
Lie groups and Lie algebras (Fall 2019)

1. Terminology and notation

1.1. Lie groups. A Lie group is a group object in the category of manifolds:

Definition 1.1. A Lie group is a group G, equipped with a manifold structure such that
the group operations

Mult : G×G→ G, (g1, g2) 7→ g1g2

Inv : G→ G, g 7→ g−1

are smooth. A morphism of Lie groups G,G′ is a morphism of groups φ : G → G′ that
is smooth.

Remark 1.2. Using the implicit function theorem, one can show that smoothness of Inv is in
fact automatic. (Exercise) 1

The first example of a Lie group is the general linear group

GL(n,R) = {A ∈ Matn(R)| det(A) 6= 0}
of invertible n × n matrices. It is an open subset of Matn(R), hence a submanifold, and

the smoothness of group multiplication follows since the product map for Matn(R) ∼= Rn2
is

obviously smooth – in fact, it is a polynomial.

Our second example is the orthogonal group

O(n) = {A ∈ Matn(R)| A>A = I}.
To see that it is a Lie group, it suffices to show

Lemma 1.3. O(n) is an (embedded) submanifold of GL(n,R) ⊆ Matn(R).

Proof. This may be proved by using the regular value theorem: If we consider A 7→ A>A as a
map to the space of symmetric n×n-matrices, then I is a regular value. We’ll give a somewhat
longer argument, by directly constructing submanifold charts near any given A ∈ O(n): that
is, local coordinate charts of Matn(R) around A in which O(n) looks like a subspace. We begin
with A = I, using the exponential map of matrices

exp: Matn(R)→ Matn(R), B 7→ exp(B) =
∞∑
n=0

1

n!
Bn

(an absolutely convergent series). Identifying T0 Matn(R) = Matn(R), its differential at 0 is
computed as

(T0 exp)(B) =
d

dt

∣∣∣
t=0

exp(tB) = B.

Hence the differential is the identity map, and in particular is invertible. The inverse function
theorem tells us that there is ε > 0 such that exp restricts to a diffeomorphism from the open

1There is an analogous definition of topological group, which is a group with a topology such that multiplication
and inversion are continuous. Here, continuity of inversion does not follow from continuity of multiplication.
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ε-ball {B : ||B|| < ε} around 0, onto an open neighborhood U of the identity matrix I. Here
we take || · || to be the standard norm,

||B||2 =
∑
ij

(Bij)
2 ≡ tr(B>B).

We claim that the inverse map

log : U → {B : ||B|| < ε}
is the desired submanifold chart (U, log). In fact, for all B with ||B|| < ε,

exp(B) ∈ O(n)⇔ exp(B)> = exp(B)−1

⇔ exp(B>) = exp(−B)

⇔ B> = −B
⇔ B ∈ o(n).

where we put o(n) = {B| B +B> = 0}. So,

log(O(n) ∩ U) = o(n) ∩ {B : ||B|| < ε},
the intersection of the range of our chart with a linear subspace.

For a more general A ∈ O(n), we use that the map

lA : Matn(R)→ Matn(R), X 7→ AX

is a diffeomorphism (since A is invertible). Hence, lA(U) = AU is an open neighborhood of A,
and the map log ◦l−1

A : lA(U) → Matn(R) defines a submanifold chart around A. In fact, the
range of this chart is the same as for A = I:

(log ◦l−1
A )
(
AU ∩O(n)

)
= log

(
U ∩O(n)

)
.

�

Since the group multiplication of O(n) is given by matrix multiplication, it is smooth. (The
restriction of a smooth map to a submanifold is again smooth.) This shows that O(n) is a
Lie group. Notice that this Lie group O(n) is compact: it is closed subset of MatR(n) since it
is the level set of the continuous map A 7→ A>A, and it is also a bounded subset, since it is
contained in the sphere of radius

√
n:

O(n) ⊆ {A| ||A||2 = n}
(using tr(A>A) = tr(I) = n for A ∈ O(n)).

A similar argument shows that the special linear group

SL(n,R) = {A ∈ Matn(R)| det(A) = 1}
is an embedded submanifold of GL(n,R), and hence is a Lie group. Repeating the method for
O(n), we find

exp(B) ∈ SL(n,R)⇔ det(exp(B)) = 1

⇔ exp(tr(B)) = 1

⇔ tr(B) = 0

⇔ B ∈ sl(n,R).
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with

sl(n,R) = {B ∈ Matn(R)| tr(B) = 0},
where we used the identity det(exp(B)) = exp(tr(B)). The same technique works to give
examples of many other matrix Lie groups (i.e.,submanifolds of the set of matrices which are
a group under matrix multiplication). Let us now give a few more examples of Lie groups,
without detailed justifications.

Examples 1.4. (a) Any finite-dimensional vector space V over R is a Lie group, with product
Mult given by addition V × V → V, (v, w) 7→ v + w.

(b) Consider a finite-dimensional associative algebra A over R, with unit 1A. We mostly
have in mind the cases A = R,C,H, where H is the algebra of quaternions (due to
Hamilton). Recall that H = R4 as a vector space, with elements (a, b, c, d) ∈ R4 written
as

x = a+ ib+ jc+ kd

with imaginary units i, j, k. The algebra structure is determined by

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j.

(But there are more examples, for instance the exterior algebra over a vector space,
Clifford algebras and such.) For every n ∈ N we can create the algebra Matn(A) of
matrices with entries in A. The general linear group

GL(n,A) := Matn(A)×

is a Lie group of dimension n2 dimR(A). Thus, we have

GL(n,R), GL(n,C),GL(n,H)

as Lie groups of dimensions n2, 2n2, 4n2.
(c) If A is commutative, one has a determinant map

det : Matn(A)→ A,

and GL(n,A) is the pre-image of A×. One may then define a special linear group

SL(n,A) = {g ∈ GL(n,A)| det(g) = 1A}.

In particular, SL(n,C) is defined (of dimension 2n2 − 2). Since H is non-commutative
(e.g. ji = −ij), it is not obvious how to define a determinant function on quaternionic
matrices. Still, it is (unfortunately) standard to use the notation SL(n,H) for the
intersection GL(n,H)∩SL(2n,C) (thinking of H as C2). (But note that SL(n,C) is not
GL(n,C) ∩ SL(2n,R).)

(d) The ‘absolute value’ function on R,C generalizes to H, by setting

|x|2 = a2 + b2 + c2 + d2

for x = a+ ib+ jc+ kd, with the usual properties |x1x2| = |x1||x2|, as well as |x| = |x|
where x = a− ib− jc− kd. The spaces Rn,Cn,Hn inherit norms, by putting

||x||2 =
n∑
i=1

|xi|2, x = (x1, . . . , xn);
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these are just the standard norms under the identification Cn = R2n, Hn = R4n. The
subgroups of GL(n,R), GL(n,C), GL(n,H) preserving this norm (in the sense that
||Ax|| = ||x|| for all x) are denoted

O(n), U(n), Sp(n)

and are called the orthogonal, unitary, and symplectic group, respectively. Observe that

U(n) = GL(n,C) ∩O(2n), Sp(n) = GL(n,H) ∩O(4n).

In particular, all of these groups are compact. One can also define

SO(n) = O(n) ∩ SL(n,R), SU(n) = U(n) ∩ SL(n,C),

these are called the special orthogonal and special unitary groups. The groups SO(n), SU(n),
and Sp(n) are often called the classical groups (but this term is used a bit loosely).

(e) Given A as above, we also have the Lie subgroups of GL(n,A), consisting of invertible
matrices that are upper triangular, or upper triangular with positive diagonal entries,
or upper triangular with 1’s on the diagonal.

(f) The group Aff(n,R) of affine-linear transformations of Rn is a Lie group. It is the group
of transformations of the form x 7→ Ax + b, with A ∈ GL(n,R) and b ∈ Rn. It is thus
GL(n,R)×Rn as a manifold, but not as a group. (As a group, it is a semidirect product
Rn o GL(n,R).) Note that Aff(1,R) is a 2-dimensional non-abelian Lie group.

We’ll see that for all matrix Lie groups, the ‘exponential charts’ will always work as sub-
manifold charts. But even without any explicit construction, we can see that these are all Lie
groups, by using the following beautiful result of E. Cartan:

Fact: Every closed subgroup of a Lie group is an embedded submanifold, hence
is again a Lie group.

We will prove this later, once we have developed some more basics of Lie group theory. Let
us finally remark that not every Lie group is realized as a matrix Lie group. For example, we

will see that the universal covering space of any Lie group G is a Lie group G̃; but it may be
shown that

˜SL(2,R)

(or already the connected double cover of SL(2,R)) is not isomorphic to a matrix Lie group.

1.2. Lie algebras. We start out with the definition:

Definition 1.5. A Lie algebra is a vector space g, together with a bilinear map [·, ·] :
g× g→ g satisfying anti-symmetry

[ξ, η] = −[η, ξ] for all ξ, η ∈ g,

and the Jacobi identity,

[ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0 for all ξ, η, ζ ∈ g.

The map [·, ·] is called the Lie bracket. A morphism of Lie algebras g1, g2 is a linear map
φ : g1 → g2 preserving brackets.
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A first example of a Lie algebra is the space

gl(n,R) = Matn(R)

of square matrices, with bracket the commutator of matrices. (The notation gl(n,R) indicates
that we think of it as a Lie algebra, not as an algebra.) A Lie subalgebra of gl(n,R), i.e., a
subspace preserved under commutators, is called a matrix Lie algebra. For instance,

o(n) = {B ∈ Matn(R) : B> = −B}
and

sl(n,R) = {B ∈ Matn(R) : tr(B) = 0}
are matrix Lie algebras (as one easily verifies). In contrast to the situation for Lie groups, it
turns out that every finite-dimensional real Lie algebra is isomorphic to a matrix Lie algebra
(Ado’s theorem). The proof is not easy.

The following examples of finite-dimensional Lie algebras correspond to our examples for Lie
groups. The origin of this correspondence will soon become clear.

Examples 1.6. (a) Any vector space V is a Lie algebra for the zero bracket.
(b) For any associative unital algebra A over R, the space of matrices with entries in A,

gl(n,A) = Matn(A), is a Lie algebra, with bracket the commutator. In particular, we
have Lie algebras

gl(n,R), gl(n,C), gl(n,H).

(c) If A is commutative, then the subspace sl(n,A) ⊆ gl(n,A) of matrices of trace 0 is a
Lie subalgebra. In particular,

sl(n,R), sl(n,C)

are defined. The space of trace-free matrices in gl(n,H) is not a Lie subalgebra; how-
ever, one may define sl(n,H) to be the subalgebra generated by trace-free matrices;
equivalently, this is the space of quaternionic matrices whose trace takes values in
iR + jR + kR ⊆ H.

(d) We are mainly interested in the cases A = R,C,H. Define an inner product on
Rn,Cn,Hn by putting

〈x, y〉 =

n∑
i=1

xiyi,

and define

o(n), u(n), sp(n)

as the matrices in gl(n,R), gl(n,C), gl(n,H) satisfying

〈Bx, y〉 = −〈x,By〉
for all x, y. These are all Lie algebras called the (infinitesimal) orthogonal, unitary,
and symplectic Lie algebras. For R,C one can impose the additional condition tr(B) =
0, thus defining the special orthogonal and special unitary Lie algebras so(n), su(n).
Actually,

so(n) = o(n)

since B> = −B already implies tr(B) = 0.
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(e) Given A, we can also consider the Lie subalgebras of gl(n,A) that are upper triangular,
or upper triangular with real diagonal entries, or strictly upper triangular, and many
more.

Exercise 1.7. Show that Sp(n) can be characterized as follows. Let J ∈ U(2n) be the unitary
matrix (

0 In
−In 0

)
where In is the n× n identity matrix. Then

Sp(n) = {A ∈ U(2n)| A = JAJ−1}.
Here A is the componentwise complex conjugate of A.

Exercise 1.8. Let R(θ) denote the 2× 2 rotation matrix

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

Show that for all A ∈ SO(2m) there exists O ∈ SO(2m) such that OAO−1 is of the block
diagonal form 

R(θ1) 0 0 · · · 0
0 R(θ2) 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · R(θm)

 .

For A ∈ SO(2m+ 1) one has a similar block diagonal presentation, with m 2× 2 blocks R(θi)
and an extra 1 in the lower right corner. Conclude that SO(n) is connected.

Exercise 1.9. Let G be a connected Lie group, and U an open neighborhood of the group unit
e. Show that any g ∈ G can be written as a product g = g1 · · · gN of elements gi ∈ U .

Exercise 1.10. Let φ : G → H be a morphism of connected Lie groups, and assume that
the differential Teφ : TeG → TeH is bijective (resp. surjective). Show that φ is a covering
(resp. surjective). Hint: Use Exercise 1.9.
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2. The groups SU(2) and SO(3)

A great deal of Lie theory depends on a good understanding of the low-dimensional Lie
groups. Let us focus, in particular, on the groups SO(3) and SU(2), and their topology.

The Lie group SO(3) consists of rotations in 3-dimensional space. Let D ⊆ R3 be the closed
ball of radius π. Any element x ∈ D represents a rotation by an angle ||x|| in the direction of x.
This is a 1-1 correspondence for points in the interior of D, but if x ∈ ∂D is a boundary point
then x,−x represent the same rotation. Letting ∼ be the equivalence relation on D, given by
antipodal identification on the boundary, we obtain a real projective space. Thus

SO(3) ∼= RP (3)

(at least, topologically). With a little extra effort (which we’ll make below) one can make
this into a diffeomorphism of manifolds. There are many nice illustrations of the fact that the
rotation group has fundamental group Z2, known as the ‘Dirac belt trick’. See for example the
left two columns of https://commons.wikimedia.org/wiki/User:JasonHise

By definition

SU(2) = {A ∈ Mat2(C)| A† = A−1, det(A) = 1}.
Using the formula for the inverse matrix, we see that SU(2) consists of matrices of the form

SU(2) =

{(
z −w
w z

)
| |w|2 + |z|2 = 1

}
.

That is, SU(2) ∼= S3 as a manifold. Similarly,

su(2) =

{(
it −u
u −it

)
| t ∈ R, u ∈ C

}
gives an identification su(2) = R⊕ C = R3. Note that for a matrix B of this form,

det(B) = t2 + |u|2 = 2||B||2.
The group SU(2) acts linearly on the vector space su(2), by matrix conjugation: B 7→

ABA−1. Since the conjugation action preserves det, the corresponding action on R3 ∼= su(2)
preserves the norm. This defines a Lie group morphism from SU(2) into O(3). Since SU(2) is
connected, this must take values in the identity component. This defines

φ : SU(2)→ SO(3).

The kernel of this map consists of matrices A ∈ SU(2) such that ABA−1 = B for all
B ∈ su(2). Thus, A commutes with all skew-adjoint matrices of trace 0. Since A commutes
with multiples of the identity, it then commutes with all skew-adjoint matrices. But since
Matn(C) = u(n) ⊕ iu(n) (the decomposition into skew-adjoint and self-adjoint parts), it then
follows that A is a multiple of the identity matrix. Thus

ker(φ) = {I,−I}
is discrete. Now, any morphism of Lie groups φ : G → G′ has constant rank, due to the
symmetry: In fact, the kernel of the differential Tφ is left-invariant, as a consequence of
φ ◦ la = lφ(a) ◦ φ. Hence, in our case we may conclude that φ must be a double covering. This

exhibits SU(2) = S3 as the double cover of SO(3). In particular, SO(3) = S3/± = RP 3.

https://commons.wikimedia.org/wiki/User:JasonHise
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Exercise 2.1. Give an explicit construction of a double covering of SO(4) by SU(2) × SU(2).
Hint: Represent the quaternion algebra H as an algebra of matrices H ⊆ Mat2(C), by

x = a+ ib+ jc+ kd 7→ x =

(
a+ ib c+ id
−c+ id a− ib

)
.

Note that |x|2 = det(x), and that SU(2) = {x ∈ H| detC(x) = 1}. Use this to define an action
of SU(2)× SU(2) on H preserving the norm.

We have encountered another important 3-dimensional Lie group: SL(2,R). This acts nat-
urally on R2, and has a subgroup SO(2) of rotations. It turns out that as a manifold (not as a
group),

SL(2,R) ∼= SO(2)× R2 = S1 × R2.

One may think of SL(2,R) as the interior of a solid 2-torus. Here is how this goes: Consider
the set of non-zero 2× 2-matrices of zero determinant. Under the map

q : Mat2(R)− {0} ∼= R4 − {0} → S3,

these map onto a 2-torus inside S3, splitting S3 into two solid 2-tori M±, given as the images
of matrices of non-negative and non-positive determinant, respectively:

S3 = M+ ∪T 2 M−.

(This is an example of a Heegard splitting.) The group SL(2,R) maps diffeomorphically onto
the interior of the first solid torus M+. Indeed, for any matrix with det(A) > 0 there is a
unique λ > 0 such that λA ∈ SL(2,R); this defines a section Mat2(R) − {0} → S2 over the
interior of M+.
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3. The Lie algebra of a Lie group

3.1. Review: Tangent vectors and vector fields. We begin with a quick reminder of some
manifold theory, partly just to set up our notational conventions. Let M be a manifold, and
C∞(M) its algebra of smooth real-valued functions.

(a) For m ∈M , we define the tangent space TmM to be the space of directional derivatives:

TmM = {v ∈ Hom(C∞(M),R)| v(fg) = v(f) g|m + v(g) f |m}.

It is automatic that v is local, in the sense that TmM = TmU for any open neighborhood
U of m. A smooth map of manifolds φ : M →M ′ defines a tangent map:

Tmφ : TmM → Tφ(m)M
′, (Tmφ(v))(f) = v(f ◦ φ).

(b) For x ∈ U ⊆ Rn, the space TxU = TxRn has basis the partial derivatives ∂
∂x1
|x, . . . , ∂

∂xn
|x.

Hence, any coordinate chart φ : U → φ(U) ⊆ Rn gives an isomorphism

Tmφ : TmM = TmU → Tφ(m)φ(U) = Tφ(m)Rn = Rn.

(c) The union TM =
⋃
m∈M TmM is a vector bundle over M , called the tangent bundle.

Coordinate charts for M give vector bundle charts for TM . For a smooth map of
manifolds φ : M → M ′, the collection of all maps Tmφ defines a smooth vector bundle
map

Tφ : TM → TM ′.

(d) A vector field on M is a collection of tangent vectors Xm ∈ TmM depending smoothly
on m, in the sense that ∀f ∈ C∞(M) the map m 7→ Xm(f) is smooth. The collection
of all these tangent vectors defines a derivation X : C∞(M)→ C∞(M). That is, it is a
linear map satisfying

X(fg) = X(f)g + fX(g).

The space of vector fields is denoted X(M) = Der(C∞(M)). Vector fields are local, in
the sense that for any open subset U there is a well-defined restriction X|U ∈ X(U) such
that X|U (f |U ) = (X(f))|U . In local coordinates, vector fields are of the form

∑
i ai

∂
∂xi

where the ai are smooth functions.
(e) If γ : J →M , J ⊆ R is a smooth curve we obtain tangent vectors to the curve,

γ̇(t) ∈ Tγ(t)M, γ̇(t)(f) =
∂

∂t

∣∣∣
t=0

f(γ(t)).

(For example, if x ∈ U ⊆ Rn, the tangent vector corresponding to a ∈ Rn ∼= TxU is
represented by the curve x+ ta.) A curve γ(t), t ∈ J ⊆ R is called an integral curve of
X ∈ X(M) if for all t ∈ J ,

γ̇(t) = Xγ(t).

In local coordinates, this is an ODE dxi
dt = ai(x(t)). The existence and uniqueness

theorem for ODE’s (applied in coordinate charts, and then patching the local solutions)
shows that for any m ∈M , there is a unique maximal integral curve γ(t), t ∈ Jm with
γ(0) = m.
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(f) A vector field X is complete if for all m ∈M , the maximal integral curve with γ(0) = m
is defined for all t ∈ R. In this case, one obtains smooth map, called the flow of X

Φ: R×M →M, (t,m) 7→ Φt(m)

such that γ(t) = Φ−t(m) is the integral curve through m. The uniqueness property
gives

Φ0 = Id, Φt1+t2 = Φt1 ◦ Φt2

i.e. t 7→ Φt is a group homomorphism. Conversely, given such a group homomorphism
such that the map Φ is smooth, one obtains a vector field X by setting 23

X =
∂

∂t
|t=0(Φ−t)

∗,

as operators on functions. That is, pointwise Xm(f) = ∂
∂t |t=0f(Φ−t(m)).

(g) It is a general fact that the commutator of derivations of an algebra is again a derivation.
Thus, X(M) is a Lie algebra for the bracket

[X,Y ] = X ◦ Y − Y ◦X.

The Lie bracket of vector fields measure the non-commutativity of their flows. In
particular, if X,Y are complete vector fields, with flows ΦX

t , ΦY
s , then [X,Y ] = 0 if

and only if

[X,Y ] = 0 ⇔ ΦX
t ◦ ΦY

s = ΦY
s ◦ ΦX

t .

(h) In general, smooth maps φ : M → N of manifolds do not induce maps between their
spaces of vector fields (unless φ is a diffeomorphism). Instead, one has the notion of
related vector fields X ∈ X(M), Y ∈ X(N) where

X ∼φ Y ⇔ ∀m : Yφ(m) = Tmφ(Xm) ⇔ X ◦ φ∗ = φ∗ ◦ Y

From the definitions, one checks

X1 ∼φ Y1, X2 ∼φ Y2 ⇒ [X1, X2] ∼φ [Y1, Y2].

2For φ : M → N we denote by φ∗ : C∞(N)→ C∞(M) the pullback.
3The minus sign is convention. It is motivated as follows: Let Diff(M) be the infinite-dimensional group

of diffeomorphisms of M . It acts on C∞(M) by Φ.f = f ◦ Φ−1 = (Φ−1)∗f . Here, the inverse is needed so
that Φ1.Φ2.f = (Φ1Φ2).f . We think of vector fields as ‘infinitesimal flows’, i.e. informally as the tangent
space at id to Diff(M). Hence, given a curve t 7→ Φt through Φ0 = id, smooth in the sense that the map
R×M →M, (t,m) 7→ Φt(m) is smooth, we define the corresponding vector field X = ∂

∂t
|t=0Φt in terms of the

action on functions: as

X.f =
∂

∂t
|t=0Φt.f =

∂

∂t
|t=0(Φ−1

t )∗f.

If Φt is a flow, we have Φ−1
t = Φ−t.
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3.2. The Lie algebra of a Lie group. Let G be a Lie group, and TG its tangent bundle.
Denote by

g = TeG

the tangent space to the group unit. For all a ∈ G, the left translation

La : G→ G, g 7→ ag

and the right translation
Ra : G→ G, g 7→ ga

are smooth maps. Their differentials at g define isomorphisms of vector spaces TgLa : TgG →
TagG; in particular

TeLa : g→ TaG.

Taken together, they define a vector bundle isomorphism

G× g→ TG, (g, ξ) 7→ (TeLg)(ξ)

called left trivialization. The fact that this is smooth follows because it is the restriction of
T Mult : TG× TG→ TG to G× g ⊆ TG× TG, and hence is smooth. Using right translations
instead, we get another vector bundle isomorphism

G× g→ TG, (g, ξ) 7→ (TeRg)(ξ)

called right trivialization.

Definition 3.1. A vector field X ∈ X(G) is called left-invariant if it has the property

X ∼La X
for all a ∈ G, i.e. if it commutes with the pullbacks (La)

∗. Right-invariant vector fields
are defined similarly.

The space XL(G) of left-invariant vector fields is thus a Lie subalgebra of X(G). Similarly the
space XR(G) of right-invariant vector fields is a Lie subalgebra. In terms of left trivialization
of TG, the left-invariant vector fields are the constant sections of G× g. In particular, we see
that both maps

XL(G)→ g, X 7→ Xe, XR(G)→ g, X 7→ Xe

are isomorphisms of vector spaces. For ξ ∈ g, we denote by ξL ∈ XL(G) the unique left-invariant
vector field such that ξL|e = ξ. Similarly, ξR denotes the unique right-invariant vector field
such that ξR|e = ξ.

Definition 3.2. The Lie algebra of a Lie group G is the vector space g = TeG, equipped
with the unique Lie bracket such that the map X(G)L → g, X 7→ Xe is an isomorphism
of Lie algebras.

So, by definition, [ξ, η]L = [ξL, ηL]. Of course, we could also use right-invariant vector fields
to define a Lie algebra structure; it turns out (we will show this below) that the resulting
bracket is obtained simply by a sign change.

The construction of a Lie algebra is compatible with morphisms.That is, we have a functor
from Lie groups to finite-dimensional Lie algebras the so-called Lie functor.
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Theorem 3.3. For any morphism of Lie groups φ : G→ G′, the tangent map Teφ : g→
g′ is a morphism of Lie algebras.

Proof. Given ξ ∈ g, let ξ′ = Teφ(ξ) ∈ g′. The property φ(ab) = φ(a)φ(b) shows that

Lφ(a) ◦ φ = φ ◦ La.

Taking the differential at e, and applying to ξ we find (TeLφ(a))ξ
′ = (Taφ)(TeLa(ξ)) hence

(ξ′)Lφ(a) = (Taφ)(ξLa ). That is,

ξL ∼φ (ξ′)L.

