.11. The element $\phi'_{Cl} \in \widehat{Cl}(\mathfrak{g})$ satisfies

$$L_{\xi}\phi_{\rm Cl}' = \Psi_{KP}(\xi),$$

and its square is given by the formula

$$(\phi_{\rm Cl}')^2 = q(\psi_{KP}^{\sharp}) + \frac{1}{24} \operatorname{tr}_{\mathfrak{g}_0}(\operatorname{Cas}_{\mathfrak{g}_0}).$$

Here $\operatorname{Cas}_{\mathfrak{g}_0} \in U(\mathfrak{g}_0)$ is the quadratic Casimir element for \mathfrak{g}_0 , and $\operatorname{tr}_{\mathfrak{g}_0}(\operatorname{Cas}_{\mathfrak{g}_0})$ is its trace in the adjoint representation.

Proof. The first formula follows from the second, since

$$L_{\xi}\phi'_{\rm Cl} = [\gamma'(\xi), \phi'_{\rm Cl}] = \iota_{\xi}(\phi'_{\rm Cl})^2.$$

Since

$$\iota_{\xi}(\phi_{\rm Cl}')^2 = [\gamma'(\xi), \phi_{\rm Cl}'] = L_{\xi}\phi_{\rm Cl}' = \Psi_{KP}(\xi) = \iota_{\xi}q(\psi_{KP}^{\sharp}),$$

the difference $(\phi'_{Cl})^2 - q(\psi^{\sharp}_{KP})$ is a constant. Let ϕ_r be the component of ϕ in $(\wedge \mathfrak{g}_{-})_{-r} \otimes (\wedge \mathfrak{g}_{+})_r$. The commutator of ϕ'_{Cl} with a term $q(\phi_r)$ for r > 0 is contained in the right ideal generated by \mathfrak{g}_+ , and hence does not contribute to the constant. Hence the constant equals $q(\phi_0)^2$, where $\phi_0 \in \wedge^3 \mathfrak{g}_0$ is the structure constants tensor of $\mathfrak{g}_0 \subset \mathfrak{g}$. By [1, 10] this constant is given by $\frac{1}{24} \operatorname{tr}_{\mathfrak{g}_0}(\operatorname{Cas}_{\mathfrak{g}_0})$.

Corollary 2.12. Suppose $\psi_{KP} = d\rho$ for some $\rho \in \mathfrak{g}_0^*$. Define elements of $\widehat{Cl}(\mathfrak{g})$ by

$$\phi_{\mathrm{Cl}} := \phi'_{\mathrm{Cl}} + \rho^{\sharp}, \quad \gamma(\xi) = \gamma'(\xi) + \langle \rho, \xi \rangle,$$

for $\xi \in \mathfrak{g}$. The following commutator relations hold in $\widehat{Cl}(\mathfrak{g})$:

$$\begin{split} [\xi,\zeta] &= 2B(\xi,\zeta),\\ [\gamma(\xi),\phi_{\mathrm{Cl}}] &= 0,\\ [\xi,\phi_{\mathrm{Cl}}] &= 2\gamma(\xi),\\ [\gamma(\xi),\gamma(\zeta)] &= \gamma([\xi,\zeta]_{\mathfrak{g}}),\\ [\gamma(\xi),\zeta] &= [\xi,\zeta]_{\mathfrak{g}},\\ [\phi_{\mathrm{Cl}},\phi_{\mathrm{Cl}}] &= 2B(\rho^{\sharp},\rho^{\sharp}) + \frac{1}{12}\operatorname{tr}_{\mathfrak{g}_0}(\operatorname{Cas}_{\mathfrak{g}_0}). \end{split}$$

Thus $\widehat{\mathrm{Cl}}(\mathfrak{g})$ becomes a \mathfrak{g} -differential algebra (see e.g. [16]) with differential $d = [\phi_{\mathrm{Cl}}, \cdot]$, contractions $\iota_{\xi} = \frac{1}{2}[\xi, \cdot]$, and Lie derivatives $L_{\xi} = [\gamma(\xi), \cdot]$.

Proof. Observe first that $\lambda(\rho^{\sharp}) = -\psi_{KP}$, since

$$\iota_{\zeta}\iota_{\xi}\lambda(\rho^{\sharp}) = \iota_{\zeta}[\xi,\rho^{\sharp}]_{\mathfrak{g}} = B(\zeta,[\xi,\rho^{\sharp}]_{\mathfrak{g}}) = -\langle \rho,[\xi,\zeta]_{\mathfrak{g}}\rangle.$$

Consequently $[\rho^{\sharp}, \phi'_{\text{Cl}}] = -q(\psi_{KP})$, which implies the formula for $[\phi_{\text{Cl}}, \phi_{\text{Cl}}]$. The other assertions are verified similarly.

Still assuming $\psi_{KP} = d\rho$, consider the algebra morphism

(13)
$$\gamma \colon U(\mathfrak{g}) \to \widehat{\mathrm{Cl}}(\mathfrak{g})$$

extending the Lie algebra homomorphism $\xi \mapsto \gamma(\xi)$.

Proposition 2.13. The map (13) extends to an algebra morphism

$$\gamma \colon \widehat{U}(\mathfrak{g}) \to \widehat{\mathrm{Cl}}(\mathfrak{g}).$$

Proof. We claim that for all i > 0, $\gamma(\mathfrak{g}_i)$ is contained in

(14)
$$\prod_{r\geq 0} \operatorname{Cl}(\mathfrak{g}_{-})_{-r} \operatorname{Cl}(\mathfrak{g}_{+})_{i+r} \subset \widehat{\operatorname{Cl}}(\mathfrak{g})_{i}$$

(i.e. the components in $\operatorname{Cl}(\mathfrak{g}_+)$ have degree $\geq i$). Indeed, suppose $\xi \in \mathfrak{g}_i$ with i > 0. In particular, $\langle \rho, \xi \rangle = 0$. Let $e_a \in \mathfrak{g}$ be a basis consisting of homogeneous elements, and e^a the dual basis. Since $\langle \rho, \xi \rangle = 0$, and since $[\xi, e_a]_{\mathfrak{g}}$ Clifford commutes with e^a , we have

$$\gamma(\xi) = \frac{1}{2} \sum_{+} ([\xi, e^a] e_a - e^a[\xi, e_a]) + \frac{1}{4} \sum_{0} [\xi, e_a] e^a$$

where \sum_{+} is a summation over indices with $e_a \in \mathfrak{g}_+$, and \sum_0 is a summation over indices with $e_a \in \mathfrak{g}_0$. The second and third term in this expression are in (14), as are the summands $[\xi, e^a]e_a$ from the first sum for $e_a \in \mathfrak{g}_s$ with $s \ge i$. In the remaining case s < i we have $[\xi, e^a] \in \mathfrak{g}_{i-s} \subset \mathfrak{g}_+$, and hence $[\xi, e^a]e_a \in \operatorname{Cl}(\mathfrak{g}_+)_i$. This proves the claim. By induction, one deduces that

$$\gamma(U(\mathfrak{g}_+)_i) \subset \prod_{r \ge 0} \operatorname{Cl}(\mathfrak{g}_-)_{-r} \operatorname{Cl}(\mathfrak{g}_+)_{i+r}.$$

Similarly, if $j \leq 0$,

$$\gamma(U(\mathfrak{g}_{-})_j) \subset \prod_{r\geq 0} \operatorname{Cl}(\mathfrak{g}_{-})_{j-r} \operatorname{Cl}(\mathfrak{g}_{+})_r.$$

It follows that

$$\gamma(U(\mathfrak{g}_{-})_{-r}U(\mathfrak{g}_{+})_{i+r}) \subset \prod_{m \ge 0} \operatorname{Cl}(\mathfrak{g}_{-})_{-r-m} \operatorname{Cl}(\mathfrak{g}_{+})_{i+r+m}.$$

Summing over all $r \geq 0$, one obtains a well-defined map $\widehat{U}(\mathfrak{g})_i \to \widehat{\mathrm{Cl}}(\mathfrak{g})_i$.

3. Double extension

For the loop algebra $\mathfrak{g} = \mathfrak{k}[z, z^{-1}]$ of a semisimple Lie algebra \mathfrak{k} , the Kac-Peterson class is non-trivial. On the other hand, the usual double extension $\tilde{\mathfrak{g}}$ of \mathfrak{g} is a symmetrizable Kac-Moody algebra, hence its Kac-Peterson class is zero. In fact, one has a similar double extension in the general case, as we now explain.

