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Abstract

Given compactly supported 0 ≤ f, g ∈ L1(Rn), the problem of trans-
porting a fraction m ≤ min{‖f‖L1 , ‖g‖L1} of the mass of f onto g as
cheaply as possible is considered, where cost per unit mass transported
is given by a cost function c, typically quadratic c(x,y) = |x − y|2/2.
This question is shown to be equivalent to a double obstacle problem for
the Monge-Ampère equation, for which sufficient conditions are given to
guarantee uniqueness of the solution, such as f vanishing on spt g in the
quadratic case. The part of f to be transported increases monotonically
with m, and if spt f and spt g are separated by a hyperplane H, then
this part will separated from the balance of f by a semiconcave Lipschitz
graph over the hyperplane. If f = fχΩ and g = gχΛ are bounded away
from zero and infinity on separated strictly convex domains Ω,Λ ⊂ Rn,
for the quadratic cost this graph is shown to be a C1,α

loc hypersurface in Ω
whose normal coincides with the direction transported; the optimal map
between f and g is shown to be Hölder continuous up to this free bound-
ary, and to those parts of the fixed boundary ∂Ω which map to locally
convex parts of the path-connected target region.

1. Introduction

In the classical transportation problem of Monge [62] and Kantorovich
[49], one is given a distribution f(x) of iron mines throughout the countryside,
and a distribution g(y) of factories which require iron ore, and asked to decide
which mines should supply ore to each factory in order to minimize the total
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transportation costs. Here the cost per ton of ore transported from x to y ∈
Rn is given by a function which we usually take to be the distance squared
c(x,y) = |x − y|2/2, while the problem is traditionally studied under the
assumption that net production balances net consumption

(1.1)
∫
Rn

f(x) dx =
∫
Rn

g(y) dy < +∞.

In the present work we examine the case in which the total production and
consumption need not agree, but ask the question: If one wishes to utilize
only a certain fraction m ≤ min {‖f‖1, ‖g‖1} of production and consumption
capacity, which mines should remain active and which factories should they
supply if total transportation costs are to be a minimum? If the mines are
separated from the factories, the unique solution turns out to be given by pair
of domains U, V ⊂ Rn, with U containing the active mines and V the active
factories, together with a correspondence s : U −→ V mapping each active
mine to the corresponding factory. The domains depend monotonically on
m, and can be characterized as the non-contact regions in a double obstacle
problem for the Monge-Ampère equation; they obey the mass balance relation

(1.2) m =
∫
U
f(x) dx =

∫
V
g(y) dy,

together with the assertion that the optimal map between f + (1− χV )g and
(1− χU )f + g coincides with the identity map s(x) = x outside of U ∪ V . We
go on to specify conditions on f and g (e.g. (1.4)–(1.5) with Ω,Λ ⊂ Rn strictly
convex) which are sufficient to ensure that U and V are path connected regions
with C1,α

loc smooth free boundaries, and that s : U −→ V is a homeomorphism
(smoother on the interior if f and g are) which remains Hölder continuous up
to the free, and part of the fixed, boundary.

Our approach relies on the duality ideas exploited by Brenier in his study
[11][12] of the case of complete transfer m = ‖f‖1 = ‖g‖1, and on regularity
results developed by Caffarelli for that case [15][14][16][17]. A main conclusion
of Brenier was that for distance squared c(x,y) = |x − y|2/2, the optimal
correspondence y = s(x) between mines and factories could be uniquely char-
acterized as the gradient s = ∇ψ of a convex function ψ : Rn −→ R; c.f. par-
allel developments in Abdellaoui and Heinich [1], Cuesta-Albertos, Matrán,
and Tuero-Dı́az [25][26], Cullen and Purser [28], Knott and Smith [52][74], and
Rüschendorf and Rachev [69], and alternative approaches in Caffarelli [16],
Gangbo [37], and McCann [56]. Where smooth — and indeed almost every-
where [57, Remark 4.5] — this convex function ψ must satisfy the Monge-
Ampère equation

(1.3) det
[
D2
ijψ(x)