Hence, given ξ1, ξ2 ∈ g we have

[ξ1, ξ2]L = [ξL1 , ξ
L
2 ] ∼φ [ξ′1

L
, ξ′2

L
] = [ξ′1, ξ

′
2]L.

In particiular, Teφ[ξ1, ξ2] = [ξ′1, ξ
′
2]. It follows that Teφ is a Lie algebra morphism. �

Remark 3.4. Two special cases are worth pointing out.

(a) A representation of a Lie group G on a finite-dimensional (real) vector space V is a Lie
group morphism

π : G→ GL(V ).

A representation of a Lie algebra g on V is a Lie algebra morphism

g→ gl(V ).

The theorem shows that the differential Teπ of any Lie group representation π is a
representation of its a Lie algebra.

(b) An automorphism of a Lie group G is a Lie group morphism

φ : G→ G

from G to itself, with φ a diffeomorphism. An automorphism of a Lie algebra is an
invertible morphism from g to itself. By the theorem, the differential

Teφ : g→ g

of any Lie group automorphism is an automorphism of its Lie algebra. As an example,
SU(n) has a Lie group automorphism given by complex conjugation of matrices; its
differential is a Lie algebra automorphism of su(n) given again by complex conjugation.

3.3. Properties of left-invariant and right-invariant vector fields. A 1-parameter sub-
group of a Lie group G is a smooth curve γ : R→ G which is a group homomorphism from R
(as an additive Lie group) to G.

Theorem 3.5. The left-invariant vector fields ξL are complete, hence it defines a flow
on G given by a 1-parameter group of diffeomorphisms. The unique integral curve γξ(t)
of ξL with initial condition γξ(0) = e is a 1-parameter subgroup, and the flow of ξL is
given by right translations:

(t, g) 7→ g γξ(−t).
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Proof. If γ(t), t ∈ J ⊆ R is any integral curve of ξL, then its left translates aγ(t) are again
integral curves. In particular, for t0 ∈ J the curve t 7→ γ(t0)γ(t) is again an integral curve.
By uniqueness of integral curves of vector fields with given initial conditions, it coincides with
γ(t0 + t) for all t ∈ J ∩ (J − t0). In this way, an integral curve defined for small |t| can be

extended to an integral curve for all t ∈ R, i.e. ξL is complete. Let Φξ
t be its flow. Thus

Φξ
t (e) = γξ(−t). Since ξL is left-invariant, its flow commutes with left translations. Hence

Φξ
t (g) = Φξ

t ◦ Lg(e) = Lg ◦ Φξ
t (e) = gΦξ

t (e) = gγξ(−t).

The property Φξ
t1+t2

= Φξ
t1

Φξ
t2

shows that γξ(t1 + t2) = γξ(t1)γξ(t2). �

Of course, a similar result will apply to right-invariant vector fields. Essentially the same
1-parameter subgroups will appear. To see this, note:

Lemma 3.6. Under group inversion, ξR ∼Inv −ξL, ξL ∼Inv −ξR.

Proof. The inversion map Inv : G→ G interchanges left translations and right translations:

Inv ◦La = Ra−1 ◦ Inv .

Hence, ξR = Inv∗ ζL for some ζ. Since Te Inv = − Id, we see ζ = −ξ. �

As a consequence, we see that t 7→ γ(t) is an integral curve for ξR, if and only if t 7→ γ(t)−1

is an integral curve of −ξL, if and only if t 7→ γ(−t)−1 is an integral curve of ξL. In particular,
the 1-parameter subgroup γξ(t) is an integral curve for ξR as well, and the flow of ξR is given
by left translations, (t, g) 7→ γξ(t)g.

Proposition 3.7. The left-invariant and right-invariant vector fields satisfy the bracket
relations,

[ξL, ζL] = [ξ, ζ]L, [ξL, ζR] = 0, [ξR, ζR] = −[ξ, ζ]R.

Proof. The first relation holds by definition of the bracket on g. The second relation holds
because the flows of ξL is given by right translations, the flow of ξR is given by left translations.
Since these flows commute, teh vector fields commute. The third relation follows by applying
Inv∗ to the first relation, using that Inv∗ ξL = −ξR for all ξ. �

4. The exponential map

We have seen that every ξ ∈ g defines a 1-parameter group γξ : R→ G, by taking the integral
curve through e of the left-invariant vector field ξL. Every 1-parameter group arises in this
way:

Proposition 4.1. If γ : R → G is a 1-parameter subgroup of G, then γ = γξ where
ξ = γ̇(0) ∈ TeG = g. One has

γsξ(t) = γξ(st).

The map R× g→ G, (t, ξ) 7→ γξ(t) is smooth.
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Proof. Let γ(t) be a 1-parameter group. Then Φt(g) := gγ(−t) defines a flow. Since this flow
commutes with left translations, it is the flow of a left-invariant vector field, ξL. Here ξ is
determined by taking the derivative of Φ−t(e) = γ(t) at t = 0: Thus ξ = γ̇(0). This shows
γ = γξ.

For fixed s, the map t 7→ λ(t) = γξ(st) is a 1-parameter group with λ̇(0) = sγ̇ξ(0) = sξ, so
λ(t) = γsξ(t). This proves γsξ(t) = γξ(st). Smoothness of the map (t, ξ) 7→ γξ(t) follows from
the smooth dependence of solutions of ODE’s on parameters. �

Definition 4.2. The exponential map for the Lie group G is the smooth map defined by

exp: g→ G, ξ 7→ γξ(1),

where γξ(t) is the 1-parameter subgroup with γ̇ξ(0) = ξ.

Note

γξ(t) = exp(tξ)

by setting s = 1 in γtξ(1) = γξ(st). One reason for the terminology is the following

Proposition 4.3. If [ξ, η] = 0 then exp(ξ + η) = exp(ξ) exp(η).

Proof. The condition [ξ, η] = 0 means that ξL, ηL commute. Hence their flows Φξ
t , Φη

t commute.

The map t 7→ Φξ
t ◦Φη

t is the flow of ξL + ηL. Hence it coincides with Φξ+η
t . Applying to e (and

replacing t with −t), this shows γξ(t)γη(t) = γξ+η(t). Now put t = 1. �

In terms of the exponential map, we may now write the flow of ξL as

(t, g) 7→= g exp(−tξ),

and similarly for the flow of ξR as

(t, g) 7→ exp(−tξ)g.

That is, as operators on functions,

ξL =
∂

∂t
|t=0R

∗
exp(tξ), ξR =

∂

∂t
|t=0L

∗
exp(tξ).

Proposition 4.4. The exponential map is functorial with respect to Lie group homo-
morphisms φ : G→ H. That is, we have a commutative diagram

G
φ−−−−→ H

exp

x xexp

g −−−−→
Teφ

h
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Proof. t 7→ φ(exp(tξ)) is a 1-parameter subgroup of H, with differential at e given by

d

dt

∣∣∣
t=0

φ(exp(tξ)) = Teφ(ξ).

Hence φ(exp(tξ)) = exp(tTeφ(ξ)). Now put t = 1. �

Some of our main examples of Lie groups are matrix Lie groups. In this case, the exponential
map is just the usual exponential map for matrices:

Proposition 4.5. Let G ⊆ GL(n,R) be a matrix Lie group, and g ⊆ gl(n,R) its Lie
algebra. Then exp: g→ G is just the exponential map for matrices,

exp(ξ) =
∞∑
n=0

1

n!
ξn.

Furthermore, the Lie bracket on g is just the commutator of matrices.

Proof. By the previous proposition, applied to the inclusion of G in GL(n,R), the exponential
map for G is just the restriction of that for GL(n,R). Hence it suffices to prove the claim for
G = GL(n,R). The function

γ(t) =

∞∑
n=0

tn

n!
ξn

is a 1-parameter group in GL(n,R), with derivative at 0 equal to ξ ∈ gl(n,R). Hence it coincides
with exp(tξ). Now put t = 1. �

Remark 4.6. This result shows, in particular, that the exponentiation of matrices takes g ⊆
gl(n,R) = Matn(R) to G ⊆ GL(n.R).

Using this result, we can also prove:

Proposition 4.7. For a matrix Lie group G ⊆ GL(n,R), the Lie bracket on g = TIG
is just the commutator of matrices.

Proof. Since the exponential map for G ⊆ GL(n,R) is just the usual exponential map for
matrices, we have, by Taylor expansions,

exp(tξ) exp(sη) exp(−tξ) exp(−sη) = I + st(ξη − ηξ) + terms cubic or higher in s, t

= exp
(
st(ξη − ηξ)

)
+ terms cubic or higher in s, t

(note the coefficients of t, s, t2, s2 are zero). This formula relates the exponential map with the
matrix commutator ξη − ηξ. 4 A version of this formula holds for arbitrary Lie groups, as
follows. For g ∈ G, let ρ(g) be the operator on C∞(G) given as R∗g, thus

ρ(g)(f)(a) = f(ag).

4The expression on the left is an example of a ‘group commutator’ ghg−1h−1. Note the group commutator
of g, h is trivial exactly of g, h commute; in this sense it is the group analogue to the Lie bracket.
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Since the flow of ξL is by right translations, t 7→ Rexp(−tξ), we have 5

d

dt
ρ(exp tξ) = ρ(exp tξ) ◦ ξL.

Hence,

ρ(exp tξ) = 1 + tξL +
t2

2
(ξL)2 + . . .

as operators on C∞(G), and consequently

ρ
(

exp(tξ) exp(sη) exp(−tξ) exp(−sη)
)

= ρ
(

exp(tξ)
)
ρ
(

exp(sη)
)
ρ
(

exp(−tξ)
)
ρ
(

exp(−sη)
)

= 1 + st(ξLηL − ηLξL) + terms cubic or higher in s, t

= 1 + st[ξ, η]L + terms cubic or higer in s, t.

= ρ(exp(st[ξ, η])) + terms cubic or higher in s, t.

We’ll prove the proposition by comparing the two results. Here we may assume that G =
GL(n,R) (by functoriality with respect to inclusions of subgroups), so that G is an open subset
of the vector space Matn(R). By the matrix calculation above, the operator

ρ
(

exp(tξ) exp(sη) exp(−tξ) exp(−sη)
)

= ρ(exp(st(ξη − ηξ))) + terms cubic or higher in s, t.

But

ρ(exp(st(ξη − ηξ))) = 1 + (st)(ξη − ηξ)L + . . .

by the matrix calculation above. Comparing the coefficients of st, we see [ξ, η]L = (ξη − ηξ)L,
hence [ξ, η] = ξη − ηξ. �

Remark 4.8. This proves in particular, that for any matrix Lie group G, the space g = TIG is
closed under commutation of matrices.

Remark 4.9. Had we defined the Lie algebra using right-invariant vector fields, we would have
obtained minus the commutator of matrices. 6

In the case of matrix Lie groups, we used the exponential map (of matrices) to construct
local charts. This works in general, using the following fact:

Proposition 4.10. The differential of the exponential map at the origin is

T0 exp = id .

As a consequence, there is an open neighborhood U of 0 ∈ g such that the exponential
map restricts to a diffeomorphism U → exp(U).

5If Φt is the flow of a vector field X, then

d

dt
Φ∗−t =

d

ds
|s=0Φ∗−(t+s) = Φ∗−t ◦X.

6Nonetheless, some authors use that convention.
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Proof. Let γ(t) = tξ. Then γ̇(0) = ξ since exp(γ(t)) = exp(tξ) is the 1-parameter group, we
have

(T0 exp)(ξ) =
∂

∂t

∣∣∣
t=0

exp(tξ) = ξ.

�

Exercise 4.11. Show hat the exponential map for SU(n), SO(n) U(n) are surjective. (We will
soon see that the exponential map for any compact, connected Lie group is surjective.)

Exercise 4.12. A matrix Lie group G ⊆ GL(n,R) is called unipotent if for all A ∈ G, the matrix
A− I is nilpotent (i.e. (A− I)r = 0 for some r). The prototype of such a group are the upper
triangular matrices with 1’s down the diagonal. Show that for a connected unipotent matrix
Lie group, the exponential map is a diffeomorphism.

Exercise 4.13. Show that exp: gl(2,C) → GL(2,C) is surjective. More generally, show that
the exponential map for GL(n,C) is surjective. (Hint: First conjugate the given matrix into
Jordan normal form).

Exercise 4.14. Show that exp: sl(2,R) → SL(2,R) is not surjective, by proving that the ma-
trices (

−1 ±1
0 −1

)
∈ SL(2,R)

are not in the image. (Hint: Assuming these matrices are of the form exp(B), what would the
eigenvalues of B have to be?) Show that these two matrices represent all conjugacy classes of
elements that are not in the image of exp. (Hint: Find a classification of the conjugacy classes
of SL(2,R), e.g. in terms of eigenvalues.)
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5. Cartan’s theorem on closed subgroups

Using the exponential map, we are now in position to prove E. Cartan’s theorem on (topo-
logically) closed subgroups.

Theorem 5.1. Let H be a closed subgroup of a Lie group G. Then H is an embedded
submanifold, and hence is a Lie subgroup.

We first need a lemma. Let V be a real vector space, and let

S(V ) = (V \{0})/ ∼

(where v′ ∼ v ⇔ v′ = λv, λ > 0). For v ∈ V \{0}, let [v] ∈ S(V ) be its equivalence class.

Lemma 5.2. Let v1, v2, . . . ∈ V \{0} be a sequence with limn→∞ vn = 0, and let v ∈ V \{0}.
Then

lim
n→∞

[vn] = [v]⇔ ∃an ∈ N : lim
n→∞

anvn = v.

Proof. The implication ⇐ is obvious. For the opposite direction, suppose limn→∞[vn] = [v].
It is convenient to introduce an inner product on V , so that we can think of S(V ) as the unit
sphere and [v] = v/||v||. Let εn = ||vn||/||v||, and let an ∈ N be the smallest natural number
satisfying anεn ≥ 1. Then 1 ≤ anεn < 1 + εn, which shows limn→∞ anεn = 1. It follows that

lim
n→∞

anvn = lim
n→∞

an||vn|| [vn] = lim
n→∞

an||vn|| [v] = lim
n→∞

anεn v = v. �

Proof of E. Cartan’s theorem. It suffices to construct a linear subspace W ⊆ g and a smooth
map φ : g → G such that φ restricts to a diffeomorphism on some open neighborhood U of 0,
and such that

(1) φ(U ∩W ) = φ(U) ∩H.

Indeed, these data would then give a submanifold chart around e, and by left translation one
then obtains submanifold charts near arbitrary a ∈ H.

Of course, W will be TeH, once we know that H is a submanifold. But for the time being,
we only know that H is a closed subgroup. Here is the candidate for W :

W = {0} ∪
{
ξ ∈ g\{0}

∣∣∣ ∃ξn 6= 0: exp(ξn) ∈ H, ξn → 0, [ξn]→ [ξ]
}
.

We shall prove:

(i) exp(W ) ⊆ H,
(ii) W is a subspace of g.

Proof of (i). Let ξ ∈ W\{0}, with sequence ξn as in the definition of W . By the lemma,
there are an ∈ N with anξn → ξ. Since exp(anξn) = exp(ξn)an ∈ H, and H is closed (!), it
follows that

exp(ξ) = lim
n→∞

exp(anξn) ∈ H.
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Proof of (ii). Since the subset W is invariant under scalar multiplication, we just have to
show that it is closed under addition. Suppose ξ, η ∈ W . To show that ξ + η ∈ W , we may
assume that ξ, η, ξ + η are all non-zero. For t sufficiently small, we have

exp(tξ) exp(tη) = exp(u(t))

for some smooth curve t 7→ u(t) ∈ g with u(0) = 0. By part (i), we have that exp(u(t)) ∈ H.
Furthermore,

lim
n→∞

nu
( 1

n

)
= lim

h→0

u(h)

h
= u̇(0) = ξ + η.

Hence

u(
1

n
)→ 0, exp

(
u(

1

n
)
)
∈ H, [u(

1

n
)]→ [ξ + η].

This shows [ξ + η] ∈W , proving (ii).

We now prove (1). Let W ′ be a vector space complement to W in g, and define

φ : g ∼= W ⊕W ′ → G, φ(ξ + ξ′) = exp(ξ) exp(ξ′).

Since T0φ is the identity of TeG, there is an open neighborhood U ⊆ g of 0 over which φ
restricts to a diffeomorphism. We have that

φ(W ∩ U) ⊆ H ∩ φ(U).

We want to show that for U sufficiently small, this inclusion becomes an equality. Suppose
not. Then, any neighborhood of 0 ∈ g contains an element (ηn, η

′
n) ∈W ⊕W ′ such that η′n 6= 0

but
φ(ηn, η

′
n) = exp(ηn) exp(η′n) ∈ H

i.e. exp(η′n) ∈ H. We could construct a sequence

η′n ∈W ′ − {0} : η′n → 0, exp(η′n) ∈ H.
Passing to a subsequence we may assume that [η′n] → [η] for some η ∈ W ′\{0}. On the other
hand, such a convergence would mean η ∈W , by definition of W . Contradiction. �

As remarked earlier, Cartan’s theorem is very useful in practice. For a given Lie group G,
the term ‘closed subgroup’ is often used as synonymous to ‘embedded Lie subgroup’.

Examples 5.3. (a) The matrix groups G = O(n), Sp(n),SL(n,R), . . . are all closed sub-
groups of some GL(N,R), and hence are Lie groups.

(b) Suppose that φ : G → H is a morphism of Lie groups. Then ker(φ) = φ−1(e) ⊆ G is a
closed subgroup. Hence it is an embedded Lie subgroup of G.

(c) The center Z(G) of a Lie group G is the set of all a ∈ G such that ag = ga for all a ∈ G.
It is a closed subgroup, and hence an embedded Lie subgroup.

(d) Suppose H ⊆ G is a closed subgroup. Its normalizer NG(H) ⊆ G is the set of all a ∈ G
such that aH = Ha. (I.e. h ∈ H implies aha−1 ∈ H.) This is a closed subgroup, hence
a Lie subgroup. The centralizer ZG(H) is the set of all a ∈ G such that ah = ha for all
h ∈ H, it too is a closed subgroup, hence a Lie subgroup.

Remark 5.4. Given a closed subgroup of H of a Lie group G, its Lie algebra h is recognized as
the set of all ξ ∈ g such that exp tξ ∈ H for all t ∈ R.
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Theorem 5.5. Let G,H be Lie groups, and φ : G → H be a group morphism. Then φ
is smooth if and only if it is continuous.

Proof. Consider the graph of φ,

Gr(φ) = {(φ(g), g) ∈ H ×G| g ∈ G}.
The fact that φ is a group morphism is equivalent to the fact that Gr(φ) is a subgroup of
H ×G. On the other hand, if φ is continuous then the graph is closed. By Cartan’s theorem,
it is thus a Lie subgroup, and in particular it is a submanifold of H ×G. But in turn, a map
between manifolds is smooth if and only if its graph is a submanifold. (Concretely, projection
to the second factor gives a diffeomorphism Gr(φ) ∼= G, and φ factors as the inverse map of
this diffeomorphism followed by projection to the first factor.) �

As a corollary, a given topological group carries at most one smooth structure for which it
is a Lie group.
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6. Adjoint actions

6.1. The adjoint representation of gon g. Let g be a Lie algebra.

Definition 6.1. A derivation of g is a linear map D : g→ g such that

D[ξ, η] = [Dξ, η] + [ξ,Dη]

for all ξ, η ∈ g.

Derivations are themselves a Lie algebra Der(g), with bracket given by commutation. An
example for an element of a Lie algebra derivation is the operator adξ = [ξ, ·] given by bracket
with ξ; the derivation property is the Jacobi identity of g. The map ad defines a Lie algebra
morphism

ad: g→ Der(g).

The kernel of this Lie algebra morphism is the center of g, i.e. elements ξ with the property
[ξ, η] = 0 for all η. The kernel of ad is the center of the Lie algebra g, i.e. elements having zero
bracket with all elements of g, while the image is the Lie subalgebra Inn(g) ⊆ Der(g) of inner
derivations.

If D ∈ Der(g) and ξ ∈ g then

[D, adξ] = adDξ

by the calculation

D(adξ η) = D([ξ, η]) = [Dξ, η] + [ξ,Dη] = adDξ η + adξ(Dη).

Hence Inn(g) is a normal Lie subalgebra, i.e [Der(g), Inn(g)] ⊆ Inn(g), and the quotient space

Out(g) = Der(g)/ Inn(g)

inherits a Lie algebra structure. These are the outer automorphims.
An automorphism of a Lie algebra g is an invertible morphism from g to itself. Thus, the

group Aut(g) of automorphisms A of a Lie algebra g consists of all A ∈ GL(g) such that

[Aξ,Aη] = A[ξ, η]

for all ξ, η ∈ g, It is closed in the group GL(g) of vector space automorphisms, hence, by
Cartan’s theorem, it is aLie group.

Proposition 6.2. The Lie algebra of the group Aut(g) of automorphisms is the Lie algebra
Der(g).

Proof. The Lie algebra aut(g) consists of all D ∈ gl(g) with the property that exp(tD) ∈ Aut(g)
for all t ∈ R. Taking the t-derivative of the defining condition

exp(tD)[ξ, η] = [exp(tD)ξ, exp(tD)η],

we obtain the derivation property, showing D ∈ Der(g). Conversely, if D ∈ Der(g) is a
derivation then

Dn[ξ, η] =

n∑
k=0

(
n

k

)
[Dkξ, Dn−kη]

by induction, which then shows that exp(D) =
∑

n
Dn

n! is an automorphism. �
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Exercise 6.3. Using similar arguments, verify that the Lie algebras of SO(n), SU(n), Sp(n), . . .
are so(n), su(n), sp(n), . . ..

6.2. The adjoint action of G on G. An automorphism of a Lie group G is an invertible
morphism from G to itself. The automorphisms form a group Aut(G). For instance, any a ∈ G
defines an ‘inner’ automorphism Ada ∈ Aut(G) by conjugation:

Ada(g) = aga−1

Note also that Ada1a2 = Ada1 Ada2 , thus we have a group morphism

Ad: G→ Aut(G)

into the group of automorphisms. The kernel of this morphism is the center Z(G), the image
is (by definition) the subgroup Inn(G) of inner automorphisms. Note that for any φ ∈ Aut(G),
and any a ∈ G,

φ ◦Ada ◦φ−1 = Adφ(a) .

That is, Inn(G) is a normal subgroup of Aut(G). (I.e. the conjugate of an inner automorphism
by any automorphism is inner.) It follows that Out(G) = Aut(G)/ Inn(G) inherits a group
structure; it is called the outer automorphism group.

Example 6.4. If G = SU(2) the complex conjugation of matrices is an inner automorphism,
but for G = SU(n) with n ≥ 3 it cannot be inner (since an inner automorphism has to preserve
the spectrum of a matrix). Indeed, one know that Out(SU(n)) = Z2 for n ≥ 3.

Example 6.5. The group G = SO(n) has automorphisms given by conjugation with matrices
in B ∈ O(n). More generally, if G is the identity component of a disconnected Lie group G′,
then any automorphism φ′ of G′ restricts to an automorphism φ of G, but φ need not be inner
even if φ′ is.

6.3. The adjoint action of G on g. The differential of the automorphism Ada : G→ G is a
Lie algebra automorphism, denoted by the same letter: Ada = Te Ada : g → g. The resulting
map

Ad: G→ Aut(g)

is called the adjoint representation of G.
Recall that for any Lie group morphism φ : G→ H, the exponential map satisfies φ ◦ exp =

exp ◦Teφ. Applying this to H = G and φ = Ada we obtain

exp(Ada ξ) = Ada exp(ξ).

Remark 6.6. If G ⊆ GL(n,R) is a matrix Lie group, then Ada ∈ Aut(g) is the conjugation of
matrices

Ada(ξ) = aξa−1.

This follows by taking the derivative of Ada(exp(tξ)) = a exp(tξ)a−1, using that exp is just the
exponential series for matrices.

We have remarked above that the Lie algebra of Aut(g) is Der(g). Recall that the differential
of any Lie group representation G → GL(V ) is a Lie algebra representation g → gl(V ). In
particular, we can consider the differential of Ad: G→ Aut(g).
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Theorem 6.7. If g is the Lie algebra of G, then the adjoint representation ad: g →
Der(g) is the differential of the adjoint representation Ad: G → Aut(g). One has the
equality of operators

exp(adξ) = Ad(exp ξ)

for all ξ ∈ g.

Proof. For the first part we have to show

∂

∂t

∣∣
t=0

Adexp(tξ) η = adξ η.

There is a shortcut for this if G is a matrix Lie group:

∂

∂t

∣∣∣
t=0

Adexp(tξ) η =
∂

∂t

∣∣∣
t=0

exp(tξ)η exp(−tξ) = ξη − ηξ = [ξ, η].