We continue to work with the assumptions from the last sections; in particular \mathfrak{g} carries an invariant non-degenerate symmetric bilinear form B of degree 0. As noted above, the Kac-Peterson cocycle ψ_{KP} gives rise to a skew-symmetric derivation $\Psi_{KP} \in \hat{\mathfrak{g}}(\mathfrak{g})$. By a general construction of Medina-Revoy [15], such a derivation can be used to define a double extension

$$\widetilde{\mathfrak{g}} = \mathfrak{g} \oplus \mathbb{C}\delta \oplus \mathbb{C}K,$$

with the following bracket: For $\xi, \xi_1, \xi_2 \in \mathfrak{g}$,

$$\begin{split} [\xi_1, \xi_2]_{\tilde{\mathfrak{g}}} &= [\xi_1, \xi_2]_{\mathfrak{g}} + \psi_{KP}(\xi_1, \xi_2)K, \\ [\delta, \xi]_{\tilde{\mathfrak{g}}} &= \Psi_{KP}(\xi), \\ [\delta, K]_{\tilde{\mathfrak{g}}} &= 0, \\ [\xi, K]_{\tilde{\mathfrak{g}}} &= 0 \end{split}$$

The bilinear form B on \mathfrak{g} extends to a non-degenerate invariant bilinear form on $\tilde{\mathfrak{g}}$, in such a way that \mathfrak{g} and $\mathbb{C}\delta \oplus \mathbb{C}K$ are orthogonal and

$$\ddot{B}(\delta, K) = 1, \quad \ddot{B}(\delta, \delta) = \ddot{B}(K, K) = 0.$$

Introduce the grading $\tilde{\mathfrak{g}}_i = \mathfrak{g}_i$ for $i \neq 0$ and $\tilde{\mathfrak{g}}_0 = \mathfrak{g}_0 \oplus \mathbb{C}\delta \oplus \mathbb{C}K$. The resulting splitting is

$$\tilde{\mathfrak{g}}_{-} = \mathfrak{g}_{-} \oplus \mathbb{C}\delta \oplus \mathbb{C}K, \ \tilde{\mathfrak{g}}_{+} = \mathfrak{g}_{+}.$$

Let $\tilde{\psi}_{KP}$ be the Kac-Peterson cocycle for this splitting, $\tilde{\Psi}_{KP}$ the associated derivation, and denote by $\tilde{\pi}_{\pm} : \tilde{\mathfrak{g}} \to \mathfrak{g}_{\pm}$ the projections along $\tilde{\mathfrak{g}}_{\mp}$. The adjoint representation for $\tilde{\mathfrak{g}}$ will be denoted ad.

Proposition 3.1. The derivation $\tilde{\Psi}_{KP}$ is inner:

$$\tilde{\Psi}_{KP} = [\delta, \cdot]_{\tilde{\mathfrak{g}}}.$$

Equivalently $\tilde{\psi}_{KP} = d\rho$ where $\rho = \tilde{B}(\delta, \cdot)$.

Proof. The desired equation $\tilde{\Psi}_{KP} = [\delta, \cdot]_{\tilde{\mathfrak{g}}}$ means that $\tilde{\Psi}_{KP}(\xi) = \Psi_{KP}(\xi)$, $\tilde{\Psi}_{KP}(\delta) = 0$, $\tilde{\Psi}_{KP}(K) = 0$. Equivalently, we have to show that $\tilde{\psi}_{KP}(\xi_1, \xi_2) = \psi_{KP}(\xi_1, \xi_2)$ for $\xi_1, \xi_2 \in \mathfrak{g}$, while both K, δ are in the kernel of $\tilde{\psi}_{KP}$. The last claim follows from

$$\tilde{\pi}_{-}\mathrm{ad}_{\delta}\tilde{\pi}_{+} = 0 = \tilde{\pi}_{+}\mathrm{ad}_{\delta}\tilde{\pi}_{-}$$

and similarly for ad_K , since ad_δ and ad_K preserve degrees. On the other hand, one checks that for $\xi_1, \xi_2 \in \mathfrak{g}$, the composition

$$\pi_+ \operatorname{ad}_{\xi_1} \pi_- \operatorname{ad}_{\xi_2} \pi_+ \colon \mathfrak{g}_+ \to \mathfrak{g}_+$$

of operators on \mathfrak{g} coincides with the composition

$$\tilde{\pi}_+ \operatorname{ad}_{\xi_1} \tilde{\pi}_- \operatorname{ad}_{\xi_2} \tilde{\pi}_+ \colon \mathfrak{g}_+ \to \mathfrak{g}_+$$

of operators on $\tilde{\mathfrak{g}}$. Hence the Kac-Peterson coycles agree on elements of $\mathfrak{g} \subset \tilde{\mathfrak{g}}$.

4. The cubic Dirac operator

We will define the cubic Dirac operator as an element of a completion of the quantum Weil algebra $\mathcal{W}(\mathfrak{g}) = U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{g})$. Following [1], we take the viewpoint that the commutator with \mathcal{D} defines a differential, making $\widehat{\mathcal{W}}(\mathfrak{g})$ into a \mathfrak{g} -differential algebra.

4.1. Weil algebra. We begin with an arbitrary \mathbb{Z} -graded Lie algebra \mathfrak{g} with dim $\mathfrak{g}_i < \infty$. As usual \mathfrak{g}^* denotes the restricted dual. Consider the tensor product $W(\mathfrak{g}^*) = S(\mathfrak{g}^*) \otimes \wedge(\mathfrak{g}^*)$ with grading

$$W^k(\mathfrak{g}^*) = \bigoplus_{2r+s=k} S^r(\mathfrak{g}^*) \otimes \wedge^s(\mathfrak{g}^*).$$

For $\mu \in \mathfrak{g}^*$ we denote by $s(\mu) = \mu \otimes 1$ the degree 2 generators and by $\mu = 1 \otimes \mu$ the degree 1 generators. Any $\xi \in \mathfrak{g}$ defines contraction operators ι_{ξ} ; these are derivations of degree -1 given on generators by $\iota_{\xi}\mu = \mu(\xi)$, $\iota_{\xi}s(\mu) = 0$. The co-adjoint action on \mathfrak{g}^* defines Lie derivatives $L_{\xi} = L_{\xi}^S \otimes 1 + 1 \otimes L_{\xi}^{\wedge}$. If dim $(\mathfrak{g}) < \infty$, the algebra $W(\mathfrak{g})$ carries a Weil differential d^W , given on generators by¹

(15)
$$d^{W}\mu = 2(s(\mu) + \lambda(\mu)), \ d^{W}s(\mu) = \sum_{a} s(L_{e_{a}}\mu)e^{a}.$$

¹The conventions for the differential follow [16, §6.11]. They are arranged to make the relation with the quantum Weil algebra appear most natural. One recovers the more standard conventions used in e.g. [3] and [1] by a simple rescaling of variables.

Here e_a is a basis of \mathfrak{g} with dual basis $e^a \in \mathfrak{g}^*$.

In the general case, we need to pass to a completion in order for the differential to be defined. Define a second \mathbb{Z} -grading on $W(\mathfrak{g}^*)$, in such a way that the generators $s(\mu), \mu$ for $\mu \in (\mathfrak{g}^*)_i = (\mathfrak{g}_{-i})^*$ have degree *i*. Letting $\mathfrak{g}^*_+ = \bigoplus_{i>0} (\mathfrak{g}^*)_i$ and $\mathfrak{g}^*_- = \bigoplus_{i\leq 0} (\mathfrak{g}^*)_i$ we define a completion $\widehat{W}(\mathfrak{g}^*)$ as the graded algebra with

$$\widehat{W}(\mathfrak{g}^*)_i = \prod_{r \ge 0} W(\mathfrak{g}^*_{-})_{i-r} \otimes W(\mathfrak{g}^*_{+})_r.$$

(Equivalently, $\widehat{W}(\mathfrak{g}^*)_i$ is the space of all linear maps $(S(\mathfrak{g}) \otimes \wedge(\mathfrak{g}))_{-i} \to \mathbb{K}$.) The Weil differential d^W is define on generators by the formulas (15). Together with the natural extensions of ι_{ξ}, L_{ξ} this makes $\widehat{W}(\mathfrak{g}^*)$ into a \mathfrak{g} -differential algebra.

4.2. Quantum Weil algebra. Suppose now that \mathfrak{g} carries an invariant symmetric bilinear form B of degree 0. We use B to identify \mathfrak{g}^* with \mathfrak{g} , and will thus write $W(\mathfrak{g})$, $\widehat{W}(\mathfrak{g})$ and so on. The non-commutative quantum Weil algebra is the tensor product

$$\mathcal{W}(\mathfrak{g}) = U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{g})$$

It is a super algebra, with even generators $s(\zeta) = \zeta \otimes 1$ and odd generators $\zeta = 1 \otimes \zeta$. Any $\xi \in \mathfrak{g}$ defines Lie derivatives $L_{\xi} = L_{\xi}^U \otimes 1 + 1 \otimes L_{\xi}^{Cl}$ and contraction operators ι_{ξ} , given as odd derivations with $\iota_{\xi}\zeta = B(\xi,\zeta)$, $\iota_{\xi}s(\zeta) = 0$. Super symmetrization defines an isomorphism

(16)
$$q^0 \colon W(\mathfrak{g}) \to \mathcal{W}(\mathfrak{g}),$$

given simply as the tensor product of $q^0: S(\mathfrak{g}) \to U(\mathfrak{g})$ and $q^0: \wedge (\mathfrak{g}) \to \operatorname{Cl}(\mathfrak{g})$. Note that (16) intertwines the contractions and Lie derivatives. We define a completion $\widehat{\mathcal{W}}(\mathfrak{g})$ as the graded super algebra with

$$\widehat{\mathcal{W}}(\mathfrak{g})_i = \prod_{r \geq 0} \mathcal{W}(\mathfrak{g}_-)_{i-r} \otimes \mathcal{W}(\mathfrak{g}_+)_r.$$

The 'normal-ordered' quantization map $q \colon \widehat{W}(\mathfrak{g}) \to \widehat{\mathcal{W}}(\mathfrak{g})$ is defined by summing over all

$$q^0 \otimes q^0 \colon W(\mathfrak{g}_{-})_{i-r} \otimes W(\mathfrak{g}_{+})_r \to \mathcal{W}(\mathfrak{g}_{-})_{i-r} \otimes \mathcal{W}(\mathfrak{g}_{+})_r$$

It extends the quantization maps $q \colon \widehat{S}(\mathfrak{g}) \to \widehat{U}(\mathfrak{g})$ and $q \colon \widehat{\wedge}(\mathfrak{g}) \to \widehat{\mathrm{Cl}}(\mathfrak{g})$.