]
= f(x)/g(∇ψ(x)).
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If in addition, the production and consumption densities f, g ≥ 0 are bounded
above and below on their domains Ω,Λ ⊂ Rn of support

εχΩ(x)≤ f(x)≤ ε−1χΩ(x)(1.4)

εχΛ ≤ g ≤ ε−1χΛ,(1.5)

then Caffarelli has shown the map ∇ψ : Ω −→ Λ to be injective [15] and Hölder
continuous locally [14] provided Ω ⊂ Rn is bounded and Λ is convex. Then ψ ∈
Ck+2,β

loc (Ω) whenever f and g are Ck,βloc smooth for β ∈ ]0, β[ and k = 0, 1, 2, . . . .
Partial regularity could be extended to the boundary: ψ ∈ C1,α(Ω) [16] or
ψ ∈ C2,α(Ω) [17], but only at the expense of assuming convexity and (in the
latter case) smoothness of the domain Ω as well as the target Λ; c.f. Delanoë
[29], Urbas [79], and Wolfson [82]. Since our partial transfer problem reduces
to mapping χUf + (1 − χV )g onto g, the interior regularity results can be
invoked directly provided Λ is convex. Unfortunately, the boundary theory
cannot be applied directly since the unknown domains U ⊂ Ω and V ⊂ Λ
generally fail to be convex. Our argument for extending Hölder estimates to
the free boundary (and part of the fixed one) will couple the observation that
free boundary never maps to fixed boundary, with a local version of Caffarelli’s
method, plus certain geometrical properties, such as an interior ball condition
{x ∈ Ω | c(x, s(x0)) < c(x0, s(x0))} ⊂ U which holds for every x0 ∈ U , and
provides a one-sided curvature bound at each point of the free boundary Ω∩∂U .
This ball condition implies the displacement s(x)−x is perpendicular to the free
boundary, allowing us to conclude Hölder continuity of the free normal also.
This discussion is developed in Section §7, which together with Appendix A
contains a complete exposition of the C1,α(Ω) regularity theory (boundary and
interior) when production and consumption are fixed and equal on two given
convex sets. Unfortunately, the geometry we establish for the free boundary
is not sufficient to decide whether higher regularity of the free normal and
mapping nearby might follow from higher regularity of the data f and g, as it
would for complete transfer between smooth uniformly convex domains [18].
This question remains open in the partial transfer case.

We mention that our partial transfer problem involves augmenting the
Monge-Ampère equation (1.3) and inclusion ∇ψ(x) ∈ Λ with Dirichlet free
boundary data ψ(x) = |x|2/2 on Ω ∩ ∂U . It goes without saying that the
regularity discussion is specific to the quadratic cost c(x,y) = |x − y|2/2. In
sharp contradistinction to the more familiar situation of complete transfer,
the optimizer for the quadratic cost in the partial transfer problem will not
generally optimize the bilinear cost c̃(x,y) = −〈x, y〉. This is illustrated by
the following simple example, which also indicates why new hypotheses are
required to ensure uniqueness.
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Example 1.1 (Transport between concentric balls). Let f = χB1

and g = χBn be the characteristic functions of balls centered at the origin, with
radii 1 and n respectively. If we ask to transfer mass m < ‖f‖1 from f to g so
as to minimize the quadratic cost c(x,y) = |x−y|2/2, the solution is far from
unique: any function f1 ≤ f ≤ g with mass m can be transported to g1 = f1

at zero cost. On the other hand, the bilinear cost c̃(x,y) = 〈x, y〉 is uniquely
maximized when f1 = (1 − χBr)f and g1 = (1 − χBR)g are both chosen to be
hollow spheres of mass m, and s#f1 = g1 maps monotonically outward along
rays: s(x) = k(|x|)x with k(t) ≥ 0 and k′(t) ≥ 0.

On the other hand, when m = min{‖f‖1, ‖g‖1} then c(x,y) = |x − y|2/2 is
uniquely minimized in this example and, we expect, more generally.