For general Lie groups we use the representation ρ(g) = R∗g on C∞(G), and the identity

ξL = ∂
∂s |s=0ρ(exp(sξ)). We compute,

∂

∂t

∣∣∣
t=0

(Adexp(tξ) η)L =
∂

∂t

∣∣∣
t=0

∂

∂s

∣∣∣
s=0

ρ(exp(sAdexp(tξ) η))

=
∂

∂t

∣∣∣
t=0

∂

∂s

∣∣∣
s=0

ρ(exp(tξ) exp(sη) exp(−tξ))

=
∂

∂t

∣∣∣
t=0

∂

∂s

∣∣∣
s=0

ρ(exp(tξ))ρ(exp(sη))ρ(exp(−tξ))

=
∂

∂t

∣∣∣
t=0

ρ(exp(tξ)) ηL ρ(exp(−tξ))

= [ξL, ηL]

= [ξ, η]L

= (adξ η)L.

Here the second line used the identity exp(Ada η) = Ada exp(η), for a = exp(tξ) and η replaced
with sη. This proves the first part. The second part is the commutativity of the diagram

G
Ad−−−−→ Aut(g)

exp

x xexp

g −−−−→
ad

Der(g)

which is just a special case of the functoriality property of exp with respect to Lie group
morphisms. �

Remark 6.8. As a special case, this formula holds for matrices. That is, for B,C ∈ Matn(R),

eB C e−B =

∞∑
n=0

1

n!
[B, [B, · · · [B,C] · · · ]].
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The formula also holds in some other contexts, e.g. if B,C are elements of an algebra with B
nilpotent (i.e. BN = 0 for some N). In this case, both the exponential series for eB and the
series on the right hand side are finite. (Indeed, [B, [B, · · · [B,C] · · · ]] with n B’s is a sum of
terms BjCBn−j , and hence must vanish if n ≥ 2N .)

7. The differential of the exponential map

7.1. Computation of Tξ exp. We had seen that T0 exp = id. More generally, one can derive
a formula for the differential of the exponential map at arbitrary points ξ ∈ g. Using the
identification Tξg ∼= g (since g is a vector space), and using left translation to ove Texp ξG back
to TeG = g, this is given by an endomorphism of g.

Theorem 7.1. The differential of the exponential map exp: g→ G at ξ ∈ g is the linear
map

Tξ exp: g = Tξg→ Texp ξG

given by the formula,

Tξ exp = (TeLexp ξ) ◦
1− exp(− adξ)

adξ
.

Here the operator on the right hand side is defined to be the result of substituting adξ for
z, in the entire holomorphic function

1− e−z

z
=

∫ 1

0
ds exp(−sz).

Proof. We have to show that for all ξ, η ∈ g,

Tξ(Lexp(−ξ) ◦ exp)(η) =

∫ 1

0
ds (exp(−s adξ)η),

an equality of tangent vectors at e. In terms of the action on functions f ∈ C∞(G), the left
hand side is

Tξ(Lexp(−ξ) ◦ exp)(η)(f) =
∂

∂t

∣∣∣
t=0

f
(
(Lexp(−ξ) ◦ exp)(ξ + tη)

)
=

∂

∂t

∣∣∣
t=0

f
(

exp(−ξ) exp(ξ + tη)
)

Letting ρ(g) = R∗g as before, we compute (as operators on functions):

ρ
(

exp(−ξ) exp(ξ + tη)
)
− ρ(e) =

∫ 1

0
ds

∂

∂s

(
ρ
(

exp(−sξ)
)
ρ
(

exp(s(ξ + tη))
))

=

∫ 1

0
ds ρ(exp(−sξ))(tη)Lρ(exp(s(ξ + tη)).
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Here we used the identities ∂
∂sρ(exp(sζ)) = ρ(exp(sζ)) ◦ ζL = ζL ◦ ρ(exp(sζ)) for all ζ ∈ g.

Taking the t-derivative at t = 0, this gives

∂

∂t

∣∣∣
t=0

ρ(exp(−ξ))ρ(exp(ξ + tη)) =

∫ 1

0
ds ρ(exp(−sξ)) ηL ρ(exp(s(ξ)))

=

∫ 1

0
ds (Adexp(−sξ) η)L

=

∫ 1

0
ds (exp(−s adξ)η)L.

Applying both sides of this equation to f , and evaluating at e, we obtain

∂

∂t

∣∣∣
t=0

f
(

exp(−ξ) exp(ξ + tη)
)

=
(∫ 1

0
ds exp(−s adξ)η

)
(f)

as desired. �

Corollary 7.2. The exponential map is a local diffeomorphism near ξ ∈ g if and only if adξ
has no eigenvalue in the set 2πiZ\{0}.

Proof. Tξ exp is an isomorphism if and only if
1−exp(− adξ)

adξ
is invertible, i.e. has non-zero deter-

minant. The determinant is given in terms of the eigenvalues of adξ as a product,
∏
λ

1−e−λ
λ .

This vanishes if and only if there is a non-zero eigenvalue λ with eλ = 1. �

7.2. Application: Left-invariant and right-invariant vector fields in exponential co-
ordinates. For η ∈ g, we have the left-invariant vector field ηL. Letting U ⊆ g be the open
neighborhood of 0 on which exp is a local diffeomorphism, we may consider

(exp |U )∗ηL ∈ X(U).

Since U is an open subset of the vector space g, we may regard this vector field as a function
U → g. What is this function?

By definition,

(Tξ exp)
(
(exp |U )∗ηL

)
|ξ = ηL|exp ξ = (TeLexp ξ)(η).

That is, (
(exp |U )∗ηL

)
|ξ = (Tξ exp)−1 ◦ (TeLexp ξ)(η) =

adξ
1− exp(− adξ)

η.

This shows

Proposition 7.3. The pullback of ηL under the exponential map is the vector field on U ⊆ g,
given by the g-valued function

ξ 7→
adξ

1− exp(− adξ)
η.

Similarly, the right-invariant vector field is described by the g-valued function

ξ 7→
adξ

exp(adξ)− 1
η.
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Recall that the function z 7→ z
ez−1 is the generating function for the Bernoulli numbers

z

ez − 1
=
∞∑
n=0

Bn
n!
zn = 1− 1

2
z +

1

2!

1

6
z2 − 1

4!

1

30
z4 + . . .

and that z
1−e−z = z

ez−1 + z.

7.3. Application: The Baker-Campbell Hausdorff formula. As another application,
one obtains a version of the Baker-Campbell-Hausdorff formula. Let g 7→ log(g) be the inverse
function to exp, defined for g close to e. For ξ, η ∈ g close to 0, the function

log(exp(ξ) exp(η))

The BCH formula gives the Taylor series expansion of this function. The series starts out with

log(exp(ξ) exp(η)) = ξ + η + 1
2 [ξ, η] + · · ·

but gets rather complicated. To derive the formula, introduce a t ∈ [0, 1]-dependence, and let
f (as a function of t, ξ, η, for ξ, η sufficiently small) be defined by

exp(f) = exp(ξ) exp(tη).

We have, on the one hand,

(TeLexp(f))
−1 ∂

∂t
exp(f) = (TeLexp(tη))

−1 ∂

∂t
exp(tη) = η.

On the other hand, by the formula for the differential of exp,

(TeLexp(f))
−1 ∂

∂t
exp(f) = (TeLexp(f))

−1(Tf exp)(
∂f

∂t
) =

1− e− adf

adf
(
∂f

∂t
).

Hence
∂f

∂t
=

adf

1− e− adf
η.

Letting χ be the function, holomorphic near w = 1,

χ(w) =
log(w)

1− w−1
,

we may write the right hand side as χ(eadf )η. By applying Ad to the defining equation for f
we obtain eadf = eadξet adη . Hence

∂f

∂t
= χ(eadξet adη)η.

Finally, integrating from 0 to 1 and using f(0) = ξ, f(1) = log(exp(ξ) exp(η)), we find:

log(exp(ξ) exp(η)) = ξ +
(∫ 1

0
χ(eadξet adη)dt

)
η.

To obtain the BCH formula, we use the series expansion of χ(w) around 1:

χ(w) =
w log(w)

w − 1
= 1 +

∞∑
n=1

(−1)n+1

n(n+ 1)
(w − 1)n,
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which is easily obtained from the usual power series of log. Putting w = eadξet adη , and writing

eadξet adη − 1 =
∑
i+j≥1

tj

i!j!
adiξ adjη

in the power series expansion of χ, and integrates the resulting series in t. We arrive at:

Theorem 7.4 (Baker-Campbell-Hausdorff series). Let G be a Lie group, with exponen-
tial map exp: g→ G. For ξ, η ∈ g sufficiently small we have the following formula

log(exp(ξ) exp(η)) = ξ + η +
∞∑
n=1

(−1)n+1

n(n+ 1)

(∫ 1

0
dt
( ∑
i+j≥1

tj

i!j!
adiξ adjη

)n)
η.

An important point is that the resulting Taylor series in ξ, η is a Lie series: all terms of the
series are of the form of a constant times adn1

ξ adm2
η · · · adnrξ η. The first few terms read,

log(exp(ξ) exp(η)) = ξ + η + 1
2 [ξ, η] +

1

12
[ξ, [ξ, η]]− 1

12
[η, [ξ, η]] +

1

24
[η, [ξ, [η, ξ]]] + . . . .

Exercise 7.5. Work out these terms from the formula.

There is a somewhat better version of the BCH formula, due to Dynkin. A good discussion
can be found in the book by Onishchik-Vinberg, Chapter I.3.2.
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8. Actions of Lie groups and Lie algebras

8.1. Lie group actions. .

Definition 8.1. An action of a Lie group G on a manifold M is a group homomorphism

A : G→ Diff(M), g 7→ Ag
into the group of diffeomorphisms on M , such that the action map

G×M →M, (g,m) 7→ Ag(m)

is smooth.

We will often write g.m rather than Ag(m). With this notation, g1.(g2.m) = (g1g2).m
and e.m = m. A smooth map Φ: M1 → M2 between G-manifolds is called G-equivariant if
g.Φ(m) = Φ(g.m) for all m ∈M , i.e. the following diagram commutes:

G×M1 −−−−→ M1yid×Φ

yΦ

G×M2 −−−−→ M2

where the horizontal maps are the action maps.

Examples 8.2.

(a) An R-action on M is the same thing as a global flow.
(b) There are three natural actions of G on itself:

• left multiplication, Ag = Lg,
• right multiplication, Ag = Rg−1 ,
• conjugation (adjoint action), Ag = Adg = Lg ◦Rg−1 .

The left and right action commute, hence they define an action of G × G. The conju-
gation action can be regarded as the action of the diagonal subgroup G ⊆ G×G.

(c) Any G-representation G→ End(V ) defines a G-action on V , viewed as a manifold.
(d) For any closed subgroup H ⊆ G, the space of right cosets

G/H = {gH| g ∈ G}
has a unique manifold structure such that the quotient map G → G/H is a smooth
submersion. The action of G by left multiplication on G descends to a smooth G-action
on G/H. (Some ideas of the proof will be explained below.)

(e) Some examples of actions of the orthogonal group O(n):
• The defining action on Rn,
• the action on the unit sphere Sn−1 ⊆ Rn,
• the action on projective space RP (n− 1) = Sn−1/ ∼,
• the action on the Grassmann manifold GrR(k, n) of k-planes in Rn,
• the action on the flag manifold Fl(n) ⊆ GrR(1, n) × · · ·GrR(n − 1, n) (consisting

of sequences of subspaces V1 ⊆ · · ·Vn−1 ⊆ Rn with dimVi = i), and various types
of ‘partial’ flag manifolds.

Except for the first example, these are all of the form G/H. (E.g, for Gr(k, n) one takes
H to be the subgroup preserving Rk ⊆ Rn.)
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8.2. Lie algebra actions. .

Definition 8.3. An action of a finite-dimensional Lie algebra g on M is a Lie algebra
homomorphism g→ X(M), ξ 7→ Aξ such that the action map

g×M → TM, (ξ,m) 7→ Aξ|m
is smooth.

We will often write ξM =: Aξ for the vector field corresponding to ξ. Thus,

[ξM , ηM ] = [ξ, η]M

for all ξ, η ∈ g. A smooth map Φ: M1 → M2 between g-manifolds is called equivariant if
ξM1 ∼Φ ξM2 for all ξ ∈ g, i.e. if the following diagram commutes

g×M1 −−−−→ TM1yid×Φ

ydΦ

g×M2 −−−−→ TM2

where the horizontal maps are the action maps.

Examples 8.4. (a) Any vector field X ∈ X(M) defines an action of the Abelian Lie algebra
R, by R→ X(M), λ 7→ λX.

(b) Any Lie algebra representation φ : g → gl(V ) may be viewed as a Lie algebra action
g→ X(V ), where for f ∈ C∞(V ),

(ξV f)(v) =
∂

∂t

∣∣∣
t=0

f(v − tφ(ξ)v)

Using a basis ea of V to identify V = Rn, writing v =
∑

a x
a ea, and introducing the

components of ξ ∈ g in the representation as

φ(ξ).ea =
∑
b

(φ(ξ))ba eb

the generating vector fields are

ξV = −
∑
ab

(φ(ξ))ba x
a ∂

∂xb
.

Note that the components of the generating vector fields are homogeneous linear func-
tions in x. Any g-action on V with this linearity property corresponds to a linear
g-representation.

(c) For any Lie group G, we have actions of its Lie algebra g by

Aξ = ξL, Aξ = −ξR, Aξ = ξL − ξR.

(d) Given a closed subgroup H ⊆ G, the vector fields −ξR ∈ X(G), ξ ∈ g are invariant
under the right multiplication, hence they are related under the quotient map to vector
fields on G/H. That is, there is a unique g-action on G/H such that the quotient map
G→ G/H is equivariant.
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Definition 8.5. Let G be a Lie group with Lie algebra g. Given a G-action g 7→ Ag on
M , one defines its generating vector fields by

Aξ =
d

dt

∣∣∣
t=0
A∗exp(−tξ).

Example 8.6. The generating vector field for the action by right multiplication Aa = Ra−1 are
the left-invariant vector fields,

Aξ =
∂

∂t

∣∣
t=0

R∗exp(tξ) = ξL.

Similarly, the generating vector fields for the action by left multiplication Aa = La are −ξR,
and those for the conjugation action Ada = La ◦Ra−1 are ξL − ξR.

Observe that if Φ: M1 → M2 is an equivariant map of G-manifolds, then the generating
vector fields for the action are Φ-related.

Theorem 8.7. The generating vector fields of any G-action g → Ag on M define an
action of the Lie algebra g on M , given by ξ 7→ Aξ = ξM .

Proof. Write ξM := Aξ for the generating vector fields of a G-action on M . We have to show
that ξ 7→ ξM is a Lie algebra morphism. Note that the action map

Φ: G×M →M, (a,m) 7→ a.m

is G-equivariant, relative to the given G-action on M and the action g.(a,m) = (ga,m) on
G×M . Hence

ξG×M ∼Φ ξM

. But ξG×M = −ξR (viewed as vector fields on the product G×M), hence ξ 7→ ξG×M is a Lie
algebra morphism. It follows that

0 = [(ξ1)G×M , (ξ2)G×M ]− [ξ1, ξ2]G×M ∼Φ [(ξ1)M , (ξ2)M ]− [ξ1, ξ2]M .

Since Φ is a surjective submersion (i.e. the differential dΦ: T (G ×M) → TM is surjective),
this shows that [(ξ1)M , (ξ2)M ]− [ξ1, ξ2]M = 0. �

8.3. Integrating Lie algebra actions. Let us now consider the inverse problem: For a Lie
group G with Lie algebra g, integrating a given g-action to a G-action. The construction will
use some facts about foliations.

Let M be a manifold. A rank k distribution on M is a C∞(M)-linear subspace R ⊆ X(M)
of the space of vector fields, such that at any point m ∈M , the subspace

Em = {Xm| X ∈ R} ⊆ TmM

is of dimension k. An integral submanifold of the distribution R is a k-dimensional submanifold
S such that all X ∈ R are tangent to S. In terms of E, this means that TmS = Em for all
m ∈ S. The distribution is called integrable if for all m ∈M there exists an integral submanifold
containing m. In this case, there exists a maximal such submanifold, Lm. The decomposition
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of M into maximal integral submanifolds is called a k-dimensional foliation of M , the maximal
integral submanifolds themselves are called the leaves of the foliation.

Not every distribution is integrable. Recall that if two vector fields are tangent to a submani-
fold, then so is their Lie bracket. Hence, a necessary condition for integrability of a distribution
is that R is a Lie subalgebra. Frobenius’ theorem gives the converse:

Theorem 8.8 (Frobenius theorem). A rank k distribution R ⊆ X(M) is integrable if and only
if R is a Lie subalgebra.

The idea of proof is to show that if R is a Lie subalgebra, then the C∞(M)-module R is
spanned, near any m ∈ M , by k commuting vector fields. One then uses the flow of these
vector fields to construct integral submanifold.

Exercise 8.9. Prove Frobenius’ theorem for distributions R of rank k = 2. (Hint: If X ∈ R
with Xm 6= 0, one can choose local coordinates such that X = ∂

∂x1
. Given a second vector field

Y ∈ R, such that [X,Y ] ∈ R and Xm, Ym are linearly independent, show that one can replace
Y by some Z = aX + bY ∈ R such that bm 6= 0 and [X,Z] = 0 on a neighborhood of m.)

Exercise 8.10. Give an example of a non-integrable rank 2 distribution on R3.

Given a Lie algebra of dimension k and a free g-action on M (i.e. ξM |m = 0 implies ξ = 0),
one obtains an integrable rank k distribution R as the span (over C∞(M)) of the ξM ’s. We
use this to prove:

Theorem 8.11. Let G be a connected, simply connected Lie group with Lie algebra g.
A Lie algebra action g→ X(M), ξ 7→ ξM integrates to an action of G if and only if the
vector fields ξM are all complete.

Proof of the theorem. The idea of proof is to express the G-action in terms of a foliation. Given
a G-action on M , consider the diagonal G-action on G×M , given by

g · (a,m) = (ag−1, g ·m).

The orbits of this action are exactly the fibers Φ−1(m) of the action map Φ: G × M →
M, (a,m) 7→ a ·m. We may think of these orbits as the leaves of a foliation, Lm = Φ−1(m)
where

Lm = {(g−1, g ·m)| g ∈ G}.
Let pr1,pr2 the projections fromG×M to the two factors. Then pr1 restricts to diffeomorphisms

πm : Lm → G,

and we recover the action as
g.m = pr2(π−1

m (g−1)).

Suppose now that we are given a g-action on M . Consider the diagonal g action on M̂ = G×M ,

ξ
M̂

= ξG×M = (ξL, ξM ) ∈ X(G×M).

Note that this vector field is complete, for any given ξ, since it is the sum of commuting vector
fields, both of which are complete. Its flow is given by

Φ̂ξ
t = (R− exp(tξ),Φ

ξ
t ) ∈ Diff(G×M).
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Since the maps g → T(a,m)(G × M) are all injective, the generating vector fields define an
integrable dimG-dimensional distribution R ⊆ X(G ×M). Let Lm ↪→ G ×M be the unique
leaf containing the point (e,m). Projection to the first factor induces a smooth map

πm : Lm → G.

Using that any g ∈ G can be written in the form g = exp(ξr) · · · exp(ξ1) with ξi ∈ g,so
g−1 = Rexp(−ξr) · · ·Rexp(−ξ1) · e, we see that πm is surjective – the curve

Φ̂ξr
t ◦ · · · ◦ Φ̂ξ1

t (e,m)

connects (e,m) to a point of the form (g−1,m′). A similar argument also shows that πm is
a covering map onto G. (Points near g−1 can be written as Rexp(−ξ)(g

−1), and this lifts to

Φξ
1(g−1,m′).) Since G is simply connected by assumption, we conclude that πm : Lm → G is a

diffeomorphism.
We now define the action map by Ag(m) = pr2(π−1

m (g−1)). Concretely, the construction
above shows that if g = exp(ξr) · · · exp(ξ1) then

Ag(m) = (Φξr
1 ◦ · · · ◦ Φξ1

1 )(m).

From this description it is clear that Agh = Ag ◦ Ah. �

Remark 8.12. In general, one cannot drop the assumption that G is simply connected. Consider
for example G = SU(2), with su(2)-action ξ 7→ −ξR. This exponentiates to an action of
SU(2) by left multiplication. But su(2) ∼= so(3) as Lie algebras, and the so(3)-action does not
exponentiate to an action of the group SO(3).

As an important special case, we obtain:

Theorem 8.13. Let H,G be Lie groups, with Lie algebras h, g. If H is connected and
simply connected, then any Lie algebra morphism φ : h→ g integrates uniquely to a Lie
group morphism ψ : H → G.

Proof. Define an h-action on G by ξ 7→ −φ(ξ)R. Since the right-invariant vector fields are
complete, this action integrates to a Lie group action A : H → Diff(G). This action commutes
with the action of G by right multiplication. Hence, Ah(g) = ψ(h)g where ψ(h) = Ah(e). The
action property now shows ψ(h1)ψ(h2) = ψ(h1h2), so that ψ : H → G is a Lie group morphism
integrating φ. �

Corollary 8.14. Let G be a connected, simply connected Lie group, with Lie algebra g. Then
any g-representation on a finite-dimensional vector space V integrates to a G-representation
on V .

Proof. A g-representation on V is a Lie algebra morphism g→ gl(V ), hence it integrates to a
Lie group morphism G→ GL(V ). �
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Definition 8.15. A Lie subgroup of a Lie group G is a subgroup H ⊆ G, equipped with
a Lie group structure such that the inclusion is a morphism of Lie groups.

Note that a Lie subgroup need not be closed in G, since the inclusion map need not be an
embedding. Also, the one-parameter subgroups φ : R → G need not be subgroups (strictly
speaking) since φ need not be injective.

Proposition 8.16. Let G be a Lie group, with Lie algebra g. For any Lie subalgebra h ⊆ g
there is a unique connected Lie subgroup H of G such that the differential of the inclusion
H ↪→ G is the inclusion h ↪→ g.

Proof. Consider the distribution on G spanned by the vector fields −ξR, ξ ∈ g. It is integrable,
hence it defines a foliation of G. The leaves of any foliation carry a unique manifold structure
such that the inclusion map is smooth. Take H ⊆ G to be the leaf through e ∈ H, with this
manifold structure. Explicitly,

H = {g ∈ G| g = exp(ξr) · · · exp(ξ1), ξi ∈ h}.

From this description it follows that H is a Lie group. �

By Ado’s theorem, any finite-dimensional Lie algebra g is isomorphic to a matrix Lie alge-
bra. We will skip the proof of this important (but relatively deep) result, since it involves a
considerable amount of structure theory of Lie algebras.

Remark 8.17. For any Lie algebra g we have the adjoint representation g→ gl(g); its kernel is
the center of g. So, for Lie algebras with trivial center the theorem of Ado is immediate.

Given such a presentation g ⊆ gl(n,R), the lemma gives a Lie subgroup G ⊆ GL(n,R)
integrating g. Replacing G with its universal covering, this proves (assuming Ado’s theorem):

Theorem 8.18 (Lie’s third theorem). For any finite-dimensional real Lie algebra g,
there exists a connected, simply connected Lie group G, unique up to isomorphism, having
g as its Lie algebra.

The book by Duistermaat-Kolk contains a different, more conceptual proof of Lie’s third
theorem. This new proof has found important generalizations to the integration of Lie alge-
broids. In conjunction with the previous theorem, Lie’s third theorem gives an equivalence
between the categories of finite-dimensional Lie algebras g and connected, simply-connected
Lie groups G.

9. Universal covering groups

Given a connected topological space X with base point x0, one defines the universal covering

space X̃ as the set of equivalence classes of paths γ : [0, 1] → X with γ(0) = x0. Here the

equivalence is that of homotopy relative to fixed endpoints. The space X̃ has a natural topology
in such a way that the map

p : X̃ → X, [γ] 7→ γ(1)
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is a covering map. The fiber p−1(x0) ⊆ M̃ has a group structure is given by the concatenation
of paths

(λ1 ∗ λ2)(t) =

{
λ1(2t) 0 ≤ t ≤ 1

2 ,

λ2(2t− 1) 1
2 ≤ t ≤ 1

,

i.e. [λ1][λ2] = [λ1 ∗ λ2] (one shows that this is well-defined). This group is denoted π1(X;x0),
and is called the fundamental group of X with respect to the base point x0. The fundamental

group of the covering space itself is trivial: A loop λ̃ : [0, 1] → X̃ is represented by a 2-map

σ : [0, 1] × [0, 1] → X such that λ̃(s) = [σ(s, ·)], with σ(s, 0) = σ(0, t) = σ(1, t) = x0, such a
map can be deformed into the constant map as indicated by the following picture. [PICTURE]

The fundamental group acts on the covering space X̃ by so-called deck transformations, this
action is again induced by concatenation of paths:

A[λ]([γ]) = [λ ∗ γ].

A continuous map of connected topological spaces Φ: X → Y taking x0 to the base point y0

lifts to a continuous map Φ̃: X̃ → Ỹ of the covering spaces, by Φ̃[γ] = [Φ◦γ], with Ψ̃ ◦ Φ = Ψ̃◦Φ̃
under composition of two such maps. It restricts to a group morphism π1(X;x0)→ π1(Y ; y0);

the map Φ̃ is equivariant with respect to the group morphism.

If X = M is a manifold, then M̃ is again a manifold, and the covering map is a local

diffeomorphism. For a smooth map Φ: M → N of manifolds, the induced map Φ̃: M̃ → Ñ
of coverings is again smooth. We are interested in the case of connected Lie groups G. In
this case, the natural choice of base point is the group unit x0 = e, and we’ll write simply
π1(G) = π1(G; e). We have:

Theorem 9.1. The universal covering space G̃ of a connected Lie group G is again a

Lie group, in such a way that the covering map p : G̃ → G is a Lie group morphism.