4.3. The element q(D). If dim $\mathfrak{g} < \infty$, one obtains a differential d^{\mathcal{W}} on $\mathcal{W}\mathfrak{g}$, as a derivation given on generators by formulas similar to (15),

$$d^{\mathcal{W}}\zeta = 2(s(\zeta) + q_0(\lambda(\zeta))), \ d^{\mathcal{W}}s(\zeta) = \sum_a s(L_{e_a}\zeta)e^a$$

see [1]. In fact, $d^{\mathcal{W}} = [q^0(D), \cdot]$, where $D \in W^3(\mathfrak{g})$ is the element

$$D = \sum_{a} s(e_a)e^a + \phi,$$

with $\phi \in \wedge^3 \mathfrak{g} \subset W^3(\mathfrak{g})$ the structure constants tensor. The fact that $d^{\mathcal{W}}$ squares to zero means that $q^0(D)$ squares to a central element, and indeed one finds

$$q^{0}(D)^{2} = \operatorname{Cas}_{\mathfrak{g}} + \frac{1}{24} \operatorname{tr}_{\mathfrak{g}}(\operatorname{Cas}_{\mathfrak{g}}).$$

If dim $\mathfrak{g} = \infty$, the element D is well-defined as an element of the completion $\widehat{W}^3(\mathfrak{g})$, but $q^0(D)$ is ill-defined. On the other hand,

$$\mathcal{D}' = q(D) = \sum_{a} s(e_a)e^a + \phi'_{\text{Cl}}$$

is defined but does not square to a central element.

Proposition 4.1. The square of $\mathcal{D}' = q(D)$ is given by

$$(\mathcal{D}')^2 = \operatorname{Cas}'_{\mathfrak{g}} + q(\psi_{KP}^{\sharp}) + \frac{1}{24} \operatorname{tr}_{\mathfrak{g}_0}(\operatorname{Cas}_{\mathfrak{g}_0}).$$

Proof. We have

$$L_{\xi}\mathcal{D}' = L_{\xi}\phi'_{\mathrm{Cl}} = \Psi_{KP}(\xi) = \iota_{\xi}q(\psi_{KP}^{\sharp})$$

because $\sum_{a} s(e_a)e^a \in \widehat{\mathcal{W}}(\mathfrak{g})$ is \mathfrak{g} -invariant. Using that $\iota_{\xi}\mathcal{D}' = s(\xi) + \iota_{\xi}(q(\phi)) = s(\xi)$

$$\iota_{\xi}\mathcal{D}' = s(\xi) + \iota_{\xi}(q(\phi)) = s(\xi) + \gamma'(\xi)$$

are generators for the $\mathfrak{g}\text{-}\mathrm{action}$ on $\widehat{\mathcal{W}}(\mathfrak{g}),$ we have

$$\iota_{\xi}((\mathcal{D}')^2 - q(\psi_{KP}^{\sharp})) = [\iota_{\xi}\mathcal{D}', \mathcal{D}'] - q(\psi_{KP}^{\sharp}) = 0.$$

This shows $(\mathcal{D}')^2 - q(\psi_{KP}^{\sharp}) \in \widehat{U}(\mathfrak{g}) \subset \widehat{\mathcal{W}}(\mathfrak{g})$. To find this element we calculate, denoting by ... terms in the kernel of the projection $\widehat{\mathcal{W}}(\mathfrak{g}) \to \widehat{U}(\mathfrak{g})$,

$$(\mathcal{D}')^2 = \sum_{ab} s(e_a) s(e_b) e^a e^b + (\phi'_{Cl})^2 + \dots$$

= $\frac{1}{2} \sum_{ab} s(e_a) s(e_b) [e^a, e^b] + \frac{1}{24} \operatorname{tr}_{\mathfrak{g}_0}(\operatorname{Cas}_{\mathfrak{g}_0}) + \dots$
= $\operatorname{Cas}'_{\mathfrak{g}} + \frac{1}{24} \operatorname{tr}_{\mathfrak{g}_0}(\operatorname{Cas}_{\mathfrak{g}_0}) + \dots$

If the Kac-Peterson class is trivial, one obtains an element \mathcal{D} with better properties.

Corollary 4.2. Suppose that $\psi_{KP} = d\rho$ for some $\rho \in \mathfrak{g}_0^*$. Define

$$\mathcal{D} = \mathcal{D}' + \rho^{\sharp}, \quad \gamma_{\mathcal{W}}(\xi) = s(\xi) + \gamma_{\mathrm{Cl}}'(\xi) + \langle \rho, \xi \rangle,$$

and put $\operatorname{Cas}_{\mathfrak{g}} = \operatorname{Cas}'_{\mathfrak{g}} + 2\rho^{\sharp}$ as before. Then

$$\mathcal{D}^2 = \operatorname{Cas}_{\mathfrak{g}} \otimes 1 + \frac{1}{24} \operatorname{tr}_{\mathfrak{g}_0}(\operatorname{Cas}_{\mathfrak{g}_0}) + B(\rho^{\sharp}, \rho^{\sharp}).$$

One has the following commutator relations in $\widehat{\mathcal{W}}(\mathfrak{g})$,

$$[\mathcal{D}, \mathcal{D}] = 2 \operatorname{Cas}_{\mathfrak{g}} \otimes 1 + \frac{1}{12} \operatorname{tr}_{\mathfrak{g}_0}(\operatorname{Cas}_{\mathfrak{g}_0}) + 2B(\rho^{\sharp}, \rho^{\sharp}),$$
$$[\gamma_{\mathcal{W}}(\xi), \mathcal{D}] = 0,$$
$$[\xi, \mathcal{D}] = 2\gamma_{\mathcal{W}}(\xi),$$
$$[\gamma_{\mathcal{W}}(\xi), \gamma_{\mathcal{W}}(\zeta)] = \gamma_{\mathcal{W}}([\xi, \zeta]_{\mathfrak{g}}),$$
$$[\gamma_{\mathcal{W}}(\xi), \zeta] = [\xi, \zeta]_{\mathfrak{g}},$$
$$[\xi, \zeta] = 2B(\xi, \zeta).$$

Thus $\widehat{\mathcal{W}}(\mathfrak{g})$ becomes a \mathfrak{g} -differential algebra, with differential, Lie derivatives and contractions given by

$$d^{\mathcal{W}} = [\mathcal{D}, \cdot], \quad L^{\mathcal{W}}_{\xi} = [\gamma_{\mathcal{W}}(\xi), \cdot], \quad \iota^{\mathcal{W}}_{\xi} = \frac{1}{2}[\xi, \cdot].$$

We will refer to $\mathcal{D} \in \widehat{\mathcal{W}}(\mathfrak{g})$ as the *cubic Dirac operator*, following Kostant [10].

5. Relative Dirac operators

In his paper [10], Kostant introduced more generally Dirac operators for any pair of a quadratic Lie algebra \mathfrak{g} and a quadratic Lie subalgebra \mathfrak{u} . We consider now an extension of his results to infinite-dimensional graded Lie algebras.

Let \mathfrak{g}, B be as in the last Section, and suppose $\mathfrak{u} \subseteq \mathfrak{g}$ is a graded quadratic subalgebra. That is, $\mathfrak{u}_i \subseteq \mathfrak{g}_i$ for all *i*, and the non-degenerate symmetric bilinear form *B* on \mathfrak{g} restricts to a non-degenerate bilinear form on \mathfrak{u} . We have an orthogonal decomposition

$$\mathfrak{g}=\mathfrak{u}\oplus\mathfrak{p}$$

where $\mathfrak{p} = \mathfrak{u}^{\perp}$. For any $\xi \in \mathfrak{u}$, the operator $\mathrm{ad}_{\xi} \in \widehat{\mathfrak{o}}(\mathfrak{g})$ breaks up as a sum

$$\operatorname{ad}_{\xi} = \operatorname{ad}_{\xi}^{\mathfrak{u}} + \operatorname{ad}_{\xi}^{\mathfrak{p}}, \quad \xi \in \mathfrak{u}$$

of operators $\operatorname{ad}_{\xi}^{\mathfrak{u}} \in \widehat{\mathfrak{o}}(\mathfrak{u})$ and $\operatorname{ad}_{\xi}^{\mathfrak{p}} \in \widehat{\mathfrak{o}}(\mathfrak{p})$. Accordingly,

$$\lambda(\xi) = \lambda_{\mathfrak{u}}(\xi) + \lambda_{\mathfrak{p}}(\xi), \quad \xi \in \mathfrak{u}$$