Regularity results for non-quadratic costs are a very recent development
even in the context of the fixed boundary (complete transfer) problem, where
Ma, Trudinger & Wang have identified a concavity condition on the Hessian
of the cost, which — for smooth data and suitable domain geometry — yields
regularity of the mapping [55] up to the boundary [77]. This condition is called
(A3s) when it holds uniformly, and (A3w) otherwise. Loeper showed that
whenever (A3w) fails, there are smooth data on perfectly suitable domains
for which the optimal map is discontinuous. Conversely, when (A3s) holds,
he gave a direct proof of Hölder continuity of the map s : Ω −→ Λ, with
Hölder exponent β = 1/(4n− 1), under very weak hypotheses on f and g [54].
Since our quadratic cost c(x,y) = |x−y|2/2 satisfies (A3w) but not (A3s), we
cannot expect the Hölder continuity established below for partial transport to
hold under general perturbations of the cost. It might be expected to hold for
(A3w) perturbations, but since the affine invariance exploited below is specific
to the quadratic cost, this question presumably requires a different approach to
resolve. For (A3s) costs, Loeper’s argument offers some hope of addressing the
Hölder continuity of partial transport, a possibility currently being investigated
with Y.-H. Kim [51].

Kantorovich duality is of course quite general, see e.g. Kellerer [50], Rachev
& Rüschendorf [66], or Villani [80], while unique characterizations of optimal
maps for other costs have been investigated by Ahmad [3], Ambrosio & Rigot
[9] Caffarelli [18], Gangbo & McCann [39][40][41], Gangbo & Świȩch [42], Mc-
Cann [59] [60], Plakhov [65], Rüschendorf & Uckelmann [70], Uckelmann [78]
in various geometries. Monge’s cost c(x,y) = |x − y| in particular has at-
tracted recent attention from Ambrosio [5] & Pratelli [8], Ambrosio, Kircheim
& Pratelli [7], Caffarelli, Feldman & McCann [19], DePascale, Evans & Pratelli
[30], Feldman & McCann [36] [35], and Trudinger & Wang [76] following the
work of Evans & Gangbo [33] and Sudakov [75]. Although the free boundary
problem we pose has not been much studied, other transportation problems
in which one measure is fixed and the second is selected by a variational prin-
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ciple have been examined extensively in the context of dynamical problems
since the work of Otto [64] and Jordan, Kinderlehrer & Otto [48], see also
e.g. Agueh [2], Ambrosio, Gigli & Savare [6], Cullen & Gangbo [27], Gianazza,
Savare & Toscani [43], Savin [71]; in shape optimization since the work of
Bouchitte, Buttazzo & Seppecher [10], see also e.g. Milakis [61] and Xia [83];
and in economics since the work of Rochet & Choné [67], see also e.g. Carlier
[20], Carlier & Lachand-Robert [23], Carlier & Ekeland [22], Ekeland [32] and
Buttazzo, Pratelli & Stepanov [13]. Obstacle problems for the Monge-Ampère
equation have been considered by Chou & Wang [24], Dolbeault & Monneau
[31], Lee [53], and Savin [72]; the formulation and boundary conditions of these
single obstacle problems are quite different from the double obstacle problems
analyzed below, even though some similar issues are addressed.

To formulate our problem more precisely, fix a pair of L1(Rn) functions
f, g ≥ 0. Let Γ≤(f, g) denote the set of non-negative Borel measures on
Rn ×Rn whose left and right marginals are dominated by f(x) dx and g(y) dy
respectively:

(1.6) γ[A×Rn] ≤
∫
A
f(x) dx and γ[Rn ×A] ≤

∫
A
g(y) dy

for γ ∈ Γ≤(f, g) and every Borel set A ⊂ Rn. The cost functional to be
minimized is

(1.7) Cλ(γ) :=
∫
Rn×Rn

[c(x,y)− λ] dγ(x,y),

with the minimum taken over all measures in Γ≤(f, g) of fixed mass γ[Rn ×
Rn] = m. For technical reasons it is easier to introduce a Lagrange multiplier
λ ≥ 0 conjugate to this constraint, and take the infimum over joint measures
of all masses:

(1.8) Cλ(f, g) := inf
γ∈Γ≤(f,g)

Cλ(γ).