The inclusion π1(G) = p−1({e}) ↪→ G̃ is a group morphism, with image contained in the

center of G̃.

Proof. The group multiplication and inversion lifts to smooth maps M̃ult : G̃×G = G̃×G̃→ G̃

and Ĩnv : G̃ → G̃. Using the functoriality properties of the universal covering construction, it

follows that these define a group structure on G̃, in such a way that the quotient map p : G̃→ G

is a Lie group morphism. The kernel p−1(e) ⊆ G̃ is a normal subgroup of G̃. We claim that
this group structure of π−1(e) (given by [λ1] · [λ2] = [λ1λ2], using pointwise multiplication)
coincides with the group structure of π1(G), given by concatenation. In other words, we claim
that the paths

t 7→ λ1(t)λ2(t), t 7→ (λ1 ∗ λ2)(t)

are homotopic. To this end, let us extend the domain of definition of any loop λ : [0, 1]→ G to
all of R, by letting λ(t) = e for t 6∈ [0, 1]. With this convention, we have that

(λ1 ∗ λ2)(t) = λ1(2t)λ2(2t− 1)

for all t ∈ R, and the desired homotopy is given by

λ1((1 + s)t)λ2((1 + s)t− s), 0 ≤ s ≤ 1.
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Hence, π1(G) is a discrete normal subgroup of G̃. But if G is connected, then G̃ is connected,
and so the adjoint action must be trivial on π1(G) (since π1(G) is discrete). �

Example 9.2. The universal covering group of the circle group G = U(1) is the additive group
R.

Example 9.3. SU(2) is the universal covering group of SO(3), and SU(2)×SU(2) is the universal
covering group of SO(4). In both cases, the group of deck transformations is Z2.

Example 9.4. For all n ≥ 3, the fundamental group of SO(n) is Z2. The universal cover
is called the Spin group and is denoted Spin(n). We have seen that Spin(3) ∼= SU(2) and
Spin(4) ∼= SU(2) × SU(2). One can also show that Spin(5) ∼= Sp(2) and Spin(6) = SU(4).
Starting with n = 7, the spin groups are ‘new’. We will soon prove that the universal covering

group G̃ of a Lie group G is compact if and only if G is compact with finite center.

If Γ ⊆ π1(G) is any subgroup, then Γ (viewed as a subgroup of G̃) is central, and so G̃/Γ is
a Lie group covering G, with π1(G)/Γ as its group of deck transformations.

10. Basic properties of compact Lie groups

In this section we will prove some basic facts about compact Lie groups G and their Lie
algebras g: (i) the existence of a bi-invariant positive measure, (ii) the existence of an invariant
inner product on g, (iii) the decomposition of g into center and simple ideals, (iv) the complete
reducibility of G-representations, (v) the surjectivity of the exponential map.

10.1. Modular function. For any Lie group G, one defines the modular function to be the
Lie group morphism

χ : G→ R×, g 7→ |detg(Adg)|.
Its differential is given by

Teχ : g→ R, ξ 7→ trg(adξ),

by the calculation

∂

∂t

∣∣∣
t=0

detg(Adexp(tξ)) =
∂

∂t

∣∣∣
t=0

detg(exp(t adξ)) =
∂

∂t

∣∣∣
t=0

exp(t trg(adξ)) = trg(adξ).

Here we have identified the Lie algebra of R× with R, in such a way that the exponential map is
just the usual exponential of real numbers. A Lie group G whose modular function is trivial is
called unimodular. In this case, the Lie algebra g is unimodular, i.e. the infinitesimal moduluar
character ξ 7→ tr(adξ) is trivial. The converse holds if G is connected.

Proposition 10.1. Compact Lie groups are unimodular.

Proof. The range of the Lie group morphism G → R×, g 7→ detg(Adg) (as an image of a
compact set under a continuous map) is compact. But the only compact subgroups of R× are
{−1, 1} and {1}. �

Remark 10.2. Besides compact Lie groups, there are many other examples of unimodular Lie
groups. For instance, if G is a connected Lie group whose Lie algebra is perfect i.e. g = [g, g],
then any ξ ∈ g can be written as a sum of commutators ξ =

∑
i[ηi, ζi]. But

adξ =
∑
i

ad[ηi,ζi] =
∑
i

[adηi , adζi ]
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has zero trace, since the trace vanishes on commutators. Similarly, if G is a connected Lie group
whose Lie algebra is nilpotent (i.e., the series g(0) = g, g(1) = [g, g], . . . , g(k+1) = [g, g(k)], . . . is

eventually zero), then the operator adξ is nilpotent (adNξ = 0 for N sufficiently large). Hence
its eigenvalues are all 0, and consequently trg(adξ) = 0. An example is the Lie group of upper
triangular matrices with 1’s on the diagonal.

An example of a Lie group that is not unimodular is the conformal group of the real line,
i.e. the 2-dimensional Lie group G of matrices of the form

g =

(
t s
0 1

)
with t > 0 and s ∈ R. In this example, one checks χ(g) = t.

10.2. Volume forms and densities. The modular function has a geometric interpretation
in terms of volume forms and densities.

Definition 10.3. Let E be a vector space of dimension n. We define a vector space det(E∗)
consisting of maps Λ: E × · · · × E → R satisfying

Λ(Av1, . . . , Avn) = det(A) Λ(v1, . . . , vn).

for all A ∈ GL(E) and all v1, . . . , vn ∈ E. The non-zero elements of det(E∗) are called volume
forms on E. We also define a space |det|(E∗) of maps m : E × · · · × E → R satisfying

m(Av1, . . . , Avn) = | det(A)|m(v1, . . . , vn)

for all A ∈ GL(E). The elements of |det|(E∗) are called densities.

Both det(E∗) and |det|(E∗) are 1-dimensional vector spaces. Of course, det(E∗) ≡ ∧nE∗. A
volume form Λ defines an orientation on E, where a basis v1, . . . , vn is oriented if Λ(v1, . . . , vn) >
0. It also defines a non-zero density m = |Λ| by putting |Λ|(v1, . . . , vn) = |Λ(v1, . . . , vn)|.
Conversely, a positive density together with an orientation define a volume form. In fact, a
choice of orientation gives an isomorphism det(E∗) ∼= |det|(E∗); a change of orientation changes
this isomorphism by a sign. The vector space Rn has a standard volume form Λ0 (taking the
oriented basis e1, . . . , en) to 1), hence a standard orientation and density |Λ0|. The latter is
typically denoted dnx, |dx| or similar. Given a linear map Φ: E → E′, one obtains pull-back
maps Φ∗ : det((E′)∗) → det(E∗) and Φ∗ : |det|((E′)∗) → |det|(E∗); these are non-zero if and
only if Φ is an isomorphism.

For manifolds M , one obtains real line bundles

det(T ∗M), |det|(T ∗M)

with fibers det(T ∗mM), |det|(T ∗mM). A nowhere vanishing section Λ ∈ Γ(det(T ∗M)) is called
a volume form on M ; it gives rise to an orientation on M . Hence, M is orientable if and
only if det(T ∗M) is trivializable. On the other hand, the line bundle |det|(T ∗M) is always
trivializable.

Densities on manifolds are also called smooth measures 7. Being defined as sections of a vector
bundle, they are a module over the algebra of functions C∞(M): if m is a smooth measure then

7Note that measures in general are covariant objects: They push forward under continuous proper maps.
However, the push-forward of a smooth measure is not smooth, in general. Smooth measures (densities), on the
other hand, are contravariant objects.
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so is fm. In fact, the choice of a fixed positive smooth measure m on M trivializes the density
bundle, hence any density on M is then of the form fm with f a function. On Rn, we have the
standard ‘Lebesgue measure’ |dx| defined by the trivialization of TRn; general densities on Rn
are of the form f |dx| with f a function.

If Φ: M ′ → M is a local diffeomorphism, then the pullback density Φ∗m on M ′ is defined,
similarly for volume forms.

There is an integration map, which is a linear functional on the space of densities of compact
support,

m 7→
∫
M

m.

It is the unique linear functional such that if m supported in a chart domain U ⊆ M , with
coordinate map φ : U → Rn, then ∫

M
m =

∫
Rn
f(x)|dx|

where f ∈ C∞(Rn) is the function defined by m = φ∗(f |dx|). (The integration of top degree
forms over oriented manifolds may be seen as a special case of the integration of densities.)

Given a G-action on M , a volume form is called invariant if A∗gΛ = Λ for all g ∈ G. In
particular, we can look for left-invariant volume forms on Lie groups, M = G. Any left-invariant
section of det(T ∗G) is uniquely determined by its value at the group unit, and any non-zero Λe
can be uniquely extended to a left-invariant volume form. That is, the space of left-invariant
top degree forms on G is 1-dimensional, and similarly for the space of left-invariant densities.

Lemma 10.4. Let G be a Lie group, and χ : G → R× its modular function. If Λ is a left-
invariant volume form on G, then

R∗aΛ = det(Ada−1)Λ,

for all a ∈ G. If m is a left-invariant smooth density, we have

R∗am = | det(Ada−1)|m

for all a ∈ G.

Proof. If Λ is left-invariant, then R∗aΛ is again left-invariant since left and right multiplications
commute. Hence it is a multiple of Λ. To determine the multiple, note

R∗aΛ = R∗aL
∗
a−1Λ = Ad∗a−1 Λ.

Computing at the group unit e, we see that Ad∗a−1 Λe = det(Ada)
−1Λe. The result for densities

is a consequence of that for volume forms. �

Corollary 10.5. On a unimodular Lie group, any left-invariant density is also right invariant.
If G is unimodular and connected, the same holds true for volume forms.

In particular, this result applies to compact Lie groups: Every left-invariant density is also
right-invariant. One can normalize the left-invariant density such that

∫
Gm = 1. A nonzero

left-invariant measure on a Lie group G (not necessarily normalized) is often denoted |dg|; it
is referred to as a Haar measure.
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The existence of the bi-invariant measure of finite integral lies at the heart of the theory
of compact Lie groups. For instance, it implies that the Lie algebra g of G admits an Ad-
invariant inner product B: In fact, given an arbitrary inner product B′ one may take B to be
its G-average:

B(ξ, ζ) =
1

vol(G)

∫
G
B′(Adg(ξ),Adg(ζ)) |dg|.

The Ad-invariance

(2) B(Adg ξ,Adg η) = B(ξ, η)

follows from the bi-invariance if the measure. A symmetric bilinear form B on a Lie algebra g
is called ad-invariant if

(3) B([ξ, η], ζ) +B(η, [ξ, ζ]) = 0.

for all ξ, η, ζ ∈ g. If g is the Lie algebra of a Lie group G, then any Ad-invariant bilinear form
is also ad-invariant, by differentiating the property (2). The converse is true if G is connected.

10.3. Decomposition of the Lie algebra of a compact Lie group. As an application, we
obtain the following decomposition of the Lie algebra of compact Lie groups. We will use the
following terminology.

Definition 10.6. (a) An ideal in a Lie algebra g is a subspace h with [g, h] ⊆ h.
(b) A Lie algebra is called simple if it is non-abelian and does not contain non-trivial

ideals.
(c) A Lie algebra is called semi-simple if it is a direct sum of simple ideals.

An ideal is the same thing as an invariant subspace for the adjoint representation of g on
itself. Note that ideals is the Lie algebra counterpart of normal subgroups; in particular, if
g = Lie(G) then the Lie algebra of any normal subgroup is an ideal. The center of g is an ideal,
and the kernel of any Lie algebra morphism is an ideal. For any two ideals h1, h2, their sum
h1 + h2 and their intersection h1 ∩ h2 are again ideals.

Any Lie algebra g has a distinguished ideal, the so-called derived subalgebra [g, g] (spanned
by all Lie brackets of elements). The derived subalgebra is trivial if and only if g is abelian
(the bracket is zero); hence, simple Lie algebras, and more generally semi-simple ones, satisfy

g = [g, g].

That is, semi-simple Lie algebras are perfect. The converse is not true: a counterexamples is
the Lie algebra of 4× 4-matrices of block form(

A B
0 C

)
where A,B,C are 2× 2-matrices and tr(A) = tr(C) = 0.



39

Theorem 10.7. The Lie algebra g of a compact Lie group G is a direct sum

g = z⊕ g1 ⊕ · · · ⊕ gr,

where z is the center of g, and the gi are simple ideals. One has [g, g] = g1 ⊕ · · · ⊕ gr.
The decomposition is unique up to re-ordering of the summands.

Proof. Pick an invariant Euclidean inner product B on g. Then the orthogonal complement
(with respect to B) of any ideal h ⊆ g is again an ideal. Indeed, [g, h] ⊆ h implies

B([g, h⊥], h) = B(h⊥, [g, h]) ⊆ B(h⊥, h) = 0,

hence [g, h⊥] ⊆ h⊥. As a consequence, g has an orthogonal decomposition into ideals, none
of which contains a proper ideal. Hence, these summands are either simple, or 1-dimensional
and abelian. Let g1, . . . , gr be the simple ideals, and z the sum of the abelian ideals. Then
g = z⊕ g1 ⊕ · · · ⊕ gr is a direct sum of Lie algebras. and in particular z is the center of g and
[g, g] = g1 ⊕ · · · ⊕ gr is the semisimple part.

For the uniqueness of the decomposition, suppose that h ⊆ [g, g] is an ideal not containing
any of the gi’s. But then [gi, h] ⊆ gi ∩ h = 0 for all i, which gives [g, h] =

⊕
i[gi, h] = 0. Hence

h ⊆ z. �

Exercise 10.8. Show that for any Lie group G, the Lie algebra of the center of G is the center
of the Lie algebra.

10.4. Complete reducibility of representations. Let G be a compact Lie group, and
π : G→ Aut(V ) a representation on a real vector space. Then V admits a G-invariant metric,
obrained from an arbitrary given Euclidean metric < ·, · >′ by averaging:

〈v, w〉 =
1

vol(G)

∫
G
〈π(g)v, π(g)w〉′ |dg|.

Given a G-invariant subspace W ⊆ V , the orthogonal complement W⊥ is again invariant. It
follows that every finite-dimensional real G-representation is a direct sum of irreducible ones.

Similarly, if V is a complex vector space and the representation is by complex automorphisms,
we obtain an invariant Hermitian metric (complex inner product) by averaging. Given a
G-invariant complex subspace W , its orthogonal complement W⊥ is again G-invariant. As
a consequence, any finite-dimensional complex G-representation is completely reducible. (A
similar argument also shows that every real G-representation is completely reducible.)

10.5. The bi-invariant Riemannian metric. Recall some material from differential geom-
etry. Suppose M is a manifold equipped with a pseudo-Riemannian metric B. That is, B
is a family of non-degenerate symmetric bilinear forms Bm : TmM × TmM → R depending
smoothly on m. A smooth curve γ : J →M (with J ⊆ R some interval) is called a geodesic if,
for any [t0, t1] ⊆ J , the restriction of γ is a critical point of the energy functional

E(γ) =

∫ t1

t0

B(γ̇(t), γ̇(t)) dt.

That is, for any variation of γ, given by a smooth 1-parameter family of curves γs : [t0, t1]→M
(defined for small |s|), with γ0 = γ and with fixed end points (γs(t0) = γ(t0), γs(t1) = γ(t1))
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we have
∂

∂s

∣∣∣
s=0

E(γs) = 0.

A geodesic is uniquely determined by its values γ(t∗), γ̇(t∗) at any point t∗ ⊆ J . It is one of
the consequences of the Hopf-Rinow theorem that if M is a compact, connected Riemannian
manifold, then any two points in M are joined by a length minimizing geodesic. The result
is false in general for pseudo-Riemannian metrics, and we will encounter a counterexample at
the end of this section.

Let G be a Lie group, with Lie algebra g. A non-degenerate symmetric bilinear form B : g×
g→ R defines, via left translation, a left-invariant pseudo-Riemannian metric (still denoted B)
on G. If the bilinear form on g is Ad-invariant, then the pseudo-Riemannian metric on G is bi-
invariant. In particular, any compact Lie group admits a bi-invariant Riemannian metric. As
another example, the group GL(n,R) carries a bi-invariant pseudo-Riemannian metric defined
by the bilinear form B(ξ1, ξ2) = tr(ξ1ξ2) on gl(n,R). It restricts to a pseudo-Riemannian metric
on SL(n,R).

Theorem 10.9. Let G be a Lie group with a bi-invariant pseudo-Riemannian metric B.
Then the geodesics on G are the left-translates (or right-translates) of the 1-parameter
subgroups of G.

Proof. Since B is bi-invariant, the left-translates or right-translates of geodesics are again
geodesics. Hence it suffices to consider geodesics γ(t) with γ(0) = e. For ξ ∈ g, let γ(t) be the
unique geodesic with γ̇(0) = ξ and γ(0) = e. To show that γ(t) = exp(tξ), let γs : [t0, t1]→ G
be a 1-parameter variation of γ(t) = exp(tξ), with fixed end points. If s is sufficiently small we
may write γs(t) = exp(us(t)) exp(tξ) where us : [t0, t1]→ g is a 1-parameter variation of 0 with
fixed end points, us(t0) = 0 = us(t1). We have

γ̇s(t) = Rexp(tξ)Lexp(us(t))

(
ξ +

1− e− ad(us)

ad(us)
u̇s(t)

)
,

hence, using bi-invariance of B,

E(γs) =

∫ t1

t0

B
(
ξ +

1− e− ad(us)

ad(us)
u̇s(t), ξ +

1− e− ad(us)

ad(us)
u̇s(t)

)
dt

Notice
∂

∂s
|s=0

(1− e− ad(us)

ad(us)
u̇s(t)

)
=

∂

∂s
|s=0u̇s(t)

since u0 = 0, u̇0 = 0. Hence, the s-derivative of E(γs) at s = 0 is

∂

∂s
|s=0E(γs) = 2

∫ t1

t0

B(
∂

∂s

∣∣∣
s=0

u̇s(t), ξ)

= 2B(
∂

∂s

∣∣∣
s=0

us(t1), ξ)− 2B(
∂

∂s

∣∣∣
s=0

us(t0), ξ)

= 0

�
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Remark 10.10. A pseudo-Riemannian manifold is called geodesically complete if for any given
m ∈ M and v ∈ TmM , the geodesic with γ(0) = m and γ̇(0) = v is defined for all t ∈ R. In
this case one defines an exponential map

Exp: TM →M

by taking v ∈ TmM to γ(1), where γ(t) is the geodesic defined by v. The result above shows
that any Lie group G with a bi-invariant pseudo-Riemannian metric is geodesically complete,
and Exp: TG → G is the extension of the Lie group exponential map exp: g → G by left
translation.

Theorem 10.11. The exponential map of a compact, connected Lie group is surjective.

Proof. Choose a bi-invariant Riemannian metric on G. Since G is compact, any two points in
G are joined by a geodesic. (A length minimizing curve connecting the points is a geodesic.)
In particular, given g ∈ G there exists a geodesic with γ(0) = e and γ(1) = g. This geodesic is
of the form exp(tξ) for some ξ. Hence exp(ξ) = g. �

Remark 10.12. The example of G = SL(2,R) shows that the existence of a bi-invariant pseudo-
Riemannian metric does not suffice for this result.

10.6. The Killing form.

Definition 10.13. The Killing form8 of a finite-dimensional Lie algebra g is the symmetric
bilinear form

κ(ξ, η) = trg(adξ adη).

Proposition 10.14. The Killing form on a finite-dimensional Lie algebra g is ad-invariant.
If g is the Lie algebra of a possibly disconnected Lie group G, it is furthermore Ad-invariant.

Proof. The ad-invariance follows from ad[ξ,ζ] = [adξ, adζ ]:

κ([ξ, η], ζ) + κ(η, [ξ, ζ]) = trg([adξ, adη] adζ) + adη[adξ, adζ ]) = 0.

The Ad-invariance is checked using adAdg(ξ) = Adg ◦ adξ ◦Adg−1 . �

If g is simple, then the Killing form κ must be nondegenerate (since otherwise the kernel of
κ is a non-trivial ideal). Hence, also for semi-simple g the Killing form is nondegenerate. An
important result of E. Cartan says that the converse is true as well. (We will not use it in this
course.)

8The Killing form is named after Wilhelm Killing (1847-1923). Killing’s contributions to Lie theory had long
been underrated. In fact, he himself in 1880 had rediscovered Lie algebras independently of Lie (but about
10 years later). In 1888 he had obtained the full classification of Lie algebra of compact Lie groups. Killing’s
existence proofs contained gaps, which were later filled by E. Cartan. The Cartan matrices, Cartan subalgebras,
Weyl groups, root systems Coxeter transformations etc. all appear in some form in W. Killing’s work (cf. Borel
‘Essays in the history of Lie groups and Lie algebras’.) According A. J. Coleman (‘The greatest mathematical
paper of all time’), ”he exhibited the characteristic equation of the Weyl group when Weyl was 3 years old
and listed the orders of the Coxeter transformation 19 years before Coxeter was born.” On the other hand, the
Killing form was actually first considered by E. Cartan. Borel admits that he (Borel) was probably the first to
use the term ‘Killing form’.
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Remark 10.15. It is not hard to see that if g admits a non-degenerate invariant bilinear form B
then g is perfect: [g, g] = g. In particular, this holds when the Killing form of g is nondegenerate.

Proposition 10.16. Suppose g is the Lie algebra of a compact Lie group G. Then the Killing
form on g is negative semi-definite, with kernel the center z. Thus, if G has finite center (so
that z = 0), the Killing form is negative definite.

Proof. Let B be an invariant inner product on g, i.e. B positive definite. The ad-invariance
says that adξ is skew-symmetric relative to B. Hence it is diagonalizable (over C), and all

its eigenvalues are in iR. Consequently ad2
ξ is symmetric relative to B, with non-positive

eigenvalues, and its kernel coincides with the kernel of adξ. This shows that

κ(ξ, ξ) = tr(ad2
ξ) ≤ 0,

with equality if and only if adξ = 0, i.e. ξ ∈ z. �

10.7. Derivations. Let g be a Lie algebra. Recall that D ∈ End(g) is a derivation if and only
if D([ξ, η]) = [Dξ, η] + [ξ,Dη] for all ξ, η ∈ g, that is

adDξ = [D, adξ].

Let Der(g) be the Lie algebra of derivations of a Lie algebra g, and Inn(g) the Lie subalgebra
of inner derivations, i.e. those of the form D = adξ.

Theorem 10.17. Suppose the Killing form of g is non-degenerate (e.g., g is the Lie
algebra of a compact Lie group with finite center). Then any derivation of g is inner.
In fact, Der(g) = Inn(g) = g.

Proof. Let D ∈ Der(g). It defines a linear functional on g, given by η 7→ tr(D ◦ adη). Since the
Killing form is non-degenerate, this linear functional is given by some Lie algebra element ξ.
That is,

κ(ξ, η) = tr(D ◦ adη)

for all η ∈ g. The derivation D0 = D− adξ then satisfies tr(D0 ◦ adη) = 0 for all η. For η, ζ ∈ g
we obtain

κ(D0(η), ζ) = tr(adD0(η) adζ) = tr([D0, adη] adζ) = tr(D0 ◦ [adη, adζ ]) = tr(D0 ◦ ad[η,ζ]) = 0.

This shows D0(η) = 0 for all η, hence D0 = 0. This shows that every derivation of g is inner.
By definition, Inn(g) is the image of the map g→ Der(g), ξ 7→ adξ. The kernel of this map is
the center z of the Lie algebra. But if κ is non-degenerate, the center z must be trivial. �

If G is a Lie group with Lie algebra g, we had seen that Der(g) is the Lie algebra of the
Lie group Aut(g). The proposition shows that if the Killing form is non-degenerate, then the
differential of the map G → Aut(g) is an isomorphism. Hence, it defines a covering from the
identity component of G to the identity component of Aut(g).

Theorem 10.18. Suppose g is a finite-dimensional Lie algebra. Then the Killing form
on g is negative definite if and only if g is the Lie algebra of a compact connected Lie
group G with finite center.
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Proof. The direction ⇐ is Proposition 10.16. For the converse, assuming that the Killing form
is negative definite, let Aut(g). Since Aut(g) preserves the Killing form, we have

Aut(g) ⊆ O(g, κ),

the orthogonal group relative to κ. Since κ is negative definite, O(g, κ) is compact. Hence
G = Aut(g) is a compact Lie group with Lie algebra Der(g) = Inn(g) = g. �

Remark 10.19. A somewhat stronger statement holds: The Lie algebra of a connected Lie
group G has negative definite Killing form if and only if G is compact with finite center. This

follows once we know that the universal cover G̃ of a compact Lie group with finite center is
again compact. Equivalently, we need to know that for a compact connected Lie group with
finite center, the fundamental group is finite. 9 This result applies to the identity component
of the group Aut(g); hence the universal cover of the identity component of Aut(g) is compact.
A different proof, not using fundamental group calculations (but instead using some facts from
Riemannian geometry), may be found in Helgason’s book Differential geometry, Lie groups
and symmetric spaces, Academic Press, page 133.