with $\lambda_{\mathfrak{u}}(\xi) \in \widehat{\wedge}^2(\mathfrak{u})$ and $\lambda_{\mathfrak{p}}(\xi) \in \widehat{\wedge}^2(\mathfrak{p})$. Denote by $\gamma'_{\mathfrak{u}}(\xi)$, $\gamma'_{\mathfrak{p}}(\xi)$ their images under $q: \widehat{W}(\mathfrak{g}) \to \widehat{W}(\mathfrak{g})$. We have (cf. (7))

$$[\gamma'_{\mathfrak{p}}(\xi), \gamma'_{\mathfrak{p}}(\zeta)] = \gamma'_{\mathfrak{p}}([\xi, \zeta]) + \psi^{\mathfrak{p}}_{KP}(\xi, \zeta),$$

where $\psi_{KP}^{\mathfrak{p}}(\xi,\zeta) = \psi_{KP}^{\mathfrak{p}}(\mathrm{ad}_{\xi}^{\mathfrak{p}},\mathrm{ad}_{\zeta}^{\mathfrak{p}})$ defines a cocycle $\psi_{KP}^{\mathfrak{p}} \in \widehat{\wedge}^{2}(\mathfrak{u}^{*})$. If $\psi_{KP}^{\mathfrak{p}} = \mathrm{d}\rho_{\mathfrak{p}}$ for some $\rho_{\mathfrak{p}} \in \mathfrak{u}_{0}^{*}$, then

$$\gamma_{\mathfrak{p}}(\xi) = \gamma_{\mathfrak{p}}'(\xi) + \langle \rho_{\mathfrak{p}}, \xi \rangle$$

gives a Lie algebra homomorphism $\mathfrak{u} \to \widehat{\mathrm{Cl}}(\mathfrak{p})$, generating the adjoint action of \mathfrak{u} . One obtains an algebra homomorphism $j: \mathcal{W}(\mathfrak{u}) \to \widehat{\mathcal{W}}(\mathfrak{g})$, given on generators by

$$j(\xi) = \xi, \quad j(s(\xi)) = s(\xi) + \gamma_{\mathfrak{p}}(\xi), \quad \xi \in \mathfrak{u}.$$

Proposition 5.1. The homomorphism $\mathcal{W}(\mathfrak{u}) \to \widehat{\mathcal{W}}(\mathfrak{g})$ extends to an algebra homomorphism for the completion:

$$j \colon \mathcal{W}(\mathfrak{u}) \to \mathcal{W}(\mathfrak{g}).$$

It intertwines Lie derivatives and contraction by elements $\xi \in \mathfrak{u}$.

Proof. The first part follows by an argument parallel to that for Proposition 2.13. The second part follows from

$$j \circ L_{\xi} = j \circ [s(\xi) + \gamma'_{\mathfrak{u}}(\xi), \cdot] = [s(\xi) + \gamma'_{\mathfrak{g}}(\xi), \cdot] \circ j = L_{\xi} \circ j$$

and similarly $j \circ \iota_{\xi} = \frac{1}{2}j \circ [\xi, \cdot] = \frac{1}{2}[\xi, \cdot] \circ j = \iota_{\xi} \circ j.$

Let

$$\mathcal{W}(\mathfrak{g},\mathfrak{u}) = (U(\mathfrak{g})\otimes \mathrm{Cl}(\mathfrak{p}))^{\mathfrak{u}}$$

be the u-basic part of $\mathcal{W}(\mathfrak{g})$, i.e. the subalgebra of elements annihilated by all L_{ξ} and all ι_{ξ} for $\xi \in \mathfrak{u}$. Similarly let $\widehat{\mathcal{W}}(\mathfrak{g},\mathfrak{u})$ be the u-basic part of $\widehat{\mathcal{W}}(\mathfrak{g})$.

Proposition 5.2. The subalgebra $\widehat{\mathcal{W}}(\mathfrak{g},\mathfrak{u})$ is the commutant of the range $j(\widehat{\mathcal{W}}(\mathfrak{u}))$.

Proof. Since $\iota_{\xi} = \frac{1}{2}[\xi, \cdot]$, an element of $\widehat{\mathcal{W}}(\mathfrak{g})$ commutes with the generators $j(\xi)$ for $\xi \in \mathfrak{u}$ precisely if it lies in the u-horizontal subspace, given as the completion of $U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{p})$. The elements $j(s(\xi)) = s(\xi) + \gamma'_{\mathfrak{p}}(\xi)$ generate the u-action on that subspace. Hence, an element of $\widehat{\mathcal{W}}(\mathfrak{g})$ commutes with all $j(\xi)$, $j(s(\xi))$ if and only if it is u-basic.

We will now make the stronger assumption that the Kac-Peterson classes of both $\mathfrak{g}, \mathfrak{u}$ are zero. Let $\rho \in \mathfrak{g}_0^*$, $\rho_{\mathfrak{u}} \in \mathfrak{u}_0^*$ be elements such that

$$\psi_{KP} = \mathrm{d}\rho, \quad \psi_{KP}^{\mathfrak{u}} = \mathrm{d}\rho_{\mathfrak{u}},$$

and take $\rho_{\mathfrak{p}} := \rho|_{\mathfrak{u}_0} - \rho_{\mathfrak{u}} \in \mathfrak{u}_0^*$ so that $\psi_{KP}^{\mathfrak{p}} = \mathrm{d}\rho_{\mathfrak{p}}$. Put

$$\gamma(\zeta) = \gamma'(\zeta) + \langle \rho, \zeta \rangle, \quad \gamma_{\mathfrak{u}}(\xi) = \gamma'_{\mathfrak{u}}(\xi) + \langle \rho_u, \xi \rangle$$

for all $\zeta \in \mathfrak{g}, \xi \in \mathfrak{u}$, and let

$$\mathcal{D} = \mathcal{D}' + \rho^{\sharp} \in \widehat{\mathcal{W}}(\mathfrak{g}), \quad \mathcal{D}_{\mathfrak{u}} = \mathcal{D}'_{\mathfrak{u}} + \rho^{\sharp}_{\mathfrak{u}} \in \widehat{\mathcal{W}}(\mathfrak{u})$$

be the cubic Dirac operators for $\mathfrak{g}, \mathfrak{u}$. The commutator with these elements defines differentials on the two Weil algebras.

Lemma 5.3. The map $j: \widehat{\mathcal{W}}(\mathfrak{u}) \to \widehat{\mathcal{W}}(\mathfrak{g})$ is a homomorphism of \mathfrak{u} -differential algebras.

Proof. It remains to show that the map j intertwines differentials. It suffices to check on generators. For $\xi \in \mathfrak{u}$,

$$j(\mathrm{d}\xi) = j(s_{\mathfrak{u}}(\xi) + \gamma_{\mathfrak{u}}(\xi)) = s(\xi) + \gamma_{\mathfrak{p}}(\xi) + \gamma_{\mathfrak{u}}(\xi) = s(\xi) + \gamma(\xi) = \mathrm{d}j(\xi),$$

and similarly $j(ds_{\mathfrak{u}}(\xi)) = dj(s_{\mathfrak{u}}(\xi)).$

We define the relative cubic Dirac operator $\mathcal{D}_{\mathfrak{g},\mathfrak{u}}$ as a difference,

(17)
$$\mathcal{D}_{g,\mathfrak{u}} = \mathcal{D} - j(\mathcal{D}_{\mathfrak{u}}).$$

Proposition 5.4. The element $\mathcal{D}_{g,\mathfrak{u}}$ lies in $\widehat{\mathcal{W}}(\mathfrak{g},\mathfrak{u})$, and squares to an element of the center of $\widehat{\mathcal{W}}(\mathfrak{g},\mathfrak{u})$. Explicitly,

$$\mathcal{D}_{\mathfrak{g},\mathfrak{u}}^{2} = \operatorname{Cas}_{\mathfrak{g}} - j(\operatorname{Cas}_{\mathfrak{u}}) + \frac{1}{24}\operatorname{tr}_{\mathfrak{g}_{0}}(\operatorname{Cas}_{\mathfrak{g}_{0}}) - \frac{1}{24}\operatorname{tr}_{\mathfrak{u}_{0}}(\operatorname{Cas}_{\mathfrak{u}_{0}}) + B(\rho^{\sharp},\rho^{\sharp}) - B(\rho_{\mathfrak{u}}^{\sharp},\rho_{\mathfrak{u}}^{\sharp}).$$

Proof. Using that j intertwines contractions ι_{ξ} , $\xi \in \mathfrak{u}$, we find

$$\iota_{\xi} \mathcal{D}_{\mathfrak{g},\mathfrak{u}} = \iota_{\xi} \mathcal{D} - j(\iota_{\xi} \mathcal{D}_{\mathfrak{u}})$$

= $s(\xi) + \gamma(\xi) - j(s_{\mathfrak{u}}(\xi) + \gamma_{\mathfrak{u}}(\xi))$
= $\gamma(\xi) - \gamma_{\mathfrak{p}}(\xi) - \gamma_{\mathfrak{u}}(\xi) = 0.$

16

Thus $\mathcal{D}_{\mathfrak{g},\mathfrak{u}}$ is \mathfrak{u} -horizontal, and it is clearly \mathfrak{u} -invariant as well. Thus $\mathcal{D}_{\mathfrak{g},\mathfrak{u}} \in \mathcal{W}(\mathfrak{g},\mathfrak{u})$. In particular, $\mathcal{D}_{\mathfrak{g},\mathfrak{u}}$ commutes with $j(\mathcal{D}_{\mathfrak{u}})$. Consequently, $[\mathcal{D}, \mathcal{D}] = j([\mathcal{D}_{\mathfrak{u}}, \mathcal{D}_{\mathfrak{u}}]) + [\mathcal{D}_{\mathfrak{g},\mathfrak{u}}, \mathcal{D}_{\mathfrak{g},\mathfrak{u}}]$, that is

$$\mathcal{D}^2_{\mathfrak{g},\mathfrak{u}}=\mathcal{D}^2-j(\mathcal{D}^2_\mathfrak{u}).$$

Now use Corollary 4.2.