If the optimizer is unique, we denote it by γλ and its mass by m(λ) :=
γλ[Rn ×Rn]. It is then easily deduced that m(λ) = −∂Cλ(f, g)/∂λ increases
continuously from 0 to min {‖f‖1, ‖g‖1} as λ is increased. Thus each mass m
can be attained by selecting the appropriate value of λ ≥ 0. Finally, we verify
that only one measure in Γ≤(f, g) with mass m is optimal, and characterize it
as described.

The characterization of this optimal measure and its unicity are derived
from a maximization problem dual to (1.8) (in the sense of linear programming
or Kantorovich [49]). In fact, we check that

(1.9) Cλ(f, g) = sup
u(x)+v(y)≤c(x,y)−λ

u,v≤0

∫
Rn

u(x)f(x) dx +
∫
Rn

v(y)g(y) dy,
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and use the optimal u and v to describe the active regions U = {x | u(x) < 0}
and V = {y | v(y) < 0} and support of the optimal measure γ, where support
refers to the smallest closed subset of Rn ×Rn carrying the full mass of γ,
denoted spt γ. When c(x,y) = |x− y|2/2, the minimization problem

(1.10) inf
ψ(x)+φ(y)≥〈 x, y〉

ψ(x)≥(|x|2−λ)/2 φ(y)≥(|y|2−λ)/2

∫
Rn

ψ(x)f(x) dx +
∫
Rn

φ(y)g(y) dy

is seen to be equivalent, in the sense that ψ(x) = (|x|2 − λ)/2 − u(x) and
φ(y) = (|y|2 − λ)/2 − v(y) optimize (1.10) precisely when (u, v) optimize
(1.9). The difference in value between (1.10) and (1.9) is determined by the
second moments and mass of f and g. As in Brenier [11], one may restrict the
minimization to convex functions ψ and φ, since e.g. ψ can always be replaced
by the convex function ψ̃(x) = max {φ∗(x), (|x|2 − λ)/2} without increasing
(1.10). Here φ∗ denotes the Legendre-Fenchel transform

(1.11) φ∗(x) := sup
y∈Rn

〈x, y〉 − φ(y).

The optimal solutions to (1.10) and (1.8) are related by

γ[{(x,∇ψ(x)) | x ∈ U}] = γ[Rn ×Rn]

=
∫
U
f(x)dx

where U = {x ∈ Rn | ψ(x) > (|x|2 − λ)/2}, so the convex function ψ deter-
mines both the support of γ (essentially the graph of s = ∇ψ) and its left mar-
ginal fχU — i.e. the active mines and correspondence between these mines and
factories. Note the appearance of the Dirichlet condition ψ(x) = (|x|2 − λ)/2
implicitly satisfied along the free boundary Ω∩∂U , and the condition ∇ψ(x) =
x implied throughout Rn \ U .

The remainder of this manuscript is organized as follows. The next section
derives a duality theory for the partial transfer problem with quite general cost
functions c(x,y), giving sufficient conditions for uniqueness of the optimizer.
A third section demonstrates monotone dependence of the active domains U
and V on the amount m of mass transferred. For costs of the form c(x,y) =
h(x) − 〈x, y〉 + k(y), a fourth section formulates a double obstacle problem
for the Monge-Ampère equation which it shows to be equivalent; the Lagrange
multiplier λ controlling the optimal mass parameterizes the distance between
the upper and lower obstacles. For the quadratic cost c(x,y) = |x − y|2/2,
a fifth section addresses semi-concavity of the free boundary, when f and g

are compactly supported on opposite sides of a hyperplane. The last two
sections address interior and boundary regularity for the optimal mapping,
under the assumption that f = fχΩ and g = gχΛ are bounded away from zero
and infinity (1.4)–(1.5) on separated strictly convex domains Ω,Λ ⊂ Rn. An
appendix is included which makes the boundary regularity analysis essentially
self-contained.
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2. Duality and uniqueness for partial transfer