11. The maximal torus of a compact Lie group

11.1. Abelian Lie groups. A Lie group G is called abelian if gh = hg for all g, h ∈ G, i.e. G
is equal to its center.10 A compact connected abelian group is called a torus. A Lie algebra g
is abelian (or commutative) if the Lie bracket is trivial, i.e. g equals its center.

Proposition 11.1. A connected Lie group G is abelian if and only if its Lie algebra g is
abelian. Furthermore, in this case the universal cover is

G̃ = g

(viewed as an additive Lie group).

Proof. If g is abelian, then any two left-invariant vector fields commute. Hence their flows
commute, which gives

exp(ξ) exp(η) = exp(ξ + η) = exp(η) exp(ξ),

for all ξ, η ∈ g. Hence there is a neighborhood U of e such that any two elements in U commute.
Since any element of G is a product of elements in U , this is the case if and only if G is abelian.
We also see that in this case, exp: g→ G is a Lie group morphism. Its differential at 0 is the
identity, hence exp is a covering map. Since g is contractible, it is the universal cover of G. �

We hence see that any abelian Lie group is of the form

G = V/Γ,

where V ∼= g is a vector space and Γ = π1(G) is a discrete additive subgroup of V .

Lemma 11.2. There are linearly independent γ1, . . . , γk ∈ V such that

Γ = spanZ(γ1, . . . , γk).

9We may get back to this later.
10Abelian groups are named after Nils Hendrik Abel. In the words of R. Bott, ‘I could have come up with

that.’
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Proof. Suppose by induction that γ1, . . . , γl ∈ Γ are linearly independent vectors such that
spanZ(γ1, . . . , γl) = spanR(γ1, . . . , γl)∩ Γ. If the Z-span is all of Γ, we are done. Otherwise, let

V ′ = V/ spanR(γ1, . . . , γl), Γ′ = Γ/ spanZ(γ1, . . . , γl),

and pick γl+1 such that its image γ′l+1 ∈ V ′ satisfies Zγ′l+1 = Rγ′l+1∩Γ′. Then spanZ(γ1, . . . , γl+1) =
spanR(γ1, . . . , γl+1) ∩ Γ. �

Extending the γi to a basis of V , we see that any abelian Lie group is isomorphic to Rn/Zk
for some n, k. That is:

Proposition 11.3. Any connected abelian Lie group is isomorphic to (R/Z)k × Rl, for some
k, l. In particular, a k-dimensional torus is isomorphic to (R/Z)k.

For a torus T , we will call

Λ = π1(T ) ⊆ t

the integral lattice. Thus

T = t/Λ.

Let G be a Lie group, and g ∈ G. Then g generates an abelian subgroup

{gk| k ∈ Z}

of G; its closure is an abelian subgroup H ⊆ G. We call g a topological generator of G if
H = G. Of course, this is only possible if G is abelian (but possibly disconnected).

Theorem 11.4 (Kronecker lemma). Let u = (u1, . . . , uk) ∈ Rk, and t = exp(u) its
image in T = (R/Z)k. Then t is a topological generator if and only if 1, u1, . . . , uk ∈ R
are linearly independent over the rationals Q. In particular, topological generators of
tori exist.

Proof. Note that 1, u1, . . . , uk ∈ R are linearly dependent over the rationals if and only if there

exist a1, . . . , an, not all zero, such that
∑k

i=1 aiui ∈ Z.

Let T = (R/Z)k, and let H be the closure of the subgroup generated by t. Since T/H is a
compact connected abelian Lie group, it is isomorphic to (R/Z)l for some l.

We will show that H 6= T , i.e., l > 0, if and only if 1, u1, . . . , uk ∈ R are linearly dependent
over the rationals. Note that the latter is equivalent to the existence of a1, . . . , an, not all zero,

such that
∑k

i=1 aiui ∈ Z.

”⇒”. If l > 0, there exists a non-trivial group morphism

T/H ∼= (R/Z)l → R/Z

(e.g. projection to the first factor). By composition with the quotient map, it becomes a
non-trivial group morphism

φ : T → R/Z
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that is trivial on H. Its differential T0φ : Rk → R takes Zk to Z, hence we obtain integers
ai = (T0φ)(ei) ∈ Z. In terms of these integers,

(T0φ)(u) = (T0φ)(
k∑
i=1

uiei) = aiui.

But since φ is trivial on H, the element t = exp(u) satisfies φ(t) = 1, hence (T0φ)(u) ∈ Z. That

is,
∑k

i=1 aiui ∈ Z.

”⇐”. Conversely, given ai ∈ Z, not all zero, such that
∑k

i=1 aiui ∈ Z, define a non-trivial
group homomorphism

φ : T → R/Z
by φ(h) =

∑k
i=1 aivi mod Z for h = exp(

∑k
i=1 viei). Then φ is trivial on H, but is non-trivial

on T . It follows that H is a proper subgroup of T . �

Remark 11.5 (Automorphisms). Given torus T , any group automorphism φ ∈ Aut(T ) induces
a Lie algebra automorphism T0φ ∈ Aut(t) preserving Λ. Conversely, given an automorphism
of the lattice Λ, we obtain an automorphism of t = spanR(Λ) and hence of T = t/Λ. That is,

Aut(T ) = Aut(Λ).

Choose an identification T = (R/Z)k. We have

Aut(Zk) = GL(k,Z) ⊆ Matk(Z)

the group of invertible matrices A with integer coefficients whose inverse also has integer
coefficients. By the formula for the inverse matrix, this is the case if and only if the determinant
is ±1:

GL(k,Z) = {A ∈ Matk(Z)| det(A)± 1}.
The group GL(k,Z) contains the semi-direct product (Z2)k o Sk, where Sk acts on Zk by
permutation of coordinates and (Z2)k acts by sign changes. One can show that

(Z2)k o Sk ∼= O(k,Z) = GL(k,Z) ∩O(k),

the transformations preserving also the metric.

11.2. Maximal tori. Let G be a compact, connected Lie group, with Lie algebra g. A torus
T ⊆ G is called a maximal torus if it is not properly contained in a larger subtorus of G.

Theorem 11.6. (E. Cartan) Let G be a compact, connected Lie group. Then any two
maximal tori of G are conjugate.

Proof. We have to show that is T, T ′ ⊆ G are two maximal tori, then there exists g ∈ G such
that Ada(T ) = T ′. Fix an invariant inner product B on g. Pick topological generators t, t′ of
T, T ′, and choose ξ, ξ′ ∈ g with exp(ξ) = t, exp(ξ′) = t′. Let a ∈ G be a group element for
which the function g 7→ B(ξ′,Adg(ξ)) takes on its maximum possible value. We will show that
Ada(T ) = T ′. To see this, let η ∈ g. By definition of g, the function

t 7→ B(Adexp(tη) Ada(ξ), ξ
′)
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takes on its maximum value at t = 0. Taking the derivative at t = 0, this gives

0 = B([η,Ada(ξ)], ξ
′) = B(η, [Ada(ξ), ξ

′]).

Since this is true for all η, we obtain [ξ′,Ada(ξ)] = 0. Exponentiating ξ′, this shows Adt′(Ada(ξ)) =
Ada(ξ). Exponentiating ξ, it follows that Ada(t), t

′ commute. Since these are generators, any
element in Ada(T ) commutes with any element in T ′. The group T ′Ada(T ) of products of
elements in T ′,Ada(T ) is connected and abelian, hence it is a torus. Since T ′,Ada(T ) are
maximal tori, we conclude T ′ = T ′Ada(T ) = Ada(T ). �

Definition 11.7. The rank l of a compact, connected Lie group G s the dimension of a
maximal torus T ⊆ G.

For example, U(n) has maximal torus given by diagonal matrices. Its rank is thus l = n.
We will discuss the maximal tori of the classical groups further below.

Exercise 11.8. The group SU(2) has maximal torus T the set of diagonal matrices diag(z, z−1).
Another natural choice of a maximal torus is T ′ = SO(2) ⊆ SU(2). Find all elements a ∈ G
such that Ada(T ) = T ′.

The Lie algebra t of a maximal torus T is a maximal abelian subalgebra of g, where a subal-
gebra is called abelian if it is commutative. Conversely, for any maximal abelian subalgebra the
subgroup exp(t) is automatically closed, hence is a maximal torus. Cartan’s theorem implies
that any two maximal abelian subalgebras t, t′ are conjugate under the adjoint representation.
That is, there exists a ∈ G such that Ada(t) = t′.

Theorem 11.9. (Properties of maximal tori).

(a) Every element of a Lie group is contained in some maximal torus. That is, if T
is a fixed maximal torus then⋃

a∈G
Ada(T ) = G.

(b) The intersection of all maximal tori is the center of G:⋂
a∈G

Ada(T ) = Z(G).

(c) If H ⊆ G is a subtorus, and g ∈ G commutes with all elements of H, then there
exists a maximal torus containing H and g.

(d) Maximal tori are maximal abelian groups: If some g ∈ G commutes with all
elements of T then g ∈ T .

Proof. (a) Let g ∈ G be given. Using that fact that exp: g → G is surjective, we may
choose ξ ∈ g with exp(ξ) = g, and let t be a maximal abelian subalgebra of g containing
ξ. Then T = exp(t) is a maximal torus containing g.

(b) Suppose c ∈
⋂
a∈G Ada(T ). Since c ∈ Ada(T ), it commutes with all elements in Ada(T ).

Since G =
⋃
a∈G Ada(T ) it commutes with all elements of G, that is, c ∈ Z(G). This
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proves
⋂
a∈G Ada(T ) ⊆ Z(G); the opposite inclusion is a consequence of (b) to be proved

below.
(c) If g ∈ H there is nothing to show (any maximal torus containing H will do), so assume

g 6∈ H. Since g commutes with H, we obtain a closed abelian subgroup

B =
⋃
k∈Z

gkH.

Let B0 be the identity component, which is thus a torus. Since B is compact, it
can only have finitely many components; let m ∈ N be the smallest number with
gm ∈ B0, so the components of B are components B0, gB0, . . . , g

m−1B0. The element
gm ∈ B0 can be written in the form km with k ∈ B0. Thus h = gk−1 ∈ gB0 satisfies
hm = e. It follows that h generates a subgroup isomorphic to Zm, and the product map
B0 × Zm → B, (t, hi) 7→ thi is an isomorphism.

Pick a topological generator b ∈ B0 of the torus B0. Then bm is again a topological
generator of B0 (by Kronecker’s Lemma). Thus bh is a topological generator of B. But
by part (a), the element bh is contained in some maximal torus T . Hence B ⊆ T .

(d) By (c) there exists a maximal torus T ′ containing both T and g. But T already is a
maximal torus. Hence g ∈ T ′ = T .

�

Exercise 11.10. Show that the subgroup of diagonal matrices in SO(n), n ≥ 3 is maximal
abelian. Since this is a discrete subgroup, this illustrates that maximal abelian subgroups need
not be maximal tori.

Proposition 11.11. dim(G/T ) is even.

Proof. Fix an invariant inner product on g. Since G is connected, the adjoint representation
takes values in SO(g). The action of T ⊆ G fixes t, hence it restricts to a representation

T → SO(t⊥)

where t⊥ ∼= g/t is the orthogonal complement with respect to B. Let t ∈ T be a topological
generator. Then Ad(t)|t⊥ has no eigenvalue 1. But any special orthogonal transformation on an
odd-dimensional Euclidean vector space fixes at least one vector. (Exercise.) Hence dim(g/t)
is even. �

11.3. The Weyl group. For any subset S ⊆ G of a Lie group, one defines its normalizer
N(S) (sometimes written NG(S) for clarity) to be the group of elements g ∈ G such that
Adg(S) ⊆ S. Note that if gnormalizes S then it also normalizes the closure S. The normalizer
N(S) is a closed subgroup, hence a Lie subgroup. If H be a closed subgroup of G, then it is a
is a normal subgroup of N(H), hence the quotient N(H)/H inherits a Lie group structure.

We are mainly interested in the normalizer of T . Thus, N(T ) is the stabilizer of T for the
G-action on the set of maximal tori. By Cartan’s theorem, this action is transitive, hence
the quotient space G/N(T ) is identified with the set of maximal tori. The adjoint action of
T ⊆ N(T ) on T is of course trivial, but there is a non-trivial action of the quotient N(T )/T .
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Definition 11.12. Let G be a compact, connected Lie group with maximal torus T . The
quotient

W = NG(T )/T

is called the Weyl group of G relative to T .

Since any two maximal tori are conjugate, the Weyl groups are independent of T up to
isomorphism. More precisely, if T, T ′ are two maximal tori, and a ∈ G with T ′ = Ada(T ),
then N(T ′) = Ada(N(T )), and hence Ada defines an isomorphism W → W ′. There are many
natural actions of the Weyl group:

(a) W acts on T . This action is induced by the conjugation action of N(T ) on T (since
T ⊆ N(T ) acts trivially). Note that this action on T is by Lie group automorphisms.

(b) W acts on t. This action is induced by the adjoint representation of N(T ) ⊆ G on t
(since T ⊆ N(T ) acts trivially). Of course, the action on t is just the differential of the
action on T .

(c) W acts on the lattice Λ, the kernel of the exponential map exp: t → T . Indeed,
exp: t → T is an N(T )-equivariant, hence W -equivariant, group morphism. Thus its
kernel is a W -invariant subset of t.

(d) W acts on G/T . It is a general fact that if a group G acts on a manifold M , and H is a
subgroup, then NG(H)/H acts on M/H. Here, we are applying this fact to the action
a 7→ Ra−1 of G on itself, and te subgroup H = T . Explicitly, if w ∈ W is represented
by n ∈ N(T ), then

w.(gT ) = gn−1T.

Note that this action is free, that is, all stabilizer groups are trivial. The quotient of
the W -action on G/T is G/N(T ), the space of maximal tori of G.

Example 11.13. For G = SU(2), with maximal torus T consisting of diagonal matrices, we have
N(T ) = T ∪ nT where

n =

(
0 1
−1 0

)
.

Thus W = N(T )/T = Z2, with n descending to the non-trivial generator. One easily checks
that the conjugation action of n on T permutes the two diagonal entries. The action on t is
given by reflection, ξ 7→ −ξ. The action on G/T ∼= S2 is the antipodal map, hence the set of
maximal tori is G/N(T ) = (G/T )/W ∼= RP (2).

Example 11.14. Let G = SO(3), with maximal torus given by rotations about the 3-axis. Thus,
T consists of matrices

g(θ) =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 .

The normalizer N(T ) consist of all rotations in SO(3) preserving the 3-axis. The induced action
on the 3-axis preserves the inner product, hence it is either trivial or the reflection. Elements
in N(T ) fixing the axis are exactly the elements of T itself. The elements in N(T ) reversing
the axis are the rotations by π about any axis orthogonal to the 3-axis. Thus W = Z2.
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Theorem 11.15. The Weyl group W of a compact, connected group G is a finite group.

Proof. To show N(T )0 = T , we only have to show the inclusion ⊆. Consider the adjoint
representation of N(T ) on t. As mentioned above this action preserves the lattice Λ. Since Λ is
discrete, the identity component N(T )0 acts trivially on Λ. It follows that N(T )0 acts trivially
on t = spanR(Λ) and hence also on T = exp(t). That is, N(T )0 ⊆ ZG(T ) = T . �

Theorem 11.16. The action of W on T (and likewise the action on t,Λ) is faithful.
That is, the map

W → Aut(T )

is injective.

Proof. If w acts trivially on T , then any element g ∈ N(T ) representing w lies in Z(T ) = T , thus
w = 1. On the other hand, w acts trivially on Λ if and only if it acts trivially on t = spanR(Λ),
if and only if it acts trivially on T = exp(t). �

Exercise 11.17. a) Let φ : G→ G′ be a surjective morphism of compact connected Lie groups.
Show that if T ⊆ G is a maximal torus in G, then T ′ = φ(T ) is a maximal torus in G′, and that
the image φ(N(T )) of the normalizer of T lies inside N(T ′). Thus φ induces a group morphism
of Weyl groups, W →W ′.

b) Let φ : G → G′ be a covering morphism of compact connected Lie groups. Let T ′ be
a maximal torus in G′. Show that T = φ−1(T ′) is a maximal torus in G, with normalizer
N(T ) = φ−1(N(T ′)). Thus, G,G′ have isomorphic Weyl groups: W ∼= W ′.

Remark 11.18 (The set of all maximal tori, and its tautological bundle). Let X be the set of
all maximal tori of G. Over X, we have a tautological bundle of Lie groups, with fiber at x
the maximal torus Tx labeled by x. Let Q =

∐
x∈X Tx be the disjoint union; it comes with a

natural map
Q→ G

given on the fiber Tx by the obvious inclusion. The group G acts on Q, by g · (x, t) 7→
(g · x,Adt(x)) for t ∈ Tx; the map Q→ G is G-equivariant for this action and the conjugation
action on G.

Once we fix a maximal torus T , we have an identification X = G/N(T ), and the fiber bundle
Q is realized as

Q = (G/T × T )/W → (G/T )/W = G/N(T ) = X.

The map to G is smooth, and is a diffeomorphism on an open dense subset of Q. Note also
that the bundle Q is flat, since we have canonical local identifications of the fibers; this also
follows because it is the quotient of a trivial bundle G/T ×T by the action of a discrete group.

11.4. Maximal tori and Weyl groups for the classical groups. We will now describe the
maximal tori and the Weyl groups for the classical groups. Recall that if T is a maximal torus,
then the Weyl group action

W → Aut(T ) ∼= Aut(Λ)

is by automorphism. Since W is finite, its image must lie in a compact subgroup of Aut(T ).
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Recall also that for the standard torus (R/Z)l, we have Aut((R/Z)l) ∼= GL(l,Z), and a
maximal compact subgroup is

O(l,Z) = (Z2)l o Sl ⊆ GL(l,Z).

Note however that the restriction of the metric of g to the Lie algebra t need not correspond
to the standard metric on Rl, hence W need not take values in O(l,Z), in general. Still, we
expect W to be conjugate to a subgroup of (Z2)l o Sl.

To compute the Weyl group in the following examples of matrix Lie groups, we take into
account that the Weyl group action must preserve the set of eigenvalues of matrices t ∈ T .

11.4.1. The unitary and special unitary groups. For G = U(n), the diagonal matrices

diag(z1, . . . , zn) =


z1 0 0 · · · 0
0 z2 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · zn


with |zi| = 1 define a maximal torus. Indeed, conjugation of a matrix g ∈ U(n) by t =
diag(z1, . . . , zn) gives (tgt−1)ij = zigijz

−1
j . If i 6= j, this equals gij for all zi, zj if and only if

gij = 0. Thus g is diagonal, as claimed. In particular, rank(U(n)) = n.
The subgroup of Aut(T ) preserving eigenvalues of matrices is the symmetric group Sn, acting

by permutation of diagonal entries. Hence we obtain an injective group morphism

W ↪→ Sn.

We claim that this map is an isomorphism. To see this, it suffices that all transpositions of
adjacent elements i, i+1 are in the image, hence are realized as conjugation by some n ∈ N(T ).
Indeed, let n ∈ G be the matrix with

ni,i+1 = 1, ni+1,i = −1, njj = 1 for j 6= i, i+ 1,

and all other entries equal to zero. Conjugation by n preserves T , and the action on T exchanges
the i-th and i + 1-st diagonal entries. Hence all transpositions are in the image of W . But
transpositions generate all of W .

The discussion for G = SU(n), is similar. The diagonal matrices diag(z1, . . . , zn) with |zi| = 1
and

∏n
i=1 zi = 1 are a maximal torus T ⊆ SU(n), thus rank(SU(n)) = n − 1, and the Weyl

group is W = Sn, just as in the case of U(n).

Theorem 11.19. The Weyl group of U(n), and also of SU(n), is the symmetric group
Sn.

11.4.2. The special orthogonal groups SO(2m). The group of block diagonal matrices

t(θ1, . . . , θm) =


R(θ1) 0 0 · · · 0

0 R(θ2) 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · R(θm)


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is a torus T ⊆ SO(2m). To see that it is maximal, consider conjugation of a given g ∈ SO(2m)
by t = t(θ1, . . . , θm). Writing g in block form with 2× 2-blocks gij ∈ Mat2(R), we have

(tgt−1)ij = R(θi)gijR(−θj).

Thus g ∈ ZG(T ) if and only if R(θi)gij = gijR(θj) for all i, j, and all θ1, . . . , θm. For i 6= j,
taking θj = 0 and θi = π, this shows gij = 0. Thus g is block diagonal with blocks gii ∈ O(2)
satisfying R(θi)gii = giiR(θi). Since a reflection does not commute with all rotations, we must
in fact have gii ∈ SO(2). This confirms that T is a maximal torus, and rank(SO(2m)) = m.

The eigenvalues of the element t(θ1, . . . , θm) are eiθ1 , e−iθ1 , . . . , eiθm , e−iθm . The subgroup of
Aut(T ) preserving the set of eigenvalues of matrices is thus (Z2)m o Sm, where Sm acts by
permutation of the θi, and (Z2)m acts by sign changes. That is, we have an injective group
morphism

W → (Z2)m o Sm.

To describe its image, let Γm ⊆ (Z2)m be the kernel of the product map (Z2)m → Z2, corre-
sponding to an even number of sign changes.

Theorem 11.20. The Weyl group W of SO(2m) is the semi-direct product Γm o Sm.

Proof. The matrix g ∈ SO(2m), written in block form with 2× 2-blocks, with entries

gij = −gji = I, gkk = I for k 6= i, j

and all other blocks equal to zero, lies in N(T ). The corresponding Weyl group element
permutes the i-th and j-th blocks of any t ∈ T . Hence Sm ⊆W . Next, observe that the matrix

K =

(
−1 0
0 1

)
∈ O(2).

satisfies KR(θ)R−1 = R(−θ). The block diagonal matrix, with blocks K in the i-th and j-
th diagonal entries, and identity matrices for the other diagonal entries, lies in N(T ) and its
action on T changes R(θi), R(θj) to R(−θi), R(−θj). Hence, we obtain all even numbers of sign
changes, confirming Γn ⊆W .

It remains to show that the transformation t(θ1, θ2, . . . , θm) 7→ t(−θ1, θ2 . . . , θm) does not lie
in W . Suppose g ∈ N(T ) realizes this transformation, so that

gt(θ1, θ2, . . . , θm) = t(−θ1, θ2, . . . , θm)g.

As above, writing g in block form, we obtain the condition

R(θi)gij = gijR(θj)

for j ≥ 2, but R(θi)gi1 = gi1R(θ1). Taking θi = 0, θj = π we see that gij = 0 for i 6= j. Thus,
g must be block diagonal. Thus

g ∈ (O(2)× · · · ×O(2)) ∩ SO(2m).

From R(θi)gii = giiR(θi) for i ≥ 2 we obtain gii ∈ SO(2) for i > 1. Since det(g) = 1, this forces
g11 ∈ SO(2), which however is incompatible with R(−θ1)g11 = g11R(θ1). �
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Note that for m = 2, we have Γ2 = Z2 ⊆ Z2 × Z2 with the trivial action of S2 = Z2.
Hence W = Z2 × Z2 in this case, consistent with the fact that the universal cover of SO(4) is
SU(2)× SU(2).

11.4.3. The special orthogonal groups SO(2m+ 1). Define an inclusion

j : O(2m)→ SO(2m+ 1),

placing a given orthogonal matrix A in the upper left corner and det(A) in the lower left corner.
Let T ′ be the standard maximal torus for SO(2m), and N(T ′) its normalizer. Then T = j(T ′)
is a maximal torus for SO(2m+ 1). The proof that T is maximal is essentially the same as for
SO(2m).

Theorem 11.21. The Weyl group of SO(2m+1) is the semi-direct product (Z2)moSm.

Proof. As in the case of SO(2m), we see that the Weyl group must be a subgroup of (Z2)moSm.
Since j(N(T ′)) ⊆ N(T ), we have an inclusion of Weyl groups W ′ = Γm o Sm ⊆ W . Hence we
only need to show that the first Z2 is contained in W . The block diagonal matrix g ∈ O(2m)
with entries K, I, . . . , I down the diagonal satisfies gt(θ1, . . . , θm)g−1 = t(−θ1, . . . , θm). Hence
j(g) ∈ N(T ) represents a generator of the Z2. �

11.4.4. The symplectic groups. Recall that Sp(n) is the subgroup of Matn(H)× preserving the
norm on Hn. Alternatively, using the identification H = C2, one can realize Sp(n) as

Sp(n) = U(2n) ∩ Sp(2n,C),

where Sp(2n,C) is the group of complex matrices satisfying X>JX = J , with

J =

(
0 I
I 0

)
(see homework 1). Let T be the torus consisting of the diagonal matrices in Sp(n). Letting
Z = diag(z1, . . . , zn), these are the matrices of the form

t(z1, . . . , zn) =

(
Z 0
0 Z

)
with |zi| = 1. As before, we see that a matrix in Sp(n) commutes with all these diagonal
matrices if and only if it is itself diagonal. The diagonal matrices in Sp(2n,C) are exactly
those of the form t(z1, . . . , zn) with zi 6∈ C, and this lies in U(2n) exactly if all |zi| = 1.