6. Application to Kac-Moody Algebras

In his paper [10], Kostant used the cubic Dirac operator $\mathcal{D}_{g,u}$ to prove generalized Weyl character formulas for any pair of a semi-simple Lie algebra \mathfrak{g} and equal rank subalgebra \mathfrak{u} . In this Section, we show that much of this theory carries over to symmetrizable Kac-Moody algebras, with only minor adjustments.

6.1. Notation and basic facts. Let us recall some notation and basic facts; our main references are the books by Kac [5] and Kumar [13].

Let $A = (a_{ij})_{1 \le i,j \le l}$ be a generalized Cartan matrix, and let $(\mathfrak{h}, \Pi, \Pi^{\vee})$ be a realization of A. Thus \mathfrak{h} is a vector space of dimension $2l - \operatorname{rk}(A)$, and $\Pi = \{\alpha_1, \ldots, \alpha_l\} \subset \mathfrak{h}^*$ (the set of simple roots) and $\Pi^{\vee} = \{\alpha_1^{\vee}, \ldots, \alpha_l^{\vee}\} \subset \mathfrak{h}$ (the corresponding co-roots) satisfy $\langle \alpha_j, \alpha_i^{\vee} \rangle = a_{ij}$. The Kac-Moody algebra $\mathfrak{g} = \mathfrak{g}(A)$ is the Lie algebra generated by elements $h \in \mathfrak{h}$ and elements e_j, f_j for $j = 1, \ldots, l$, subject to relations

$$[h, e_i] = \langle \alpha_i, h \rangle e_i, \ [h, f_i] = -\langle \alpha_i, h \rangle f_i, \ [h, h'] = 0, \ [e_i, f_j] = \delta_{ij} \alpha_i^{\vee},$$
$$\mathrm{ad}(e_i)^{1-a_{ij}}(e_j) = 0, \ \mathrm{ad}(f_i)^{1-a_{ij}}(f_j) = 0, \ i \neq j.$$

The non-zero weights $\alpha \in \mathfrak{h}^*$ for the adjoint action of \mathfrak{h} on \mathfrak{g} are called the roots, the corresponding root spaces are denoted \mathfrak{g}_{α} . The set Δ of roots is contained in the lattice $Q = \bigoplus_{j=1}^{l} \mathbb{Z} \alpha_j \subset \mathfrak{h}^*$. Let $Q^+ = \bigoplus_{j=1}^{l} \mathbb{Z}_{\geq 0} \alpha_j$, and put $\Delta^+ = \Delta \cap Q^+$ and $\Delta^- = -\Delta^+$. One has $\Delta = \Delta^+ \cup \Delta^-$.

Let W be the Weyl group of \mathfrak{g} , i.e. the group of transformations of \mathfrak{h} generated by the simple reflections $\xi \mapsto \xi - \langle \alpha_j, \xi \rangle \alpha_j^{\vee}$. The dual action of W as a reflection group on \mathfrak{h}^* preserves Δ . Let Δ^{re} be the set of real roots, i.e. roots that are W-conjugate to roots in Π , and let Δ^{im} be its complement, the imaginary roots. For $\alpha \in \Delta^{\text{re}}$ one has dim $\mathfrak{g}_{\alpha} = 1$.

The length l(w) of a Weyl group element may be characterized as the cardinality of the set

$$\Delta_w^+ = \Delta^+ \cap w\Delta^-$$

of positive roots that become negative under w^{-1} [13, Lemma 1.3.14]. We remark that $\Delta_w^+ \subset \Delta^{\text{re}}$ [5, §5.2].

Fix a real subspace $\mathfrak{h}_{\mathbb{R}} \subset \mathfrak{h}$ containing Π^{\vee} . Let $C \subset \mathfrak{h}_{\mathbb{R}}$ be the *dominant chamber* and X the *Tits cone* [5, §3.12]. Thus C is the set of all $\xi \in \mathfrak{h}_{\mathbb{R}}$ such that $\langle \alpha, \xi \rangle \geq 0$ for all $\alpha \in \Pi$, while X is characterized by the property that $\langle \alpha, \xi \rangle < 0$ for at most finitely many $\alpha \in \Delta$. The W-action preserves X, and C is a fundamental domain in the sense that every W-orbit in X intersects C in a unique point.

For any $\mu = \sum_{j=1}^{l} k_j \alpha_j \in Q$ one defines $\operatorname{ht}(\mu) = \sum_{j=1}^{l} k_j$. The principal grading on \mathfrak{g} is defined by letting \mathfrak{g}_i for $i \neq 0$ be the direct sum of root spaces \mathfrak{g}_α with $\operatorname{ht}(\alpha) = i$, and $\mathfrak{g}_0 = \mathfrak{h}$. Letting $\mathfrak{n}_{\pm} = \bigoplus_{\alpha \in \Delta^{\pm}} \mathfrak{g}_\alpha$, it follows that $\mathfrak{g}_+ = \mathfrak{n}_+$ and $\mathfrak{g}_- = \mathfrak{n}_- \oplus \mathfrak{h}$.

6.2. The Kac-Peterson cocycle. Suppose from now on that A is symmetrizable, that is, there exists a diagonal matrix $D = \text{diag}(\epsilon_1, \ldots, \epsilon_l)$ such that $D^{-1}A$ is symmetric. In this case, \mathfrak{g} carries a non-degenerate symmetric invariant bilinear form B with the property $B(\alpha_j^{\vee}, \xi) = \epsilon_j \langle \alpha_j, \xi \rangle, \ \xi \in \mathfrak{h}$ [5, §2.2]. One refers to B as a standard bilinear form. Choose $\rho \in \mathfrak{h}^*$ with $\langle \rho, \alpha_j^{\vee} \rangle = 1$ for $j = 1, \ldots, l$.

Proposition 6.1. The Kac-Peterson cocycle of the symmetrizable Kac-Moody algebra \mathfrak{g} is exact. In fact,

$$\psi_{KP} = d\rho$$

Proof. Use B to define $\operatorname{Cas}'_{\mathfrak{g}}$. As shown by Kac [5, Theorem 2.6] the operator $\operatorname{Cas}_{\mathfrak{g}} := \operatorname{Cas}'_{\mathfrak{g}} + 2\rho^{\sharp}$ is \mathfrak{g} -invariant. By Corollary 2.8 above this is equivalent to $\psi_{KP} = d\rho$.

6.3. **Regular subalgebras.** We now introduce a suitable class of 'equal rank' subalgebras. Following Morita and Naito [17, 18], consider a linearly independent subset $\Pi_{\mathfrak{u}} \subset \Delta^{\mathrm{re},+}$ with the property that the difference of any two elements in $\Pi_{\mathfrak{u}}$ is not a root. We denote by $\mathfrak{u} \subset \mathfrak{g}$ the Lie subalgebra generated by \mathfrak{h} together with the root spaces $\mathfrak{g}_{\pm\beta}$ for $\beta \in \Pi_{\mathfrak{u}}$. Let $\mathfrak{p} = \mathfrak{u}^{\perp}$, so that $\mathfrak{g} = \mathfrak{u} \oplus \mathfrak{p}$.

Examples 6.2. (a) If $\Pi_{\mathfrak{u}} = \emptyset$ one obtains $\mathfrak{u} = \mathfrak{h}$. (b) Suppose \mathfrak{g} is an affine Kac-Moody algebra, i.e. the double extension of a loop algebra $\mathfrak{k}[z, z^{-1}]$ of a semi-simple Lie algebra \mathfrak{k} . Let $\mathfrak{l} \subset \mathfrak{k}$ be an equal rank subalgebra of \mathfrak{k} . Let $\Pi_{\mathfrak{l}} \subset \Delta_{\mathfrak{k}}^+$ be the simple roots of \mathfrak{l} , and $\Pi_{\mathfrak{u}} \subset \Delta^+$ the corresponding affine roots. Then $\mathfrak{u} = \mathfrak{l}[z, z^{-1}]$. This is the setting considered in Landweber's paper [14].

It was shown in [17, 18] that \mathfrak{u} is a direct sum (as Lie algebras) of a symmetrizable Kac-Moody algebra $\tilde{\mathfrak{u}}$ with a subalgebra of \mathfrak{h}^2 Furthermore, the standard bilinear form B on \mathfrak{g} restricts to a standard bilinear form on $\tilde{\mathfrak{u}}$.