Hence T is a maximal torus. Note that T is the image of the maximal torus of U(n) under
the inclusion

r : U(n)→ Sp(n), A 7→
(
A 0
0 A

)
Theorem 11.22. The Weyl group of Sp(n) is (Z2)n o Sn.
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Proof. The subgroup of Aut(T ) preserving eigenvalues is (Z2)n o Sn. Hence, W ⊆ (Z2)n o Sn.
The inclusion r defines an inclusion of the Weyl group of U(n), hence Sn ⊆ W . On the other
hand, one obtains all ‘sign changes’ using conjugation with appropriate matrices. E.g. the sign
change t(z1, z2, z3, . . . , zn) 7→ t(z1, z

−1
2 , z3, . . . , zn) is obtained using conjugation by a matrix(

A −B
B A

)
where A = diag(1, 0, 1, . . . , 1), B = diag(0, 1, 0, . . . , 0). �

11.4.5. The spin groups. For n ≥ 3, the special orthogonal group SO(n) has fundamental group
Z2. Its universal cover is the spin group Spin(n). By the general result for coverings, the pre-
image of a maximal torus of SO(n) is a maximal torus of Spin(n), and the Weyl groups are
isomorphic.

11.4.6. Notation. Let us summarize the results above, and at the same time introduce some
notation. Let Al, Bl, Cl, Dl be the Lie groups SU(l + 1), Spin(2l + 1), Sp(l), Spin(2l). Here
the lower index l signifies the rank. We have the following table:

rank name dim W

Al l ≥ 1 SU(l + 1) l2 + 2l Sl+1

Bl l ≥ 2 Spin(2l + 1) 2l2 + l (Z2)l o Sl
Cl l ≥ 3 Sp(l) 2l2 + l (Z2)l o Sl
Dl l ≥ 4 Spin(2l) 2l2 − l (Z2)l−1 o Sl

In the last row, (Z2)l−1 is viewed as the subgroup of (Z2)l of tuples with product equal to 1.

Remarks 11.23. (a) Note that the groups Sp(l) and Spin(2l + 1) have the same rank and
dimension, and isomorphic Weyl groups.

(b) For rank l = 1, Sp(1) ∼= SU(2) ∼= Spin(3). For rank l = 2, it is still true that Sp(2) ∼=
Spin(5). But for l > 2 the two groups Spin(2l+1), Sp(l) are non-isomorphic. To exclude
such coincidences, and to exclude the non-simple Lie groups Spin(4) = SU(2)× SU(2),
one restricts the range of l as indicated above.

(c) As we will discuss later, the table is a complete list of simple, simply connected compact
Lie groups, with the exception of five aptly named exceptional Lie groups F4, G2, E6, E7, E8

that are more complicated to describe.

12. Weights and roots

12.1. Weights and co-weights. Let T be a torus, with Lie algebra t.

Definition 12.1. A weight of T is a Lie group morphism µ : T → U(1). A co-weight of T is a
Lie group morphism γ : U(1)→ T . We denote by X∗(T ) the set of all weights, and by X∗(T )
the set of co-weights.

Let us list some properties of the weights and coweights.

• Both X∗(T ) and X∗(T ) are abelian groups: two weights µ, µ′ can be added as

(µ′ + µ)(t) = µ′(t)µ(t),
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and two co-weights γ, γ′ can be added as

(γ′ + γ)(z) = γ′(z)γ(z).

• For T = U(1) we have a group isomorphism

X∗(U(1)) = Hom(U(1),U(1)) = Z,

where the last identification (the winding number) associates to k ∈ Z the map z 7→ zk.
Likewise X∗(U(1)) = Z.
• Given tori T, T ′ and a Lie group morphism T → T ′ one obtains group morphisms

X∗(T )→ X∗(T
′), X∗(T ′)→ X∗(T )

by composition.
• For a product of two tori T1, T2,

X∗(T1 × T2) = X∗(T1)×X∗(T2), X∗(T1 × T2) = X∗(T1)×X∗(T2).

This shows in particular X∗(U(1)l) = Zl, X∗(U(1)l) = Zl. Since any T is isomorphic
to U(1)l, this shows that the groups X∗(T ), X∗(T ) are free abelian of rank l = dimT .
That is, they are lattices inside the vector spaces X∗(T )⊗Z R resp. X∗(T )⊗Z R.
• The lattices X∗(T ) and X∗(T ) are dual. The pairing 〈µ, γ〉 of µ ∈ X∗(T ) and γ ∈ X∗(T )

is the composition µ ◦ γ ∈ Hom(U(1),U(1)) ∼= Z.

Remark 12.2. Sometimes, it is more convenient or more natural to write the group X∗(T )
multiplicatively. This is done by introducing symbols eµ corresponding to µ ∈ X∗(T ), so that
the group law becomes eµeν = eµ+ν .

Remark 12.3. Let Λ ⊆ t be the integral lattice, and Λ∗ = Hom(Λ,Z) its dual. For any weight
µ, the differential of µ : T → U(1) is a Lie algebra morphism t→ u(1) = iR, taking Λ to 2πiZ.
Conversely, any group morphism Λ → 2πiZ arises in this way. We may thus identify X∗(T )
with 2πiΛ∗ ⊆ t∗ ⊗ C. Similarly, X∗(T ) is identified with 1

2πiΛ ⊆ t⊗ C.
Sometimes, it is more convenient or more natural to absorb the 2πi factor in the definitions,

so that X∗(T ), X∗(T ) are identified with Λ∗,Λ. For the time being, we will avoid any such
identifications altogether.

Exercise 12.4. An element t0 ∈ T is a topological generator of T if and only if the only weight
µ ∈ X∗(T ) with µ(t0) = 1 is the zero weight.

Exercise 12.5. There is a natural identification of X∗(T ) with the fundamental group π1(T ).

Exercise 12.6. Let

1→ Γ→ T ′ → T → 1

be a finite cover, where T, T ′ are tori and Γ ⊆ T ′ a finite subgroup. Then there is an exact
sequence of groups

1→ X∗(T
′)→ X∗(T )→ Γ→ 1.

Similarly, there is an exact sequence

1→ X∗(T )→ X∗(T ′)→ Γ̂→ 1,

with the finite group Γ̂ = Hom(Γ,U(1)).
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12.2. Schur’s Lemma. Recall that a (real or complex) representation of a group G (or Lie
algebra g) on a (real or complex) vector space V is irreducible if there are no invariant subspaces
other than {0} and V . The representation is called completely reducible if it is a direct sum
of irreducible representations. We have seen that any representation of a compact Lie group is
completely reducible. We will need the following simple but important fact.

Theorem 12.7 (Schur Lemma). Let G be a group, and π : G → GL(V ) a finite-
dimensional irreducible complex representation.

(a) If A ∈ End(V ) commutes with all π(g), then A is a multiple of the identity
matrix.

(b) If V ′ is another finite-dimensional irreducible G-representation, then

dim(HomG(V, V ′)) =

{
1 if V ∼= V ′

0 otherwise

Similar statements hold for finite-dimensional representations of Lie algebras.

Proof. a) Let λ be an eigenvalue of A. Since ker(A − λ) is G-invariant, it must be all of V .
Hence A = λI. b) For any G-equivariant map A : V → V ′, the kernel and range of A are
sub-representations. Hence A = 0 or A is an isomorphism. If V, V ′ are non-isomorphic, A
cannot be an isomorphism, so A = 0. If V, V ′ are isomorphic, so that we might as well assume
V ′ = V , and then b) follows from a). �

For any two complex G-representations V,W , one calls

HomG(V,W )

the space of intertwining operators from V to W . If V is irreducible, and the representation
W is completely reducible (as is automatic for G a compact Lie group), then the dimension
dim HomG(V,W ) is the multiplicity of V in W . The range of the map

HomG(V,W )⊗ V →W, A⊗ v 7→ A(v)

is the V -isotypical subspace of W , i.e. the sum of all irreducible components isomorphic to V .

12.3. Weights of T -representations. For any µ ∈ X∗(T ), let Cµ denote the T -representation
on C, with T acting via the homomorphism µ : T → U(1).

Proposition 12.8. Any finite-dimensional irreducible representation of T is isomorphic to
Cµ, for a unique weight µ ∈ X∗(T ). Thus, X∗(T ) labels the isomorphism classes of finite-
dimensional irreducible T -representations.

Proof. Let π : T → GL(V ) be irreducible. Since T is abelian, Schur’s lemma shows that all
π(t) act by scalars. Hence any v ∈ V spans an invariant subspace. Since V is irreducible,
it follows that dimV = 1, and any basis vector v gives an isomorphism V ∼= C. The image
π(T ) ⊆ GL(V ) = GL(1,C) is a compact subgroup, hence it must lie in U(1). Thus, π becomes
a morphism µ : T → U(1). �
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Any finite-dimensional complex T -representation V has a unique direct sum decomposition

V =
⊕

µ∈X∗(T )

Vµ,

where the Vµ are the Cµ-isotypical subspaces: the subspaces on which elements t ∈ T act
as scalar multiplication by µ(t). Note that since dimCµ = 1, the dimension of the space of
intertwining operators coincides with the dimension of Vµ. This is called the multiplicity of the
weight µ in V . We say that µ ∈ X∗(T ) is a weight of V if Vµ 6= 0, i.e. if the multiplicity is > 0,
in this case Vµ is called a weight space.

Let ∆(V ) ⊆ X∗(T ) be the set of all weights of the T -representation V . Then

V =
⊕

µ∈∆(V )

Vµ.

Simple properties are

∆(V1 ⊕ V2) = ∆(V1) ∪∆(V2),

∆(V1 ⊗ V2) = ∆(V1) + ∆(V2),

∆(V ∗) = −∆(V ).

If V is the complexification of a real T -representation, or equivalently if V admits a T -
equivariant conjugate linear involution C : V → V , one has the additional property,

∆(V ) = −∆(V ).

Indeed, C restricts to conjugate linear isomorphisms Vµ → V−µ, hence weights appear in pairs
+µ,−µ of equal multiplicity.

12.4. Weights of G-representations. Let G be a compact connected Lie group, with maxi-
mal torus T . The Weyl group W acts on the coweight lattice by

(w.γ)(z) = w.γ(z), γ ∈ X∗(T ),

and on the weight lattice by

(w.µ)(t) = µ(w−1t), µ ∈ X∗(T ).

The two actions are dual, that is, the pairing is preserved: 〈w.µ, w.γ〉 = 〈µ, γ〉.
Given a finite-dimensional complex representation π : G → GL(V ), we define the set ∆(V )

of weights of V to be the weights of a maximal torus T ⊆ G.

Proposition 12.9. Let G be a compact Lie group, and T its maximal torus. For any finite-
dimensional G-representation π : G→ End(V ), the set of weights is W -invariant:

W.∆(V ) = ∆(V ).

In fact one has dimVw.µ = dimVµ.

Proof. Let g ∈ N(T ) represent the Weyl group element w ∈W . If v ∈ Vµ we have

π(t)π(g)v = π(g)π(w−1(t))v = µ(w−1(t))π(g)v = (w.µ)(t)π(g)v.

Thus π(g) defines an isomorphism Vµ → Vwµ. �
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Example 12.10. Let G = SU(2), with its standard maximal torus T ∼= U(1) consisting of
diagonal matrices t = diag(z, z−1), |z| = 1. Let $ be the generator of X∗(T ) given by
$(t) = z. Let V (k) be the representation of SU(2) on the space of homogeneous polynomials
of degree k on C2, given by

(g.p)(z0, z1) = p(g−1.(z0, z1)).

The space V (k) is spanned by the polynomials p(z0, z1) = zi0z
k−i
1 , and since

(t · p)(z0, z1) = p(z−1z0, zz1) = zk−2i zi0z
k−i
1 ,

any such polynomial is a weight vector of weight k − 2i. So, the weights of the representation
V (k) of SU(2) are

∆(V (k)) = {k$, (k − 2)$, . . . ,−k$},
all appearing with multiplicity 1. The Weyl group W = Z2 acts by sign changes of weights.

Example 12.11. Let G = U(n) with its standard maximal torus T = U(1)n given by diagonal
matrices. Let εi ∈ X∗(T ) be the projection to the i-th factor. The defining representation of
U(n) has set of weights,

∆(Cn) = {ε1, . . . , εn},
all with multiplicity 1. The weights of the representation on the k-th exterior power ∧kCn are

∆(∧kCn) = {εi1 + . . .+ εik | i1 < . . . < ik},
all with multiplicity 1. (The k-fold wedge products of basis vectors are weight vectors.) The
weights for the action on SkCn are

∆(SkCn) = {εi1 + . . .+ εik | i1 ≤ . . . ≤ ik}.
(The k-fold products of basis vectors, possibly with repetitions, are weight vectors.) The
multiplicity of the weight µ is the number of ways of writing it as a sum µ = εi1 + . . .+ εik .

12.5. Roots. The adjoint representation is of special significance, as it is intrinsically associ-
ated to any Lie group. Let G be compact, connected, with maximal torus T .

Definition 12.12. A root of G is a non-zero weight for the adjoint representation on gC.
The set of roots is denoted R ⊆ X∗(T ).

The weight spaces gα ⊆ gC for roots α ∈ R are called the root spaces. As remarked above,
g−α is obtained from gα by complex conjugation. The weight space g0 for the weight 0 is the
subspace fixed under the adjoint action of T , that is, tC. Hence

gC = tC ⊕
⊕
α∈R

gα.

The set R = ∆(gC)\{0} is a finite W -invariant subset of t∗.

Example 12.13. Let G = U(n), and T = U(1)× · · ·×U(1) its standard maximal torus. Denote
by ε1, . . . , εn ∈ X∗(T ) the standard basis. That is, writing t = diag(z1, . . . , zn) ∈ T we have

εi(t) = zi.

We have g = u(n), the skew-adjoint matrices, with complexification gC = gl(n,C) = Matn(C)
all n × n-matrices. Conjugation of a matrix ξ by t multiplies the i-th row by zi and the j-th
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column by z−1
j . Hence, if ξ is a matrix having entry 1 in one (i, j) slot and 0 everywhere else,

then Adt(ξ) = ziz
−1
j ξ. That is, if i 6= j, ξ is a root vector for the root εi − εj . We conclude

that the set of roots of U(n) is

R = {εi − εj | i 6= j} ⊆ X∗(T ).

Example 12.14. For G = SU(n), let T be the maximal torus given by diagonal matrices. Let T ′

be the maximal torus of U(n), again consisting of the diagonal matrices. Then X∗(T ) ⊆ X∗(T ′).
In terms of the standard basis ε1, . . . , εn of X∗(T

′), the lattice X∗(T ) has basis

ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn.
In terms of the dual basis ε1, . . . , εn of X∗(T ), this is the annihilator of the vector ε1 + . . .+ εn.
Hence, the kernel of the projection map X∗(T ′) → X∗(T ) is the rank 1 lattice generated by
ε1 + . . .+ εn. Thus, we can think of X∗(T ) as a quotient lattice

X∗(T ) = spanZ(ε1, . . . , εn)/ spanZ(ε1 + . . .+ εn).

The images of εi − εj under the quotient map are then the roots of SU(n). The root vectors
are the same as for U(n) (since they all lie in sl(n,C)).

One can get a picture of the root system by identifying X∗(T ) with the orthogonal projection
of X∗(T ′) to the space

V = spanR{ε1 + . . .+ εn}⊥ = {a =
∑
i

aiε
i ∈ Rn|

∑
ai = 0}.

using the standard inner product on X∗(T ′)⊗ZR = Rn. Note that the standard inner product
is W = Sn-invariant, hence this identification respects the W -action. The projections of the εi

are

σi = εi − 1

n
(ε1 + . . .+ εn), i = 1, . . . , n,

they generate X∗(T ) ⊆ V . The roots are

σi − σj = εi − εj , i 6= j.

A picture of the root system of SU(3):11

11Source: wikipedia
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In this picture, the so-called simple roots α = ε1 − ε2, β = ε2 − ε3 are a basis for the lattice
generated by the roots (the root lattice). Note that α+ β = ε1 − ε3 is also a root.

And here is a picture of the weight lattice, and some roots: 12

In this picture, one uses the alternative notation α1 = α, α2 = β for the simple roots λ1 =
σ1, λ2 = σ1+σ2 (‘the fundamental weights’) are chosen as a basis of the weight lattice, indicated
by the dots. The solid dots are the root lattice, i.e., the lattice spanned by the roots. α1, α2

are two of the roots, all other roots are obtained by reflections across the walls.

Example 12.15. Let G = SO(2m) with its standard maximal torus T ∼= U(1)m given by the
block diagonal matrices

t(θ1, . . . , θm) =


R(θ1) 0 0 · · · 0

0 R(θ2) 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · R(θm)


Let εi ∈ X∗(T ) be the standard basis of the weight lattice. Thus

εj(t(θ1, . . . , θm)) = eiθj .

The complexified Lie algebra gC = so(2m)⊗C =: so(2m,C) consists of skew-symmetric complex
matrices. To find the root vectors, write the elements X ∈ so(2m,C) in block form, with 2×2-
blocks Xij = −X>ji . Conjugation

X 7→ t(θ1, . . . , θm)Xt(θ1, . . . , θm)−1

changes the (i, j)-block of X as follows

Xij  R(θi)XijR(−θj).

Recall that R(θ) has eigenvalues e±iθ. Let v± ∈ C2 be corresponding eigenvectors, written
as column vectors. 13 Thus R(θ)v± = e±iθv±. Taking a transpose of this equation, we get

12Source: http://tex.stackexchange.com/questions/30301/root-systems-and-weight-lattices-with-pstricks
13For instance, we may take

v+ =

(
i
1

)
, v− =

(
1
i

)
.

http://tex.stackexchange.com/questions/30301/root-systems-and-weight-lattices-with-pstricks
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v>±R(−θ) = e±iθv>±. Let i < j be given. Putting

Xij = X>ji = v±v
>
±

(a 2× 2-matrix), we have

R(θi)XijR(−θj) = e±iθi±iθ
j
Xij .

Hence, the matrix X with these entries for Xij = −X>ji , and all other block entries equal to

zero, is a root vector for the roots ±εi ± εj . To summarize: SO(2m) has 2m(m− 1) roots

R = {±εi ± εj , i < j}.

This checks with dimensions, since dimT = m, dim SO(2m) = 2m2 −m, so dim SO(2m)/T =
2(m2 −m). Below is this root system for SO(4). 14

Example 12.16. Let G = SO(2m+ 1). We write matrices in block form, corresponding to the
decomposition R2m+1 = R2 ⊕ · · · ⊕ R2 ⊕ R. Thus, X ∈ Mat2m+1(C) has 2 × 2-blocks Xij for
i, j ≤ m, a 1× 1-block Xm+1,m+1, 2× 1-blocks Xi,m+1 for i ≤ m, and 1× 2-blocks Xm+1,i for
i ≤ m. As we saw earlier, the inclusion SO(2m) ↪→ SO(2m + 1) defines an isomorphism from
the maximal torus T ′ of SO(2m) to a maximal torus T of SO(2m + 1). The latter consists
of block diagonal matrices, with 2 × 2-blocks gii = R(θi) for i = 1, . . . ,m and 1 × 1-block
gm+1,m+1 = 1. Under the inclusion so(2m,C) ↪→ so(2m + 1,C), root vectors for the former
become root vectors for the latter. Hence, all ±εi ± εj are roots, as before.

Additional root vectors X are obtained by putting v± as the Xi,m+1 block and its negative
transpose in the Xm+1,i block, and letting all other entries be zero. The corresponding roots
are ±εi. In summary, SO(2m+ 1) has roots

R = {±εi ± εj , 1 ≤ i < j ≤ m} ∪ {±εi, i = 1, . . . ,m}.

Picture: 15

14Source: en.wikipedia.org/wiki/Root_system
15Source: en.wikipedia.org/wiki/Root_system

en.wikipedia.org/wiki/Root_system
en.wikipedia.org/wiki/Root_system
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This checks with dimensions: We have found 2m(m−1)+2m = 2m2 roots, while dim SO(2m+
1)/T = (2m2 + m) − m = 2m2. Note that in this picture, the root system for SO(2m + 1)
naturally contains that for SO(2m). Note also the invariance under the Weyl group action in
both cases.

Example 12.17. Let G = Sp(n), viewed as SU(2n) ∩ Spin(2n,C), and let T be its standard
maximal torus consisting of the diagonal matrices

t =

(
Z 0
0 Z

)
with Z = diag(z1, . . . , zn). Recall that we may view T as the image of the maximal torus

T ′ ⊆ U(n) under the inclusion U(n)→ Sp(n) taking A to

(
A 0
0 A

)
. As before, we have

X∗(T ) = spanZ(ε1, . . . , εn).

To find the roots, recall that the Lie algebra sp(n) consists of complex matrices of the form

ξ =

(
a −b
b a

)
,

with a> = a, b> = b. Hence its complexification sp(n)⊗C consists of complex matrices of the
form

ξ =

(
a b
c −a>

)
,

with b> = b, c> = c. Thus

tξt−1 =

(
ZaZ−1 ZbZ
Z−1cZ−1 −Z−1a>Z

)
We can see the following root vectors:

- Taking a = 0, c = 0 and letting b be a matrix having 1 in the (i, j) slot and zeroes
elsewhere, we obtain a root vector ξ for the root εi + εj .

- Letting a = 0, b = 0, and letting c be a matrix having 1 in the (i, j) slot and zeroes
elsewhere, we obtain a root vector ξ for the root −εi − εj .

- Letting b = 0, c = 0 and taking for a the matrix having aij = 1 has its only non-zero
entry, we obtain a root vector for εi − εj (provided i 6= j).
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Hence we have found
n(n+ 1)

2
+
n(n+ 1)

2
+ (n2 − n) = 2n2

roots:

R = {±εi ± εj |1 ≤ i < j ≤ m} ∪ {±2εi| i = 1, . . . ,m}
Picture: 16

This checks with dimensions: dim(Sp(n)/T ) = (2n2 +n)−n = 2n2. Observe that the inclusion
u(n)→ sp(n) takes the root spaces of U(n) to root spaces of Sp(n). Hence, the set of roots of
U(n) is naturally a subset of the set of roots of Sp(n).

Suppose G,G′ are compact, connected Lie groups, and φ : G → G′ is a covering map, with
kernel Γ. Then φ restricts to a covering of the maximal tori,

1→ Γ→ T → T ′ → 1,

hence X∗(T ) is a sublattice of X∗(T
′), with quotient Γ, while X∗(T ′) is a sublattice of X∗(T ),

with quotient Γ̂ = Hom(Γ,U(1)). The roots of G are identified with the roots of G′ under the
inclusion X∗(T ′)→ X∗(T ).

Example 12.18. Let G′ = SO(2m), and G = Spin(2m) its double cover. Let ε1, . . . , εm be the
standard basis of the maximal torus T ′ ∼= U(1)m. Each εi : U(1) → T ′ may be regarded as
a loop in SO(2m), and in fact any of these represents a generator π1(SO(2m)) = Z2. With
a little work, one may thus show that X∗(T ) is the sublattice of X∗(T

′) consisting of linear
combinations

∑m
i=1 aiε

i with integer coefficients, such that
∑m

i=1 ai is even. Generators for this
lattice are, for example, ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn, εn−1 + εn. Dually, X∗(T ) is a lattice
containing X∗(T ′) = spanZ(ε1, . . . , εm) as a sublattice. It is generated by X∗(T ′) together with
the vector 1

2(ε1 + . . .+ εn). The discussion for Spin(2m+ 1) is similar.

To summarize some of this discussion, we have the following data for the classical groups:

rank name dim W X∗(T )⊗Z R R

Al l ≥ 1 SU(l + 1) l2 + 2l Sl+1 {a ∈ R`+1|
∑`

0 ai = 0} {εi − εj | i < j}
Bl l ≥ 2 Spin(2l + 1) 2l2 + l (Z2)l o Sl R` {±εi ± εj | i 6= j} ∪ {±εi}
Cl l ≥ 3 Sp(l) 2l2 + l (Z2)l o Sl R` {±εi ± εj | i < j} ∪ {±2εi}
Dl l ≥ 4 Spin(2l) 2l2 − l (Z2)l−1 o Sl R` {±εi ± εj | i < j}

16Source: en.wikipedia.org/wiki/Root_system

en.wikipedia.org/wiki/Root_system
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13. Representation theory of sl(2,C).

To obtain deeper results about root systems, we need some representation theory.

13.1. Basic notions. Until now, we have mainly considered real Lie algebras. However, the
definition makes sense for any field, and in particular, we can consider complex Lie algebras.
Given a real Lie algebra g, its complexification g ⊗ C is a complex Lie algebra. Consider in
particular the real Lie algebra su(n). Its complexification is the Lie algebra sl(n,C). Indeed,

sl(n,C) = su(n)⊕ isu(n)

is the decomposition of a trace-free complex matrix into its skew-adjoint and self-adjoint part.

Remark 13.1. Of course, sl(n,C) is also the complexification of sl(n,R). We have encountered
a similar phenomenon for the symplectic groups: The complexification of sp(n) is sp(n,C),
which is also the complexification of sp(n,R).

We will be interested in representations of Lie algebra g on complex vector spaces V , i.e. Lie
algebra morphisms π : g → EndC(V ). Equivalently, this amounts to a morphism of complex
Lie algebras g⊗C→ EndC(V ). If V is obtained by complexification of a real g-representation,
then V carries an g-equivariant conjugate linear complex conjugation map C : V → V . Con-
versely, we may think of real g-representations as complex g-representations with the additional
structure of a g-equivariant conjugate linear automorphism of V .