For any root $\alpha \in \Delta$ put $n_{\mathfrak{u}}(\alpha) = \dim \mathfrak{u}_{\alpha}$ and $n_{\mathfrak{p}}(\alpha) = \dim(\mathfrak{p}_{\alpha})$. Thus $n(\alpha) = n_{\mathfrak{u}}(\alpha) + n_{\mathfrak{p}}(\alpha)$ is the multiplicity of α in \mathfrak{g} . Let $\Delta_{\mathfrak{u}}$ (resp. $\Delta_{\mathfrak{p}}$) be the set of roots such that $n_{\mathfrak{u}}(\alpha) > 0$ (resp. $n_{\mathfrak{p}}(\alpha) > 0$). Thus $\Delta_{\mathfrak{u}}$ is the set of roots of \mathfrak{u} . Let $W_{\mathfrak{u}} \subset W$ be the Weyl group of \mathfrak{u} (generated by reflections for elements of $\Pi_{\mathfrak{u}}$), and define a subset

$$W_{\mathfrak{p}} = \{ w \in W | w^{-1} \Delta_{\mathfrak{u}}^+ \subset \Delta^+ \}.$$

Lemma 6.3. We have $w \in W_{\mathfrak{p}} \Leftrightarrow \Delta_w^+ \subset \Delta_{\mathfrak{p}}$. Every $w \in W$ can be uniquely written as a product $w = w_1 w_2$ with $w_1 \in W_{\mathfrak{u}}$ and $w_2 \in W_{\mathfrak{p}}$.

Proof. By definition, $w \in W_{\mathfrak{p}}$ if and only if the intersection $\Delta_{\mathfrak{u}}^{+} \cap w\Delta^{-} = \Delta_{\mathfrak{u}} \cap \Delta_{w}^{+}$ is empty. Since Δ_{w}^{+} consists of real roots, this means $\Delta_{w}^{+} \subset \Delta_{\mathfrak{p}}$. For the second claim, let $C_{\mathfrak{u}} \subset X_{\mathfrak{u}}$ be the chamber and Tits cone for \mathfrak{u} . One has $w \in W_{\mathfrak{p}}$ if and only if $w^{-1}\Delta_{\mathfrak{u}}^{+} \subset \Delta^{+}$, if and only if $wC \subset C_{\mathfrak{u}}$. Let $w \in W$ be given. Then $wC \subset X \subset X_{\mathfrak{u}}$ is contained in a unique chamber of \mathfrak{u} . Hence there is a unique $w_1 \in W_{\mathfrak{u}}$ such that $wC \subset w_1C_{\mathfrak{u}}$. Equivalently, $w_2 := w_1^{-1}w \in W_{\mathfrak{p}}$.

²In fact, Naito [18] constructs an explicit subspace $\tilde{\mathfrak{h}} \subset \mathfrak{h}$ such that the Lie algebra $\tilde{\mathfrak{g}}$ generated by $\tilde{\mathfrak{h}}$ and the $\mathfrak{g}_{\pm\beta}$, $\beta \in \Pi_{\mathfrak{u}}$ is a Kac-Moody algebra. He also considers subsets $\Pi_{\mathfrak{u}}$ that do not necessarily consist of real roots, and finds that the resulting $\tilde{\mathfrak{u}}$ is a symmetrizable generalized Kac-Moody algebra.

We have a decomposition $\mathfrak{p} = \mathfrak{p}_+ \oplus \mathfrak{p}_-$, where $\mathfrak{p}_{\pm} = \mathfrak{p} \cap \mathfrak{n}_{\pm}$. The splitting defines a spinor module $S_{\mathfrak{p}} = \wedge \mathfrak{p}_-$ over $\operatorname{Cl}(\mathfrak{p})$, where the elements of \mathfrak{p}_+ act by contraction and those of \mathfrak{p}_- by exterior multiplication. The Clifford action on this module extends to the completion $\widehat{\operatorname{Cl}}(S_{\mathfrak{p}})$.

Fix $\rho_{\mathfrak{u}} \in \mathfrak{h}^*$ with $\langle \rho_{\mathfrak{u}}, \beta^{\vee} \rangle = 1$ for all $\beta \in \Pi_{\mathfrak{u}}$. Let $\rho_{\mathfrak{p}} = \rho|_{\mathfrak{u}} - \rho_{\mathfrak{u}}$, defining a Lie algebra homomorphism $\gamma_{\mathfrak{p}} = \gamma'_{\mathfrak{p}} + \rho_{\mathfrak{p}} \colon \mathfrak{u} \to \widehat{\mathrm{Cl}}(\mathfrak{p})$. By composition with the spinor action one obtains an integrable \mathfrak{u} -representation

$$\pi_{\mathsf{S}} \colon \mathfrak{u} \to \operatorname{End}(\mathsf{S}_{\mathfrak{p}}).$$

Proposition 6.4. The restriction of π_{S} to $\mathfrak{h} \subset \mathfrak{u}$ differs from the adjoint representation of \mathfrak{h} by a $\rho_{\mathfrak{p}}$ -shift:

$$\pi_{\mathsf{S}}(\xi) = \langle \rho_{\mathfrak{p}}, \xi \rangle + \mathrm{ad}(\xi), \quad \xi \in \mathfrak{h}$$

Hence, the weights for the action of $\mathfrak h$ on $\mathsf {S}_{\mathfrak p}$ are of the form

$$\rho_{\mathfrak{p}} - \sum_{\alpha \in \Delta_{\mathfrak{p}}^+} k_{\alpha} \alpha,$$

where $0 \leq k_{\alpha} \leq n_{\mathfrak{p}}(\alpha)$. The parity of the corresponding weight space is $\sum_{\alpha} k_{\alpha} \mod 2$. For all $w \in W_{\mathfrak{p}}$, the element

$$w\rho - \rho_{\mathfrak{u}}$$

is a weight of S_p , of multiplicity 1. The parity of the weight space S_p equals $l(w) \mod 2$.

Proof. For each $\alpha \in \Delta_{\mathfrak{p}}^+$, fix a basis $e_{\alpha}^{(s)}$, $s = 1, \ldots, n_{\mathfrak{p}}(\alpha)$ of \mathfrak{p}_{α} , and let $e_{-\alpha}^{(s)}$ be the *B*-dual basis of $\mathfrak{p}_{-\alpha}$. By definition, we have $\gamma_{\mathfrak{p}}(\xi) = \langle \rho_{\mathfrak{p}}, \xi \rangle + \gamma_{\mathfrak{p}}'(\xi)$ with

$$\gamma'_{\mathfrak{p}}(\xi) = -\frac{1}{2} \sum_{\alpha \in \Delta_{\mathfrak{p}}^+} \sum_{s=1}^{n_{\mathfrak{p}}(\alpha)} \langle \alpha, \xi \rangle \ e_{-\alpha}^{(s)} e_{\alpha}^{(s)}.$$

The action of $\gamma'_{\mathfrak{p}}(\xi)$ on the spinor module is just the adjoint action of ξ . This proves the first assertion. It is now straightforward to read off the weights of the action on $S_{\mathfrak{p}}$. For all $w \in W$ one has $\rho - w\rho = \sum_{\alpha \in \Delta_w^+} \alpha$ (cf. [13, Corollary 1.3.22]). If $w \in W_{\mathfrak{p}}$, so that $\Delta_w^+ \subset \Delta_{\mathfrak{p}}^+$, it follows that $w\rho - \rho_{\mathfrak{u}} = w\rho - \rho + \rho_{\mathfrak{p}} = \rho_{\mathfrak{p}} - \sum_{\alpha \in \Delta_w^+} \alpha$ is a weight of $S_{\mathfrak{p}}$. We now use

$$\mathsf{S}_{\mathfrak{h}^{\perp}} = \mathsf{S}_{\mathfrak{p}} \otimes \mathsf{S}_{\mathfrak{u} \cap \mathfrak{h}^{\perp}}$$

as modules over $\operatorname{Cl}(\mathfrak{h}^{\perp}) = \operatorname{Cl}(\mathfrak{p}) \otimes \operatorname{Cl}(\mathfrak{u} \cap \mathfrak{h}^{\perp})$. Hence, the tensor product with a generator of the line $(\mathsf{S}_{\mathfrak{u}\cap\mathfrak{h}^{\perp}})_{\rho_{\mathfrak{u}}}$ defines an isomorphism of the weight space $(\mathsf{S}_{\mathfrak{p}})_{w\rho-\rho_{\mathfrak{u}}}$ with $(\mathsf{S}_{\mathfrak{h}^{\perp}})_{w\rho}$; but the latter is 1-dimensional, and its parity is given by $l(w) \mod 2$ (cf. [13, Lemma 3.2.6]).

6.4. Action of the cubic Dirac operator. The subalgebra \mathfrak{u} inherits a \mathbb{Z} -grading from \mathfrak{g} , with \mathfrak{u}_i the direct sum of root spaces \mathfrak{u}_{α} for $\alpha = \sum_r k_r \beta_r$ and $i = \sum_r k_r m_r$. It is thus the grading of type $m = (m_1, \ldots, m_r)$ [5, §1.5] with $m_r = \operatorname{ht}(\beta_r)$. Let $\widehat{\mathcal{W}}(\mathfrak{u})$ be the completion of the quantum Weil algebra for this grading. (It is just the same as the completion defined by the principal grading of \mathfrak{u}).