A g-representation π : g → EndC(V ) is called irreducible if there are no subrepresentations
other than V or 0. It is completely reducible if it decomposes as a sum of irreducible summands.

If g is the Lie algebra of a compact simply connected Lie group G, then every finite-
dimensional gC-representation is completely reducible. Indeed, the gC-representation is in par-
ticular a g-representation, and the g-invariant complex subspaces are exactly the gC-invariant
complex subspaces. But every finite-dimensional g-representation exponentiates to aG-representation,
and we had already seen that the latter are completely reducible.

13.2. sl(2,C)-representations. We are interested in the irreducible representations of sl(2,C)
(or equivalently, the irreducible complex representations of su(2) or sl(2,R), or of the corre-
sponding simply connected Lie groups). Let e, f, h be the basis of sl(2,C) given by the matrices

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
.

The corresponding bracket relations read as

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

For later reference, we note that su(2) is realized as the fixed point set of the conjugate-linear

involution A 7→ −A† = −A>, that is,

h 7→ −h, e 7→ −f, f 7→ −e.
Given a representation π : sl(2,C)→ End(V ), we define the Casimir operator as follows:

Cas = 2π(f)π(e) +
1

2
π(h)2 + π(h) ∈ End(V )

Lemma 13.2. IIf π is irreducible, then Cas acts as a scalar.
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Proof. By Schur’s Lemma, it suffices to check that this operator commutes with π(h), π(e), π(f).
For example,

[π(e), 2π(f)π(e)] = 2π(h)π(e),

1
2 [π(e), π(h)2] = 1

2 [π(e), π(h)]π(h) + 1
2π(h)[π(e), π(h)]

= −π(e)π(h)− π(h)π(e)

= −2π(h)π(e) + 2π(e)

[π(e), π(h)] = −2π(e)

add to 0. �

The simplest non-trivial representation of sl(2,C) is the defining representation on C2 (given
by the matrices). Clearly, this representation is irreducible (there cannot be 1-dimensional
invariant subspaces). Another picture for the defining representation is by viewing C2 as linear
homogeneous polynomials of degree 1 in z, w ∈ C. In this picture, the operators are

π(e) = z
∂

∂w
, π(h) = z

∂

∂z
− w ∂

∂w
, π(f) = w

∂

∂z
.

More generally, these differential operators define a representation on the space V (k) of homo-
geneous polynomials of degree k. V (0) is the trivial representation, and V (1) is isomorphic to
the defining representation. Introducing the basis

vj =
1

(k − j)!j!
zk−jwj , j = 0, . . . , k

for the space V (k), the representation is given by the formulas

π(f)vj = (j + 1)vj+1,

π(h)vj = (k − 2j)vj ,

π(e)vj = (k − j + 1)vj−1

with the convention vk+1 = 0, v−1 = 0.

Theorem 13.3. For all k = 0, 1, 2, . . ., the representations of sl(2,C) on V (k) is irreducible.
The Casimir operator acts as the scalar 1

2k(k + 2) on V (k).

Proof. Suppose W ⊆ V (k) is a nonzero invariant subspace. The operator π(e)|W has at least
one eigenvector. But the formulas above show that π(e) has a unique eigenvector (up to scalar)
in V (k), given by v0. By iterated application of π(f) to v0, we obtain all basis vectors v0, . . . , vk
(up to scalars). Hence, W = V (k). To compute the action of Cas on V (k), it suffices to compute
its action on any vector. A convenient choice is vk, and since π(e)v0 = 0, π(h)v0 = k v0 the
result follows. �

Theorem 13.4. Up to isomorphism, the representations V (k), k = 0, 1, . . . are the unique
finite-dimensional irreducible representation of sl(2,C).

Proof. Let V be a finite-dimensional irreducible sl(2,C)-representation. For any s ∈ C, let

V[s] = ker(π(h)− s)
We claim that

π(e) : V[s] → V[s+2], π(f) : V[s] → V[s−2].
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The first claim follows from the calculation, for v ∈ V[s],

π(h)π(e)v = π([h, e])v + π(e)π(h)v

= 2π(e)v + sπ(e)v

= (s+ 2)π(e)v.

The second claim is proved similarly. Since dimV <∞, there exists λ ∈ C such that V[λ] 6= 0
but V[λ+2] = 0. Pick a non-zero v0 ∈ V[λ], and put

vj =
1

j!
π(f)jv0 ∈ V[λ−2j], j = 0, 1, . . . .

Then

π(h)vj = (λ− 2j)vj , π(f)vj = (j + 1)vj+1.

We show by induction that

π(e)vj = (λ+ 1− j)vj−1

with the convention v−1 = 0. Indeed, if the formula holds for an index j ≥ 0 then

π(e)vj+1 =
1

j + 1
π(e)π(f)vj

=
1

j + 1
(π([e, f ])vj + π(f)π(e)vj)

=
1

j + 1
(π(h)vj + (λ+ 1− j)π(f)vj−1)

=
1

j + 1
((λ− 2j)vj + (λ+ 1− j)j vj)

=
1

j + 1
(λ(j + 1)− j − j2)vj

= (λ− j)vj

which is the desired identity for j + 1. The non-zero vj are linearly independent (since they
lie in different eigenspaces for π(h). Let k be the smallest number such that vk+1 = 0. Then
v0, . . . , vk are a basis of V : They are linearly independent, and since their span is invariant it is
all of V . Putting j = k+1 in the formula for π(e)vj , we obtain 0 = (λ−k)vk, hence λ = k. �

Remark 13.5. For any complex number λ ∈ C, we obtain an infinite-dimensional representation
L(λ) of sl(2,C) on span(w0, w1, w2, . . .), by the formulas

π(f)wj = (j + 1)wj+1, π(h)wj = (λ− 2j)wj , π(e)wj = (λ− j + 1)wj−1

This representation is called the Verma module of highest weight λ. If λ = k ∈ Z≥0, this
representation L(k) has a subrepresentation L′(k) spanned by wk+1, wk+2, wk+3, . . ., and

V (k) = L(k)/L′(k)

is the quotient module.

Exercise 13.6. Show that for λ 6∈ Z≥0, the Verma module is irreducible.
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As explained above, any finite-dimensional sl(2,C)-representation π : sl(2,C) → End(V ) is
completely reducible, and hence is a direct sum of copies of the Vk’s, with multiplicities nk.
There are various methods for computing the nk’s. Here are three:

Method 1: Determine the eigenspaces of the Casimir operator Cas. The eigenspace for
the eigenvalue k(k + 2)/2 is the direct sum of all irreducible sub-representations of type V (k).
Hence nk is the dimension of this eigenspace, divided by k + 1.

Method 2: For l ∈ Z, let ml = dim ker(π(h) − l) be the multiplicity of the eigenvalue l of
π(h). On any irreducible component V (k), the dimension of ker(π(h)− l)∩ V (k) is 1 if |l| ≤ k
and k − l is even, and is zero otherwise. Hence mk = nk + nk+2 + . . ., and consequently

nk = mk −mk+2.

Method 3: Find ker(π(e)) =: V n, and to consider the eigenspace decomposition of π(h) on
V n. The multiplicity of the eigenvalue k on V n is then equal to nk.

Exercise 13.7. If π : sl(2,C) → End(V ) is a finite-dimensional sl(2,C)-representation, then

we obtain a representation π̃ on Ṽ = End(V ) where π̃(ξ)(B) = [π(ξ), B]. In particular, for
every irreducible representation π : sl(2,C) → EndC(V (n)) we obtain a representation π̃ on
EndC(V (n)). Determine the decomposition of EndC(V (n)) into irreducible representations
V (k), i.e determine which V (k) occur and with what multiplicity. (Hint: Note that all π(ej)
commute with π(e).)

Let us note the following simple consequence of the sl(2,C)-representation theory:

Lemma 13.8. Let π : sl(2,C)→ End(V ) be a finite-dimensional complex sl(2,C)-representation.
Then π(h) has integer eigenvalues, and V is a direct sum of the eigenspaces Vm = ker(π(h)−m).
For m > 0, the operator π(f) gives an injective map

π(f) : Vm → Vm−2.

For m < 0, the operator π(e) gives an injective map

π(e) : Vm → Vm+2.

One has direct sum decompositions

V = ker(e)⊕ ran(f) = ker(f)⊕ ran(e).

Proof. All these claims are evident for irreducible representations V (k), hence they also hold
for direct sums of irreducibles. �

14. Properties of root systems

Let G be a compact, connected Lie group with maximal torus T . We will derive general
properties of the set of roots R ⊆ X∗(T ) of G, and of the decomposition

gC = tC ⊕
⊕
α∈R

gα.
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14.1. First properties. We have already seen that the set of roots is W -invariant, and that
the roots come in pairs ±α, with complex conjugate root spaces g−α = gα. Another simple
property is

Proposition 14.1. For all α, β ∈ ∆(gC) = R ∪ {0},
[gα, gβ] ⊆ gα+β

In particular, if α+ β 6∈ ∆(gC) then [gα, gβ] = 0, and [gα, g−α] ⊆ tC for all roots α.

Proof. The last claim follows from the first, since g0 = tC. For Xα ∈ gα, Xβ ∈ gβ we have

Ad(t)[Xα, Xβ] = [Ad(t)Xα,Ad(t)Xβ] = α(t)β(t)[Xα, Xβ] = (α+ β)(t)[Xα, Xβ].

This shows [Xα, Xβ] ∈ gα+β. �

Let us fix a non-degenerate Ad-invariant inner product B on g. Its restriction to t is a W -
invariant inner product on t. We use the same notation B for its extension to a non-degenerate
symmetric complex-bilinear form on gC, respectively tC.

Proposition 14.2. The spaces gα, gβ for α+ β 6= 0 are B-orthogonal, while gα, g−α are non-
singularly paired.

Proof. If Xα ∈ gα, Xβ ∈ gβ, then

B(Xα, Xβ) = B(Ad(t)Xα, Ad(t)Xβ) = (α+ β)(t) B(Xα, Xβ),

hence α+ β = 0 if B(Xα, Xβ) 6= 0. �

14.2. The Lie subalgebras sl(2,C)α ⊆ gC, su(2)α ⊆ g. For any weight µ ∈ X∗(T ), seen as
a group morphism T → U(1), let

dµ : t→ u(1) = iR
be the infinitesimal weight. In particular, we have the infinitesimal roots dα satisfying

[h,Xα] = dα(h)Xα

for all Xα ∈ gα and h ∈ t. We may extend dµ to a complex-linear map tC → C, with the same
property.

Theorem 14.3.

(a) For every root α ∈ R, the root space gα is 1-dimensional.
(b) The subspace [gα, g−α] ⊆ tC is 1-dimensional, and contains a unique element hα

such that
dα(hα) = 2.

(c) We may choose generators eα ∈ gα, fα ∈ g−α, hα ∈ [gα, g−α] such that

[hα, eα] = 2eα, [hα, fα] = −2fα, [eα, fα] = hα,

and
eα = −fα, fα = −eα, hα = −hα.

Thus sl(2,C)α = spanC(eα, fα, hα) ⊆ gC is a complex Lie subalgebra isomorphic
to sl(2,C), whose fixed point set under complex conjugation is su(2).
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Proof. We begin with the proof of (b). Pick an invariant inner product B on g. Let Hα ∈ tC

be defined by

(dα)(h) = B(Hα, h)

for all h ∈ tC. Since dα(h) ∈ iR for h ∈ t, we have Hα ∈ it, hence

dα(Hα) = B(Hα, Hα) < 0.

Let eα ∈ gα, e−α ∈ g−α be non-zero. For all h ∈ tC we have

B([eα, e−α], h) = B(e−α, [h, eα])

= dα(h)B(e−α, eα)

= B(e−α, eα)B(Hα, h)

= B
(
B(e−α, eα)Hα, h).

This shows [eα, e−α] = B(e−α, eα)Hα, proving that [gα, g−α] ⊆ spanC(Hα). Taking e−α = eα,
we haveB(e−α, eα) > 0, hence the equality [gα, g−α] = spanC(Hα). This proves dimC[gα, g−α] =
1. Since dα(Hα) < 0, we may take a multiple hα of Hα such that dα(hα) = 2. Clearly, hα is
the unique element of [gα, g−α] with this normalization.

We next prove (a) (and some of (c)). Let fα be the unique multiple of eα so that [eα, fα] = hα.
Since

[hα, eα] = dα(hα)eα = 2eα,

and similarly [hα, fα] = −2fα, we see that eα, fα, hα span an sl(2,C) subalgebra. Let us
view gC as a complex representation of this sl(2,C) subalgebra, by restriction of the adjoint
representation. The operator ad(hα) acts on gα as the scalar dα(hα) = 2. Hence ad(fα) : gα →
g0 is injective. Since its image spanC(hα) is 1-dimensional, this proves that gα is 1-dimensional.

Since [eα, eα] is a positive multiple of Hα, hence a negative multiple of hα, we may normalize
eα (up to a scalar in U(1)) by requiring that [eα, eα] = −hα. Then

eα = −fα, fα = −eα, hα = −hα
confirming that sl(2,C)α is invariant under complex conjugation, and its real part is isomorphic
to su(2). �

Theorem 14.4. If α ∈ R, then Rα ∩R = {α,−α}.

Proof. We may assume that α is a shortest root in the line Rα. We will show that tα is not
a root for any t > 1. Suppose on the contrary that tα is a root for some t > 1, and take the
smallest such t. The operator ad(hα) acts on gtα as a positive scalar

tdα(hα) = 2t > 0.

By sl(2,C)-representation theory, it follows that ad(fα) : gtα → g(t−1)α is injective. Since
t > 1, and since there are no smaller positive multiples of α that are roots, other than α itself,
this implies that t = 2, and ad(fα) : g2α → gα is injective, hence an isomorphism. But this
contradicts ran(fα) ∩ ker(eα) = 0. �
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14.3. Co-roots. The Lie subalgebra su(2)α ⊆ g is spanned by

i(eα + fα), fα − eα, , i hα.

Let SU(2)α → G be the Lie group morphism exponentiating the inclusion su(2)α ⊆ g. Since
SU(2) is simply connected, with center Z2, the image is isomorphic either to SU(2) or to
SO(3). Let Tα ⊆ SU(2)α be the maximal torus obtained by exponentiating spanR(ihα) ⊆ t.
The morphism Tα → T defines an injective map of the coweight lattices,

(4) X∗(Tα)→ X∗(T ).

But Tα ∼= U(1), by exponentiating the isomorphism tα → u(1) = iR, ishα 7→ is. Hence
X∗(Tα) = X∗(U(1)) = Z.

Definition 14.5. The co-root α∨ ∈ X∗(T ) corresponding to a root α is the image of
1 ∈ Z ∼= X∗(Tα) under the inclusion (4). The set of co-roots is denoted R∨ ⊆ X∗(T ).

Note that 2πihα ∈ tα generates the integral lattice Λα of Tα. Thus, α∨ corresponds to hα
under the identification X∗(T )⊗Z R = it. That is,

dµ(hα) = 〈α∨, µ〉

for all µ ∈ X∗(T ), where the right hand side uses the pairing between weights X∗(T ) =
Hom(T,U(1)) and coweights X∗(T ) = Hom(U(1), T ). This formula may be seen as an alterna-
tive definition of the co-root.

Remark 14.6. (a) As for any pairing between weights and coweights, we have that 〈β∨, α〉 ∈
Z for all α, β ∈ R. In particular,

〈α∨, α〉 = 2,

as a consequence of the equation dα(hα) = 2.
(b) By definition, the element hα is the unique element of [gα, g−α] satisfying dα(hα) = 2.

As we have seen above, for any invariant inner product B on g we have that

B([eα, fα], h) = B(eα, fα)dα(h) = B(eα, fα)〈dα, h〉.

Hence if we use B to identify tC and its dual, we have that [eα, fα] is a multiple of α.
Thus, α∨ is a multiple of α under these identifications.

(c) Recall that X∗(T ) ⊗Z R = Hom(iR, t) ∼= it ⊆ tC. The invariant inner product B on
g restricts to a W -invariant inner product on t, which in turn gives a nondegenerate
bilinear form on tC. The latter is negative definite on it. Let (·, ·) be obtained by a sign
change, so it’s a W -invariant inner product (·, ·) on X∗(T )⊗Z R.

Using this inner product to identify X∗(T )⊗Z R with X∗(T )⊗Z R, the co-roots are
expressed in terms of the roots as

α∨ =
2α

(α, α)
.

This is often used as the definition of α∨, and in any case allows us to find the co-roots
in all our examples U(n), SU(n), SO(n), Sp(n).
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Example 14.7. Recall that SO(2m) has roots α = ±εi± εj for i 6= j, together with roots β = εi.
In terms of the standard inner product (·, ·) on X∗(T )⊗Z R, the co-roots for roots of the first
type are α∨ = ±εi ± εj , while for the second type we get β∨ = 2εi. Note that these co-roots
for SO(2m) are precisely the roots for Sp(m). This is an example of Langlands duality.

14.4. Root lengths and angles. Choose a W -invariant inner product (·, ·) on the real vector
space E = X∗(T )⊗Z R.

Theorem 14.8. Let α, β ∈ R be two roots, with ||β|| ≥ ||α||. Suppose the angle θ
between α, β is not a multiple of π

2 . Then one of the following three cases holds true:

||β||2

||α||2
= 1, θ = ±π

3
mod π,

||β||2

||α||2
= 2, θ = ±π

4
mod π,

||β||2

||α||2
= 3, θ = ±π

6
mod π.

Proof. Since (α, β) = ||α|| ||β|| cos(θ), we have

〈α∨, β〉 = 2
||β||
||α||

cos(θ),

〈β∨, α〉 = 2
||α||
||β||

cos(θ).

Multiplying, this shows

〈α∨, β〉 〈β∨, α〉 = 4 cos2 θ.

The right hand side takes values in the open interval (0, 4). The left hand side is a product of
two integers, with |〈α∨, β〉| ≥ |〈β∨, α〉|. If cos θ > 0 the possible scenarios are:

1 · 1 = 1, 2 · 1 = 2, 3 · 1 = 3,

while for cos θ < 0 the possibilities are

(−1) · (−1) = 1, (−2) · (−1) = 2, (−3) · (−1) = 3.

Since

||β||2

||α||2
=
〈α∨, β〉
〈β∨, α〉

,

we read off the three cases listed in the proposition. �

These properties of the root systems are nicely illustrated for the classical groups. Let us
also note the following consequence of this discussion:

Lemma 14.9. For all roots α, β ∈ R, the integer 〈α∨, β〉 lies in the interval [−3, 3].
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14.5. Root strings. Making further use of the sl(2,C)-representation theory, we next prove:

Theorem 14.10. (Root strings.) Let α, β ∈ R be roots, with β 6= ±α. Then

(a)
〈α∨, β〉 < 0⇒ α+ β ∈ R.

(b) There exist integers q, p ≥ 0 such that for any integer r ∈ Z,

β + rα ∈ R ⇔ −q ≤ r ≤ p.
These integers satisfy

q − p = 〈α∨, β〉.
The direct sum

⊕p
j=−q gβ+jα is an irreducible sl(2,C)α-representation of dimen-

sion p+ q + 1.

If α, β, α+ β are all roots, then

[gα, gβ] = gα+β.

Proof. We will regard g as an sl(2,C)α-representation. By definition of the co-roots, we have

ad(hα)eβ = 〈α∨, β〉eβ
for eβ ∈ gβ.

(a) Suppose β 6= −α is a root with 〈α∨, β〉 < 0. Since ad(hα) acts on gβ as a negative
scalar 〈α∨, β〉 < 0, the sl(2,C)-representation theory shows that ad(eα) : gβ → gα+β is
injective. In particular, gα+β is non-zero.

(b) Consider

V =
⊕
j∈Z

gβ+jα

as an sl(2,C)α-representation. The operator ad(hα) acts on the 1-dimensional space
gβ+jα as 〈α∨, β〉+2j. We hence see that the eigenvalues of ad(hα) on V are hence either
all even, or all odd, and they are all distinct (i.e., multiplicity one). But for any finite-
dimensional complex sl(2,C)-representation, the number of irreducible components is
the multiplicity of the eigenvalue 0 of ad(h), plus the multiplicity of the eigenvalue 1.
This shows that V is an irreducible sl(2,C)α-representation. It is thus isomorphic to
V (k), where k + 1 = dimV .

Let q, p be the largest integers such that gβ+pα 6= 0, respectively gβ−qα 6= 0. Thus

V =

p⊕
j=−q

gβ+jα.

Let k + 1 = dimV . Then k is the eigenvalue of ad(hα) on gβ+pα, while −k is its
eigenvalue on gβ−qα. This gives,

k = 〈α∨, β〉+ 2p, −k = 〈α∨, β〉 − 2q.

Hence k = q + p and q − p = 〈α∨, β〉.
The last claim follows from (b), since ad(eα) : gβ → gβ+α for non-zero eα ∈ gα is an isomorphism
if gβ, gβ+α are non-zero. �
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The set of roots β + jα with −q ≤ j ≤ p is called the α-root string through β.

Lemma 14.11. The length of any root string is at most 4.

Proof. If β is such that β−α is not a root, we have q = 0, k = p = −〈α∨, β〉. By Lemma 14.9,
this integer is ≤ 3. Hence, the length of any root string is at most 4. �

14.6. Weyl chambers. Let

E = X∗(T )⊗Z R
be the real vector space spanned by the weight lattice. (It may be identified with it∗ ⊆ t∗C.) Its
dual is identified with the vector space spanned by the coweight lattice:

E∗ = X∗(T )⊗Z R.

The Weyl group W = N(T )/T acts faithfully on E (and dually on E∗), hence it can be regarded
as a subgroup of GL(E). We will now now realize this subgroup as a reflection group.

Let α ∈ R be a root, and

jα : SU(2)α → G

the corresponding rank 1 subgroup. Let Tα ⊆ SU(2)α be the maximal torus as before, N(Tα)
its normalizer in SU(2)α, and Wα = N(Tα)/T ∼= Z2 the Weyl group.

Proposition 14.12. The morphism jα takes N(Tα) to N(T ). Hence it descends to a
morphism of the Weyl groups, Wα →W . Letting wα ∈W be the image of the non-trivial
element in Wα, its action on E is given by

wα µ = µ− 〈α∨, µ〉α, µ ∈ E
and the dual action on E∗ reads

wα ξ = ξ − 〈ξ, α〉α∨, ξ ∈ E∗.

Proof. Consider the direct sum decomposition

tC = spanC(hα) + ker(dα).

Elements h ∈ ker(dα) commute with eα, fα, hα, hence [ker(dα), sl(2,C)α] = 0. It follows
that the adjoint representation of jα(SU(2)α) on ker(dα) is trivial. On the other hand,
spanC(hα) is preserved under jα(N(Tα)). Hence, all t is preserved under jα(N(Tα)), prov-
ing that jα(N(Tα)) ⊆ T . We also see that wα acts trivially on ker(dα), and as −1 on span(hα).
This shows that the action of wα on E∗ is a reflection:

wαξ = ξ − 〈ξ, α〉α∨, ξ ∈ E∗.

The statement for the weight lattice follows by duality (and using w2
α = 1):

〈ξ, wαµ〉 = 〈wαξ, µ〉 = 〈ξ, µ〉 − 〈α∨, µ〉〈ξ, α〉, ξ ∈ E∗, µ ∈ E.

�
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Remark 14.13. Explicitly, using the basis eα, fα, hα to identify SU(2)α ∼= SU(2), the element
wα is represented by

jα

(
0 1
−1 0

)
∈ N(T ).

Let us now use a W -invariant inner product on E to identify E∗ = E. Recall that under
this identification, α∨ = 2α

(α,α) . The transformation

wα(µ) = µ− 2
(α, µ)

(α, α)
α

is reflection relative to the root hyperplane

Hα = spanR(α)⊥ ⊆ E.
It is natural to ask if the full Weyl group W is generated by the reflections wα, α ∈ R. This is
indeed the case, as we will now demonstrate with a series of Lemmas.

An element x ∈ E is called regular if it does not lie on any of these hyperplanes, and singular
if it does. Let

Ereg = E\
⋃
α∈R

Hα, Esing =
⋃
α∈R

Hα

be the set of regular elements, respectively singular elements. Recall again that E = ıt. Note
that for x = ih ∈ E, the kernel ker(ad(h)) ⊆ gC is invariant under the adjoint representation
of T ⊆ G, hence is a sum of tC and possibly some root spaces gα. But ad(h) acts on the root
space gα as a scalar idα(h) = (α, x). This shows

ker(ad(h)) = tC ⊕
⊕

α : (α,x)=0

gα.

In particular, x = ih is regular if and only if ker(ad(h)) = tC.

Lemma 14.14. An element x ∈ E is regular if and only if its stabilizer under the action of
W is trivial.