Let $P \subset \mathfrak{h}^*$ be the weight lattice of \mathfrak{g} , and $P^+ \subset P$ the dominant weights. Thus $\mu \in P$ if and only if $\langle \mu, \alpha_j^{\vee} \rangle \in \mathbb{Z}$ for $j = 1, \ldots, l$, and $\mu \in P^+$ if these pairings are all non-negative. For any $\mu \in P^+$ let $L(\mu)$ be the irreducible integrable representation of \mathfrak{g} of highest weight μ . By [5, §11.4], $L(\mu)$ carries a unique (up to scalar) Hermitian form for which the elements of the real form of \mathfrak{g} are represented as skew-adjoint operators. The weights ν of $L(\mu)$ satisfy $\mu - \nu \in Q^+$, hence there is a \mathbb{Z} -grading on $L(\mu)$ such that elements of $L(\mu)_{\nu}$ have degree $j = -\operatorname{ht}(\mu - \nu)$. The \mathfrak{g} -action is compatible with the gradings, i.e. the action map $\mathfrak{g} \otimes L(\mu) \to L(\mu)$ preserves gradings. The spinor module $S_{\mathfrak{p}} = \wedge \mathfrak{p}_-$ carries the \mathbb{Z} -grading defined by the \mathbb{Z} -grading on \mathfrak{p}_- , and the module action $\operatorname{Cl}(\mathfrak{p}) \otimes S_{\mathfrak{p}} \to S_{\mathfrak{p}}$ preserves gradings. The action of $\mathcal{W}(\mathfrak{g},\mathfrak{u})$ on the graded vector space $L(\mu) \otimes S_{\mathfrak{p}}$ extends to an action of the completion $\widehat{\mathcal{W}}(\mathfrak{g},\mathfrak{u})$. We denote by

$$\mathcal{D}_{L(\mu)} \in \widetilde{\operatorname{End}}(L(\mu) \otimes \mathsf{S}_{\mathfrak{p}})$$

the image of $\mathcal{D}_{\mathfrak{g},\mathfrak{u}}$ under this representation. Then $\mathcal{D}_{L(\mu)}$ is an odd, skew-adjoint operator.

Since $\mathcal{D}_{L(\mu)}$ commutes with the diagonal action of \mathfrak{u} on $L(\mu) \otimes S_{\mathfrak{p}}$, its kernel ker $(\mathcal{D}_{L(\mu)})$ is a \mathbb{Z}_2 -graded \mathfrak{u} -representation.

Let $P_{\mathfrak{u}}^+ \subset P_{\mathfrak{u}} \subset \mathfrak{h}^*$ be the set of dominant weights for \mathfrak{u} . For any $\nu \in P_{\mathfrak{u}}^+$, let $M(\nu)$ be the corresponding irreducible highest weight representation of \mathfrak{u} . Parallel to [10, Theorem 4.24] we have:

Theorem 6.5. The kernel of the operator $\mathcal{D}_{L(\mu)}$ is a direct sum,

$$\ker(D_{L(\mu)}) = \bigoplus_{w \in W_{\mathfrak{p}}} M(w(\mu + \rho) - \rho_{\mathfrak{u}}).$$

Here the even (resp. odd) part of the kernel is the sum over the $w \in W_{\mathfrak{p}}$ such that l(w) is even (resp. odd).

Proof. Given an integrable u-representation, and any u-dominant weight $\nu \in P_{\mathfrak{u}}^+$, let the subscript $[\nu]$ denote the corresponding isotypical subspace. We are interested in ker $(D_{L(\mu)})_{[\nu]}$. Since $\mathcal{D}_{L(\mu)}$ is skew-adjoint, its kernel coincides with that of its square:

$$\ker(\mathcal{D}_{L(\mu)}) = \ker(\mathcal{D}_{L(\mu)}^2).$$

The action of $\operatorname{Cas}_{\mathfrak{g}}$ on $L(\mu)$ is as a scalar $B(\mu + \rho, \mu + \rho) - B(\rho, \rho)$, and similarly for the action of $\operatorname{Cas}_{\mathfrak{u}}$ on $M(\nu)$. Hence

$$\mathcal{D}_{L(\mu)}^2 = B(\mu + \rho, \mu + \rho) - j(\operatorname{Cas}_{\mathfrak{u}}) - B(\rho_{\mathfrak{u}}, \rho_{\mathfrak{u}})$$

acts on $(L(\mu) \otimes \mathsf{S}_{\mathfrak{p}})_{[\nu]}$ as a scalar, $B(\mu + \rho, \mu + \rho) - B(\nu + \rho_{\mathfrak{u}}, \nu + \rho_{\mathfrak{u}})$. This shows that

$$\ker(\mathcal{D}_{L(\mu)})_{[\nu]} = \bigoplus_{\nu}' (L(\mu) \otimes \mathsf{S}_{\mathfrak{p}})_{[\nu]},$$

where the sum \bigoplus_{ν}' is over all $\nu \in \Delta_{\mathfrak{u}}$ satisfying $B(\mu + \rho, \mu + \rho) = B(\nu + \rho_{\mathfrak{u}}, \nu + \rho_{\mathfrak{u}})$. We want to identify this sum as a sum over $W_{\mathfrak{p}}$.

Suppose ν is any weight with $(L(\mu) \otimes \mathbf{S}_{\mathfrak{p}})_{\nu} \neq 0$. We will show $B(\nu + \rho_{\mathfrak{u}}, \nu + \rho_{\mathfrak{u}}) \leq B(\mu + \rho, \mu + \rho)$. By [5, Prop. 11.4(b)], an element $\nu \in P_{\mathfrak{u}}$ for which equality holds is automatically in $P_{\mathfrak{u}}^+$, and the multiplicity of $M(\nu)$ in $L(\mu) \otimes \mathbf{S}_{\mathfrak{p}}$ is then equal to the dimension of the highest weight space $(L(\mu) \otimes \mathbf{S}_{\mathfrak{p}})_{\nu}$. Write $\nu = \nu_1 + \nu_2$ where $L(\mu)_{\nu_1}$ and $(\mathbf{S}_{\mathfrak{p}})_{\nu_2}$ are non-zero. By our description of the set of weights of $\mathbf{S}_{\mathfrak{p}}$, the element $\nu_2 + \rho_{\mathfrak{u}}$ is among the weights of the \mathfrak{g} -representation $L(\rho)$, and in particular lies in the dual Tits cone X^{\vee} of \mathfrak{g} . Since the Tits cone is convex, and $\nu_1 \in X^{\vee}$, it follows that $\nu_1 + (\nu_2 + \rho_{\mathfrak{u}}) = \nu + \rho_{\mathfrak{u}} \in X^{\vee}$.

Consequently, there exists $w \in W$ such that $w^{-1}(\nu + \rho_{\mathfrak{u}}) \in C^{\vee} \subset \mathfrak{h}^*$. Since $\nu_2 + \rho_{\mathfrak{u}}$ is a weight of $L(\rho)$, so is its image under w^{-1} . Hence

$$\kappa_2 = \rho - w^{-1}(\nu_2 + \rho_{\mathfrak{u}}) \in Q^+$$

On the other hand, since $w^{-1}\nu_1$ is a weight of $L(\mu)$, we also have $\kappa_1 = \mu - w^{-1}\nu_1 \in Q^+$. Adding, we obtain

$$u + \rho = \kappa + w^{-1}(\nu + \rho_{\mathfrak{u}}).$$

with $\kappa = \kappa_1 + \kappa_2 \in Q^+$. Since the pairing of κ with $w^{-1}(\nu + \rho_{\mathfrak{u}}) \in C^{\vee}$ is non-negative, the inequality $B(\mu + \rho, \mu + \rho) \geq B(\nu + \rho_{\mathfrak{u}}, \nu + \rho_{\mathfrak{u}})$ follows. Equality holds if and only if $\kappa = 0$, i.e. $\kappa_1 = 0$ and $\kappa_2 = 0$, i.e. $\nu_2 = w\rho - \rho_{\mathfrak{u}}$ and $\nu_1 = w\mu$. The \mathfrak{h} -weight spaces $(S_{\mathfrak{p}})_{w\rho-\rho_{\mathfrak{u}}}$ and $L(\mu)_{w\mu}$ are 1-dimensional, hence so is their tensor product, $(L(\mu) \otimes S_{\mathfrak{p}})_{\nu}$. It follows that ν appears with multiplicity 1.

This shows that $M(\nu)$ appears in ker $(D_{L(\mu)})$ if and only if it can be written in the form $\nu = w(\mu + \rho) - \rho_{\mathfrak{u}}$, for some $w \in W_{\mathfrak{p}}$, and in this case it appears with multiplicity 1. Note finally that w with this property is unique, since $\mu + \rho$ is regular. The parity of the ν -isotypical component follows since $(\mathsf{S}_{\mathfrak{p}})_{w\rho-\rho_{\mathfrak{u}}}$ has parity equal to that of l(w). \Box

The weights

$$\nu = w(\mu + \rho) - \rho_{\mathfrak{u}}, \ w \in W_{\mathfrak{p}}$$

are referred to as the *multiplet* corresponding to μ . Note that for given μ , the value of the quadratic Casimir Cas_u on the representations $M(w(\mu + \rho) - \rho_{u})$ is given by the constant value $B(\mu + \rho, \mu + \rho) - B(\rho_{u}, \rho_{u})$, independent of w.