Proof. If x is not regular, there exists a root α with (α, x) = 0. It then follows that wα(x) = x.
If x is regular, and w(x) = x, we will show that w = 1. Write x = ih. Since ker(ad(h)) = tC,

we have that t is the unique maximal abelian subalgebra containing h. Equivalently, T is the
unique maximal torus containing the 1-parameter subgroup S generated by the element h ∈ t.
Let g ∈ N(T ) be a lift of w. Then Adg(h) = h, so that g ∈ ZG(S). By our discussion of
maximal tori, there exists a maximal torus T ′ containing S ∪ {g}. But we have seen that T is
the unique maximal torus containing S. Hence g ∈ T ′ = T , proving that w = 1. �

Remark 14.15. This result (or rather its proof) also has the following consequence. Let greg ⊆ g
be the set of Lie algebra elements ξ whose stabilizer group

Gξ = {g ∈ G|Adg(ξ) = ξ}
under the adjoint action is a maximal torus, and gsing = g\greg those elements whose stabilizer
is strictly larger than a maximal torus. Then

greg ∩ t

is the set of all ξ ∈ t such that dα(ξ) 6= 0 for all roots α.
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Exercise 14.16. For arbitrary ξ ∈ t, the stabilizer Gξ = {g ∈ G|Adg(ξ) = ξ} contains T , hence

gCξ is a sum of weight spaces. Which roots of G are also roots of Gξ? What can you say about
the dimension of Gξ?

Definition 14.17. The connected components of the set Ereg are called the open Weyl
chambers, their closures are called the closed Weyl chambers.

Unless specified differently, we will take Weyl chamber to mean closed Weyl chamber. Note
that the Weyl chambers C are closed convex cones. (That is, if x, y ∈ C then rx+ sy ∈ C for
all r, s ≥ 0.) The Weyl group permutes the set of roots, hence it acts by permutation on the
set of root hyperplanes Hα and on the set of Weyl chambers.

Lemma 14.18. The Weyl group acts freely on the set of Weyl chambers. That is, if C is a
chamber and w ∈W with wC ⊆ C then w = 1.

Proof. If wC = C, then w preserves the interior of C. Let x ∈ int(C). Then wix ∈ int(C) for
all i ≥ 0. Letting k be the order of w, the element x′ := x+ wx+ . . . wk−1x ∈ int(C) satisfies
wx′ = x′. By the previous Lemma this means w = 1. �

Exercise 14.19. Let C be a fixed (closed) Weyl chamber. a) Let D ⊆ C one of its ‘faces’. (Thus
D is the intersection of C with some of the root hyperplanes.). Show that if w(D) ⊆ D, then
wx = x for all x ∈ D. (Hint: D can be interpreted as the Weyl chamber of a subgroup of G.)
b) Show that if w ∈W takes x ∈ C to x′ ∈ C then x′ = x.

We say that a root hyperplane Hα separates the chambers C,C ′ ⊆ E if for points x, x′ in
the interior of the chambers, (x, α) and (x′, α) have opposite signs, but (x, β) and (x′, β) have
equal sign for all roots β 6= ±α. Equivalently, the line segment from x to x′ meets Hα, but
does not meet any of the hyperplanes Hβ for β 6= ±α.

Lemma 14.20. Suppose the root hyperplane Hα separates the Weyl chambers C,C ′. Then wα
interchanges C,C ′.

Proof. This is clear from the description of wα as reflection across Hα, and since wα must act
as a permutation on the set of Weyl chambers. �

Since any two Weyl chambers are separated by finitely many root hyperplanes, it follows
that any two Weyl chambers are related by some w ∈W . To summarize, we have shown:

Theorem 14.21. The Weyl group W acts simply transitively on the set of Weyl cham-
bers. That is, for any two Weyl chambers C,C ′ there is a unique Weyl group element
w ∈ W with w(C) = C ′. In particular, the cardinality |W | equals the number of Weyl
chambers.

Corollary 14.22. Viewed as a subgroup of GL(E), the Weyl group W coincides with the
group generated by the reflections across root hyperplanes Hα. In fact, W is already generated
by reflections across the hyperplanes Hα supporting any fixed Weyl chamber C.

The proof of the last part of this corollary is left as an exercise.
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15. Simple roots, Dynkin diagrams

Let us fix a Weyl chamber C+, called the positive or fundamental Weyl chamber. Then
any Weyl chamber is of the form C = wC+ for w ∈ W . The choice of C+ determines a
decomposition

R = R+ ∪R−

into positive roots and negative roots, where R± are the roots α with (α, x) > 0 (resp. < 0) for
x ∈ int(C). For what follows, it is convenient to fix some choice x∗ ∈ int(C+).

Definition 15.1. A simple root is a positive root that cannot be written as a sum of two
positive roots. We will denote the set of simple roots by Π.

Proposition 15.2 (Simple roots). The set Π = {α1, . . . αl} of simple roots has the
following properties.

(a) Π is a basis of the root lattice, spanZR ⊆ X∗(T ).
(b) Let

α =

l∑
i=1

kiαi ∈ R.

Then α ∈ R+ if and only if all ki ≥ 0, and α ∈ R− if and only if all ki ≤ 0.
(c) One has 〈α∨i , αj〉 ≤ 0 for i 6= j.

Proof. Fix an element x∗ ∈ int(C+) ⊆ E, that is, (α, x∗) > 0 for all α ∈ R+.

1) Proof of (c). If αi, αj are distinct simple roots, then their difference αi − αj is not a
root. (Otherwise, either αi = αj + (αi − αj) or αj = αi + (αj − αi) would be a sum of two
positive roots.) On the other hand, we had shown that if two roots α, β form an obtuse angle
(i.e. (α, β) < 0), then their sum α + β is a root. Applying this to α = αi, β = −αj it follows
that (αi,−αj) ≥ 0, hence 〈α∨i , αj〉 ≤ 0, proving (c).

2) Proof of linear independence of Π. Suppose
∑

i kiαi = 0 for some ki ∈ R. Let

(5) µ :=
∑
ki>0

kiαi = −
∑
kj<0

kjαj .

Taking the scalar product of µ with itself, and using (αi, αj) ≤ 0 for i 6= j we obtain

0 ≤ (µ, µ) = −
∑

ki>0, kj<0

kikj(αi, αj) ≤ 0.

Hence µ = 0. Taking the inner product with x∗ we get

0 =
∑
ki>0

ki(αi, x∗) = −
∑
kj<0

kj(αj , x∗).

which is only possible if all ki = 0.
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3) Proof that any α ∈ R+ can be written in the form α =
∑
kiαi for some ki ∈ Z≥0. (This

will prove (b), and also finish the proof of (a).) Suppose the claim is false, and let α be a
counterexample for which (α, x∗) is as small as possible.

Since α is not a simple root, it can be written as a sum α = α′ + α′′ of two positive roots.
Both (α′, x∗) > 0, (α′′, x∗) > 0 are strictly smaller than their sum (α, x∗). Hence, neither α′ nor
α′′ is a counterexample, and each can be written as a linear combination of αi’s with coefficients
in Z≥0. Hence the same is true of α, hence α is not a counterexample. Contradiction. �

Corollary 15.3. The simple co-roots R∨ = {α∨1 , . . . , α∨l } are a basis of the co-root lattice
spanZR

∨ ⊆ X∗(T ).

Definition 15.4. The l× l-matrix with entries Aij = 〈α∨i , αj〉 is called the Cartan matrix
of G (or of the root system R ⊆ E).

Note that the diagonal entries of the Cartan matrix are equal to 2, the and that the off-
diagonal entries are ≤ 0.

Example 15.5. Let G = U(n), and use the standard inner product on E = X∗(T ) ⊗Z R =
spanR(ε1, . . . , εn) to identify E ∼= E∗. Recall that U(n) has roots α = εi − εj for i 6= j. The
roots coincide with the coroots, under the identification E = E∗.

Let x∗ = nε1 + (n − 1)ε2 + . . . + εn. Then 〈α, u〉 6= 0 for all roots. The positive roots are
εi − εj with i < j, the negative roots are those with i > j. The simple roots are

Π = {ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn},
and are equal to the simple co-roots Π∨. For the Cartan matrix we obtain the (n−1)× (n−1)-
matrix,

A =


2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · 2 −1
· · · · · · · · · · · · −1 2


This is also the Cartan matrix for SU(n) (which has the same roots as U(n)).

Example 15.6. Let G = SO(2l+ 1). Using the standard maximal torus and the basis X∗(T ) =
spanZ(ε1, . . . , ε

l), we had found that the roots are ±εi ± εj for i 6= j, together with the set of
all ±εi. Let x∗ = nε1 + (n − 1)ε2 + . . . + εn. Then (x∗, α) 6= 0 for all roots α. The positive
roots are the set of all εi − εj with i < j, together with all εi + εj for i 6= j, together with all
εi. The simple roots are

Π = {ε1 − ε2, ε2 − ε3, . . . , εl−1 − εl, εl}.
Here is the Cartan matrix for l = 4:

A =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −2 2


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The calculation for SO(2l + 1) is similar: One has

Π = {ε1 − ε2, ε2 − ε3, . . . , εl−1 − εl, 2εl},
with Cartan matrix the transpose of that of SO(2l + 1).

A more efficient way of recording the information of a Cartan matrix is the Dynkin diagram17.

Definition 15.7. The Dynkin diagram of G is a graph, with

• vertices (nodes) the simple roots,
• edges between vertices i 6= j for which (αi, αj) 6= 0.

One gives each edge a multiplicity of 1, 2, or 3 according to whether ||αi||
2

||αj ||2 equals 1, 2 or

3. For edges with multiplicity 2 or 3, one also puts an arrow from longer roots down to
shorter roots.

Note that the Dynkin diagram contains the full information of the Cartan matrix.

Example 15.8. There are only four possible Dynkin diagrams with 2 nodes:

(a) a disconnected Dynkin diagram (corresponding to SU(2)× SU(2) or SO(4))
(b) a connected Dynkin diagram with an edge of multiplicity 1 (corresponding to A2 =

SU(3))
(c) a connected Dynkin diagram with an edge of multiplicity 2 (corresponding to B2 =

Spin(5))
(d) a connected Dynkin diagram with an edge of multiplicity 3 (corresponding to the ex-

ceptional group G2)

Exercise 15.9. Using only the information from the Dynkin diagram for G2, give a picture of
the root system for G2. Use the root system to read off the dimension of G2 and the order of
its Weyl group. Show that the dual root system R∨ for G2 is isomorphic to R.

Proposition 15.10. The positive Weyl chamber is described in terms of the simple roots as

C+ = {x ∈ E| (αi, x) ≥ 0, i = 1, . . . , l}.

Proof. By definition, C+ is the set of all x with (α, x) ≥ 0 for α ∈ R+. But since every positive
root is a linear combination of simple roots with non-negative coefficients, it suffices to require
the inequalities for the simple roots. �

Thus, in particular C+ is a simple polyhedral cone, cut out by l inequalities.

We had remarked that W is generated by reflections across boundary hyperplanes Hα for
C+. Hence it is generated by the simple reflections si = wαi , i = 1, . . . , l. Since every Hα

bounds some C, it follows that every α is W -conjugate to some αi. This essentially proves:

Theorem 15.11. The Dynkin diagram determines the root system R, up to isomor-
phism.

17Dynkin diagrams were used by E. Dynkin in his 1946 papers. Similar diagrams had previously been used
by Coxeter in 1934 and Witt 1941.
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Proof. The Dynkin diagram determines the set Π of simple roots, as well as their angles and
relative lengths. The Weyl groupW is recovered as the group generated by the simple reflections
si = wαi , and

R = WΠ.

�

Hence, given the Dynkin diagram one may recover the root system, the Weyl group, the
Weyl chamber etc.

Example 15.12. The Dynkin diagram of SO(5) has two vertices α1, α2, connected by an edge
of multiplicity 2 directed from α1 to α2. Thus ||α1||2 = 2||α2||2, and the angle between α1, α2

is 3π
4 . It is standard to work with a normalization where the long roots satisfy ||α||2 = 2.

A concrete realization as a root system in R2 is given by α1 = ε1 − ε2 and α2 = ε2; other
realizations are related by an orthogonal transformation of R2.

The corresponding co-roots are α∨1 = ε1−ε2 and α∨2 = 2ε2. Let s1, s2 be the simple reflections
corresponding to α1, α2. One finds

s1(k1ε
1 + k2ε

2) = k1ε
2 + k2ε

1, s2(l1ε
1 + l2ε

2) = l1ε
1 − l2ε2,

Hence

s1(α1) = −α1 = −ε1 + ε2,

s1(α2) = ε1,

s2(α1) = ε1 + ε2

s2(α2) = −ε2,
s2s1(α1) = −ε1 − ε2,
s1s2(α2) = −ε1,

which recovers all the roots. The Weyl group is the reflection group generated by s1, s2. As an
abstract group, it is the group generated by s1, s2 with the single relation (s1s2)3 = 1.

For any root α = suml
i=1 kiαi ∈ R (or more generally for any element of the root lattice),

one defines its height by

ht(α) =

l∑
i=1

ki.

In terms of the fundamental coweights (cf. below),

ht(α) =
l∑

i=1

〈$∨i , α〉.

Proposition 15.13. For any α ∈ R+\Π there exists β ∈ R+ with ht(β) = ht(α)− 1.

Proof. Choose a W -invariant inner product on E. Write α =
∑

i kiαi. Then

0 < ||α||2 =
∑
i

ki(α, αi).
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Since all ki ≥ 0, there must be at least one index r with (α, αr) > 0. This then implies that
α − αr ∈ R. Since α 6∈ Π, there must be at least one index i 6= r with ki > 0. Since the
coefficient of this αi in α− αr is again ki > 0, it follows that α− αr ∈ R+. �

16. Serre relations

Let G be a compact connected semi-simple Lie group, with given choice of maximal torus
T and positive Weyl chamber C+. Let Π = {α1, . . . , αl} be the set of simple roots, and
aij = 〈α∨i , αj〉 be the entries of the Cartan matrix. Let hi ∈ [gαi , g−αi ] with normalization
dαi(hi) = 2. Pick ei ∈ gαi , normalized up to U(1) by the condition [ei, ei] = −hi, and put
fi = −ei.

Theorem 16.1. The elements ei, fi, hi generate gC. They satisfy the Serre relations,

(S1) [hi, hj ] = 0,

(S2) [ei, fj ] = δijhi,

(S3) [hi, ej ] = aijej ,

(S4) [hi, fj ] = −aijfj ,
(S5) ad(ei)

1−aij (ej) = 0,

(S6) ad(fi)
1−aij (fj) = 0

Proof. Induction on height shows that all root spaces gα for positive roots are in the subalgebras
generated by the ei, fi, hi. Indeed, if α ∈ R+ we saw that α = β + αr for some β ∈ R+ with
ht(β) = ht(α) = 1, and [er, gβ] = gβ+αr since αr, α, β are all roots). Similarly the root spaces

for the negative roots are contained in this subalgebra, and since the hi span tC, it follows that
the subalgebra generated by the ei, fi, hi is indeed all of gC. Consider next the relations. (S1)
is obvious. (S2) holds true for i = j by our normalizations of ei, fi, hi, and for i 6= j because
[gαi , g−αj ] ⊆ gαi−αj = 0 since αi − αj is not a root. (S3) and (S4) follow since ej , fj are in the
root spaces g±αj :

[hi, ej ] = dαj(hi)ej = 〈α∨i , αj〉ej = aijej

and similarly for [hi, fj ]. For (S5), consider the αi-root string through αj . Since αj −αi is not
a root, the length of the root string is equal to k + 1 where −k is the eigenvalue of ad(hi) on
gαj . But this eigenvalue is dαj(hi) = aij . Hence root string has length 1− aij , and consists of
the roots

αj , αj + αi, . . . , αj − aijαi.
In particular, αj + (1− aij)αi is not a root. This proves (S5), and (S6) is verified similarly. �

The elements ei, fi, hi are called the Chevalley generators of the complex Lie algebra gC.
It turns out that the relations (S1)-(S6) are in fact a complete system of relations. This is
a consequence of Serre’s theorem, stated below. Hence, one may reconstruct gC from the
information given by the Dynkin diagram, or equivalently the Cartan matrix aij = 〈α∨i , αj〉.
In fact, we may start out with any ‘abstract’ root system.
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Definition 16.2. Let E be a Euclidean vector space, and R ⊆ E\{0}. For α ∈ R define
α∨ = 2α/(α, α). Then R is called a (reduced) root system if

(a) spanR(R) = E.
(b) The reflection sα : µ 7→ µ− 〈α∨, µ〉α preserves R.
(c) For all α, β ∈ R, the number (α∨, β) ∈ Z,
(d) For all α ∈ R, we have Rα ∩R = {α,−α}.

The Weyl group of a reduced root system is defined as the group generated by the
reflections sα.

As in the case of root systems coming from compact Lie groups, one can define Weyl cham-
bers, positive roots, simple roots, and a Cartan matrix and Dynkin diagram.

Theorem 16.3 (Serre). Let Π = {α1, . . . , αl} be the set of simple roots of a reduced root
system of rank l, and let aij = 〈α∨i , αj〉 be the Cartan matrix. The complex Lie algebra
with generators ei, fi, hi, i = 1, . . . , l and relations (S1)-(S6) is finite-dimensional and
semi-simple. It carries a conjugate linear involution ω0, given on generators by

ω0(ei) = −fi, ω0(fi) = −ei, ω0(hi) = −hi,
hence may be regarded as the complexification of a real semi-simple Lie algebra g. The
Lie algebra g integrates to a compact semi-simple Lie group G, with the prescribed root
system.

For a proof of this result, see e.g. V. Kac ‘Infinite-dimensional Lie algebras’ or A. Knapp,
‘Lie groups beyond an introduction’.

17. Classification of Dynkin diagrams

There is an obvious notion of sum of root systems R1 ⊆ E1, R2 ⊆ E2, as the root system
R1 ∪R2 in E1 ⊕ E2. A root system is irreducible if it is not a sum of two root systems.

Given an abstract root system, we may as before define Weyl chambers, and the same proof
as before shows that for non-orthogonal roots α, β with ||α|| ≥ ||β||, the ratio of the root lengths
is given by ||α||2/||β||2 ∈ {1, 2, 3}, and the angles in the three cases are ±π

3 ,±
π
4 ,±

π
6 mod π.

Hence, we may define simple roots and a Dynkin diagram as before.

Proposition 17.1. A root system is irreducible if and only if its Dynkin diagram is connected.

Proof. Let Π be a set of simple roots for R. If R is a sum of root systems R1 and R2, then
Π1 = R1 ∩Π and Π2 = R2 ∩Π are simple roots for Ri. Since all roots in Π1 and orthogonal to
all roots in Π2, the Dynkin diagram is disconnected. Conversely, given a root system R ⊆ E
with disconnected Dynkin diagram, then Π = Π1 ∪Π2 where all roots in Π1 are orthogonal to
all roots in Π2. This gives an orthogonal decomposition E = E1⊕E2 where E1, E2 is the space
spanned by roots in Π1,Π2. The simple reflections si for roots αi ∈ Π1 commute with those of
roots αj ∈ Π2, hence the Weyl group is a direct product W = W1 ×W2, and R is the sum of
R1 = W1Π1 and R2 = W2Π2. �

Hence, we will only consider connected Dynkin diagrams. The main theorem is as follows:
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Theorem 17.2. Let R be an irreducible root system. Then the Dynkin diagram is given
by exactly one of the following types Al (l ≥ 1), Bl (l ≥ 2), Cl (l ≥ 3), Dl (l ≥ 4) or
E6, E7, E8, F4, G2. a

Here the subscript signifies the rank, i.e. the number of vertices of the Dynkin diagram.

aPicture source: https://upload.wikimedia.org/wikipedia/commons/5/5f/ConnectedDynkinDiagrams.png

We will sketch the proof in the case that the root system is simply laced, i.e. all roots have
the same length and hence the Dynkin diagram has no multiple edges. We will thus show that
all simply laced connected Dynkin diagrams are of one of the types Al, Dl, E6, E7, E8.

We will use the following elementary Lemma:

Lemma 17.3. Let u1, . . . , uk be pairwise orthogonal vectors in a Euclidean vector space E.
For all v ∈ E we have

||v||2 >
k∑
i=1

(v, ui)
2

||ui||2
,

with equality if and only if v lies in span(u1, . . . , uk).

Proof in the simply laced case. We normalize the inner product on E so that all roots satisfy
||α||2 = 2. Since all roots have equal length, the angle between non-orthogonal simple roots is
2π
3 . Since cos(2π

3 ) = −1
2 , it follows that

(αi, αj) = −1

if αi, αj are connected by an edge of the Dynkin diagram.

https://upload.wikimedia.org/wikipedia/commons/5/5f/ConnectedDynkinDiagrams.png
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A subdiagram of a Dynkin diagram is obtained by taking a subset Π′ ⊆ Π of vertices, together
with the edges connecting any two vertices in Π′. It is clear that such a subdiagram is again a
Dynkin diagram. (If Π corresponds to the root system R, then Π′ corresponds to a root system
R ∩ spanR Π′.)

The first observation is that the number of edges in the Dynkin diagram is < l. Indeed,

0 < ||
l∑

i=1

αi||2 = 2l + 2
∑
i<j

(αi, αj) = 2l − 2#{edges}.

Hence #{edges} < l. Since this also applies to subdiagrams of the Dynkin diagram, it follows
in particular that the diagram cannot contain any loops.

One next observes that the number of edges originating at a vertex is at most 3. Otherwise,
there would be a star-shaped subdiagram with 5 vertices, with α1, . . . , α4 connected to the cen-
tral vertex ψ. In particular, α1, . . . , α4 are pairwise orthogonal. Since ψ is linearly independent
of α1, . . . , α4, we have

2 = ||ψ||2 >
4∑
i=1

(ψ, αi)
2

||αi||2
=

4∑
i=1

(
−1

2
)2 = 2,

a contradiction. (To get the inequality <, note that ||ψ||2 is the sum of squares of its coefficients
in an orthonormal basis. The αi/||αi||, i ≤ 4 is part of such a basis, but since ψ is not in their
span we have the strict inequality.)

Next, one shows that the Dynkin diagram cannot contain more than one 3-valent vertex.
Otherwise it contains a subdiagram with a chain α1, . . . , αn, and two extra vertices β1, β2

connected to α1 and two extra vertices β3, β4 connected to αn. Let α = α1 + . . . + αn. Then
||α||2 = 2n − 2

∑n−1
i=1 (αi, αi+1) = 2, and (α, βi) = −1. Hence, the same argument as in the

previous step (with α here playing the role of α5 there) gives a contradiction:

2 = ||α||2 >
4∑
i=1

(α, βi)
2

||βi||2
=

4∑
i=1

(
−1

2
)2 = 2.

Thus, the only type of diagrams that remain are chains, i.e. diagrams of type Al, or star-shaped
diagrams with a central vertex ψ and three ‘branches’ of length r, s, t emanating from ψ. Label
the vertices in these branches by α1, . . . , αr−1, β1, . . . , βs−1 and γ1, . . . , γt−1 in such a way that
(α1, α2) 6= 0, . . . , (αr−1, ψ) 6= 0 and similarly for the other branches. Let

α =
r−1∑
j=1

jαj , β =
s−1∑
j=1

jβj , γ =
t−1∑
j=1

jγj .

Then α, β, γ are pairwise orthogonal, and α, β, γ, ψ are linearly independent. We have ||α||2 =
r(r − 1) and (α,ψ) = −(r − 1), and similarly for β, γ. Hence

2 = ||ψ||2 > (α,ψ)2

||α||2
+

(β, ψ)2

||β||2
+

(γ, ψ)2

||γ||2
=
r − 1

r
+
s− 1

s
+
t− 1

t
.

Equivalently,
1

r
+

1

s
+

1

t
> 1.
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One easily checks that the only solutions with r, s, t ≥ 2 and (with no loss of generality)
r ≤ s ≤ t are:

(2, 2, l − 2), l ≥ 4, (2, 3, 3), (2, 3, 4), (2, 3, 5).

These are the Dynkin diagrams of type Dl, E6, E7, E8. It remains to show that these Dynkin
diagrams correspond to root systems, but this can be done by explicit construction of the root
systems. �

Consider the Dynkin diagram of E8, with vertices of the long chain labeled as α1, . . . , α7,
and with the vertex α5 connected to α8. It may be realized as the following set of vectors in
R8:

αi = εi − εi+1, i = 1, . . . , 7

together with
α8 = 1

2(ε1 + . . .+ ε5)− 1
2(ε6 + ε7 + ε8).

(Indeed, this vectors have length squared equal to 2, and the correct angles.) The reflection si
for i ≤ 7 acts as transposition of indices i, i + 1. Hence S8 is embedded as a subgroup of the
Weyl group. Hence,

β = −1
2(ε1 + ε2 + ε3) + 1

2(ε4 + . . .+ ε8)

is also a root, obtained from α8 by permutation of 1, 2, 3 with 4, 5, 6. Applying s8, we see that

s8(β) = β + α8 = ε4 + ε5

is a root. Hence, the set of roots contains all ±εi± εj with i < j, and the Weyl group contains
all even numbers of sign changes. (In fact, we have just seen that the root system of E8 contains
that of D8.) We conclude that

R = {±εi ± εj} ∪ {1
2(±ε1 ± ε2 · · · ± ε8)}

where the second set has all sign combinations with an odd number of minus signs. Note that
there are 2l(l − 1) = 112 roots of the first type, and 27 = 128 roots of the second type. Hence
the dimension of the Lie group with this root system is 112+128+8 = 248. With a little extra
effort, one finds that the order of the Weyl group is |W | = 696, 729, 600.
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