6.5. **Characters.** For any weight $\nu \in \mathfrak{h}^*$, we write $\mathbf{e}(\nu)$ for the corresponding formal exponential. We will regard the spinor module as a super representation, using the usual \mathbb{Z}_2 -grading of the exterior algebra. The even and odd part are denoted $S_p^{\bar{p}}$ and $S_p^{\bar{l}}$, and its formal character $ch(S_p) = \sum_{\nu} (\dim(S_p^{\bar{0}})_{\nu} - \dim(S_p^{\bar{1}})_{\nu}) \mathbf{e}(\nu)$. Here $(S_p^{\bar{0}})_{\nu}$ and $(S_p^{\bar{1}})_{\nu}$ are the \mathfrak{h} weight spaces, and $\mathbf{e}(\nu)$ is the formal character defined by ν (cf. [5, §10.2]).

Proposition 6.6. The super character of the spin representation of \mathfrak{u} on \mathfrak{p} is given by the formula

$$\mathsf{ch}(\mathsf{S}_{\mathfrak{p}}) = \mathsf{e}(\rho_{\mathfrak{p}}) \prod_{\alpha \in \Delta_{\mathfrak{p}}^+} (1 - \mathsf{e}(-\alpha))^{n_{\mathfrak{p}}(\alpha)}.$$

Proof. For each root space $\mathfrak{p}_{-\alpha}$, the character of the adjoint action of \mathfrak{h} on $\wedge \mathfrak{p}_{-\alpha}$ equals $(1-\mathfrak{e}(-\alpha))^{n_\mathfrak{p}(\alpha)}$. The character of the adjoint action on $\wedge \mathfrak{p}_{-} = \bigotimes_{\alpha \in \Delta_\mathfrak{p}^+} \wedge \mathfrak{p}_{-\alpha}$ is the product of the characters on $\wedge \mathfrak{p}_{-\alpha}$. By Proposition 6.4 the action of \mathfrak{h} as a subalgebra of \mathfrak{u} differs from the adjoint action by a $\rho_\mathfrak{p}$ -shift accounting for an extra factor $\mathfrak{e}(\rho_\mathfrak{p})$.

Consider $L(\mu) \otimes S_{\mathfrak{p}}$ as a super representation of \mathfrak{u} . Its formal super character is

$$\mathsf{ch}(L(\mu)\otimes\mathsf{S}_{\mathfrak{p}})=\mathsf{ch}(L(\mu))\mathsf{ch}(\mathsf{S}_{\mathfrak{p}}).$$

On the other hand, since $D_{L(\mu)}$ is an odd skew-adjoint operator on this space, this coincides with

$$\mathsf{ch}(\ker(D_{L(\mu)})) = \sum_{w \in \mathfrak{p}} (-1)^{l(w)} \mathsf{ch}(M(w(\mu + \rho) - \rho_{\mathfrak{u}}))$$

This gives the generalized Weyl-Kac character formula,

$$\mathsf{ch}(L(\mu)) = \frac{\sum_{w \in W_{\mathfrak{p}}} (-1)^{l(w)} \mathsf{ch}(M(w(\mu + \rho) - \rho_{\mathfrak{u}}))}{\mathsf{e}(\rho_{\mathfrak{p}}) \prod_{\alpha \in \Delta_{\mathfrak{p}}^+} (1 - \mathsf{e}(-\alpha))^{n_{\mathfrak{p}}(\alpha)}},$$

valid for quadratic subalgebras $\mathfrak{u} \subset \mathfrak{g}$ of the form considered above. For $\mathfrak{u} = \mathfrak{h}$ one recovers the usual Weyl-Kac character formula [5, §10.4] for symmetrizable Kac-Moody algebras. Note that the Weyl-Kac character formula also holds for the non-symmetrizable case, see Kumar [13, Chapter 3.2]. We do not know how to treat this general case using cubic Dirac operators.

Example 6.7. As a concrete example, consider the Kac-Moody algebra of hyperbolic type, associated to the generalized Cartan matrix

$$\left(\begin{array}{rrr}2 & -3\\-3 & 2\end{array}\right)$$

(cf. [5, Exercise 5.28]). The Weyl group W is generated by the reflections r_1, r_2 corresponding to α_1, α_2 . The set P^+ of dominant weights is generated by $\varpi_1 = -\frac{1}{5}(2\alpha_1 + 3\alpha_2)$ and $\varpi_2 = -\frac{1}{5}(2\alpha_2 + 3\alpha_1)$. One has $\rho = \varpi_1 + \varpi_2 = -(\alpha_1 + \alpha_2)$.

Put $\Pi_{\mathfrak{u}} = \{\beta_1, \beta_2\}$ with

$$\beta_1 = \alpha_1, \quad \beta_2 = r_2(\alpha_1) = \alpha_1 + 3\alpha_2.$$

Since $\beta_2 - \beta_1 = 3\alpha_2$ is not a root, $\Pi_{\mathfrak{u}}$ is the set of simple roots for a Kac-Moody Lie subalgebra $\mathfrak{u} \subset \mathfrak{g}$. One finds that $\rho_{\mathfrak{u}} = \varpi_1$, and the fundamental \mathfrak{u} -weights spanning $P_{\mathfrak{u}}^+$ are $\tau_1 = \varpi_1 - \frac{1}{3}\varpi_2$ and $\tau_2 = \frac{1}{3}\varpi_2$.

The Weyl group $W_{\mathfrak{u}}$ is generated by the reflections defined by β_1, β_2 , i.e. by r_1 and $r_2r_1r_2$. A general element of $W_{\mathfrak{u}}$ is thus a word in r_1, r_2 , with an even number of r_2 's. One has

$$W_{\mathfrak{p}} = \{1, r_2\},\$$

giving duplets of u-representations. Write weights $\mu \in P^+$ in the form $\mu = k_1 \varpi_1 + k_2 \varpi_2$. Then the corresponding duplet is given by the weights

$$\mu + \rho - \rho_{\mathfrak{u}} = k_1 \varpi_1 + (k_2 + 1) \varpi_2 = k_1 \tau_1 + (k_1 + 3k_2 + 3) \tau_2$$

$$r_2(\mu + \rho) - \rho_{\mathfrak{u}} = (k_1 + 3(k_2 + 1)) \varpi_1 - (k_2 + 1) \varpi_2 = (k_1 + 3k_2 + 3) \tau_1 + k_2 \tau_2.$$

References

- 1. A. Alekseev and E. Meinrenken, The non-commutative Weil algebra, Invent. Math. 139 (2000), 135–172.
- B. Gross, B. Kostant, P. Ramond, and S. Sternberg, The Weyl character formula, the half-spin representations, and equal rank subgroups, Proc. Natl. Acad. Sci. USA 95 (1998), no. 15, 8441–8442 (electronic).
- V. Guillemin and S. Sternberg, Symplectic techniques in physics, Cambridge Univ. Press, Cambridge, 1990.
- V. Kac, Infinite-dimensional Lie algebras and Dedekind's eta-function, Funct. Anal. Appl. 8 (1974), 68-70.
- 5. _____, Infinite-dimensional Lie algebras, second ed., Cambridge University Press, Cambridge, 1985.
- V. Kac and D. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 6, part 1, 3308–3312.
- V. Kac and T. Todorov, Superconformal current algebras and their unitary representations, Comm. Math. Phys. 102 (1985), 337–347.

- 8. Y. Kazama and H. Suzuki, Characterization of n = 2 superconformal models generated by the coset space method, Phys. Lett. B **216** (1989), 112–116.
- N. Kitchloo, Dominant K-theory and integrable highest weight representations of Kac-Moody groups, Adv. Math. 221 (2009), no. 4, 1191–1226. MR MR2518636
- B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999), no. 3, 447–501.
- 11. _____, A generalization of the Bott-Borel-Weil theorem and Euler number multiplets of representations, Conference Moshe Flato 1999 (G. Dito and D. Sternheimer, eds.), vol. 1, Kluwer, 2000, pp. 309–325.
- B. Kostant and S. Sternberg, Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, Ann. Phys. 176 (1987), 49–113.
- S. Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston Inc., Boston, MA, 2002. MR MR1923198 (2003k:22022)
- 14. G. Landweber, Multiplets of representations and Kostant's Dirac operator for equal rank loop groups, Duke Math. J. **110** (2001), no. 1, 121–160.
- A. Medina and Ph. Revoy, Caractérisation des groupes de Lie ayant une pseudo-métrique bi-invariante. Applications, South Rhone seminar on geometry, III (Lyon, 1983), Travaux en Cours, Hermann, Paris, 1984, pp. 149–166.
- 16. E. Meinrenken, *Lie groups and Clifford algebras*, Lecture notes, available at http://www.math.toronto.edu/mein/teaching/lectures.html.
- J. Morita, Certain rank two subsystems of Kac-Moody root systems, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., vol. 7, World Sci. Publ., Teaneck, NJ, 1989, pp. 52–56. MR MR1026946 (90k:17020)
- S. Naito, On regular subalgebras of Kac-Moody algebras and their associated invariant forms. Symmetrizable case, J. Math. Soc. Japan 44 (1992), no. 2, 157–177. MR MR1154838 (93b:17073)
- 19. A. Wasserman, Kac-Moody and Virasoro algebras, lecture notes, 1998.

University of Toronto, Department of Mathematics, 40 St. George Street, Toronto, Ontario M5S 2E4, Canada

E-mail address: mein@math.toronto.edu