For quite general costs, the solution to the partial mass transfer problem
(1.8) is typically (c.f. [32]) derived from the solution of a complete mass transfer
problem constructed as follows: Attach an isolated point ∞̂ to Rn, and extend
the cost function

(2.1) ĉ(x,y) :=
{
c(x,y)− λ if x 6= ∞̂ and y 6= ∞̂
0 otherwise

and measures dµ(x) := f(x) dx and dν(y) = g(y) dy to R̂n := Rn ∪ {∞̂} by
adding a Dirac mass isolated at infinity: µ̂ = µ+‖g‖L1δ∞̂ and ν̂ = ν+‖f‖L1δ∞̂.
The measures µ̂ and ν̂ now have the same total mass, and we can ask to
minimize the integral of the cost function ĉ against joint measures with these
marginals:

Γ(µ̂, ν̂) :=
{

0 ≤ γ̂ on R̂n × R̂n

∣∣∣∣ µ̂[U ] = γ̂[U × R̂n]
ν̂[U ] = γ̂[R̂n × U ]

for Borel U ⊂ R̂n

}
.

A bijection between γ ∈ Γ≤(f, g) and γ̂ ∈ Γ(µ̂, ν̂) is given by

(2.2) γ̂ = γ + (f − f1)⊗ δ∞̂ + δ∞̂ ⊗ (g − g1) + γ[Rd ×Rd]δ(∞̂,∞̂),

where f1 ≤ f and g1 ≤ g represent the marginals of γ ∈ Γ≤(f, g). Since the
point at infinity acts as a tariff-free reservoir (2.1), it is easy to see the infimum
(1.8) agrees with

(2.3) inf
γ̂∈Γ(µ̂,ν̂)

∫
R̂n

ĉ(x,y)dγ̂(x,y),

and γ optimizes (1.8) if and only if it coincides with the restriction of a mini-
mizing γ̂ to Rn ×Rn. Under very mild assumptions, this allows us to invoke
the standard duality theory (2.10), in the form of the following lemmas and
corollaries; see e.g. [40] [50] [66] [80]. The interior ball condition (2.9) deduced
for the active domain plays a critical role in the developments which follow.
Proposition 2.9 then identifies conditions (2.16) on the cost function to make
the optimal transfer unique. Injectivity of y −→ ∇xc(x0,y) is a familiar crite-
rion from Gangbo [38], Carlier [21], and Ma, Trudinger & Wang for uniqueness
of total transfer; it follows from strict convexity in Caffarelli [18] and Gangbo &
McCann [39]. What is new to the setting of partial transfer is the requirement
that this map be non-vanishing. For the quadratic cost c(x,y) = |x − y|2, f
and g must therefore be disjointly supported for our uniqueness criterion to
apply. Here the support spt f of a measure shall always refer to the smallest
closed set containing full mass.
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Definition 2.1 (c-concavity and c-transform). A function û : R̂n −→
[−∞,∞[ is ĉ-concave if it is not identically −∞ on spt µ̂ but satisfies
(2.4)
û(x) = inf

y∈spt ν̂
ĉ(x,y)− ûĉ(y) =: ûĉĉ where ûĉ(y) := inf

x∈spt µ̂
ĉ(x,y)− û(x).

Lemma 2.2 (Topological Preliminaries). Fix 0 ≤ f, g ∈ L1(Rn).
Then Γ≤(f, g) is weak-∗ compact in the Banach space dual C∞(Rn ×Rn)∗. If
the cost

(2.5) c(x,y) ≥ u(x) + v(y)

is continuous and dominates a sum u(x) + v(y) with uf ∈ L1(Rn) and vg ∈
L1(Rn), then Cλ : Γ≤(f, g) −→ ]−∞,∞] is weak-∗ lower semicontinuous and
well-defined.

Proof: Here C∞(Rn ×Rn) denotes the continuous functions which vanish at
∞ normed by the supremum norm, i.e. the closed subspace of L∞(Rd ×Rd)
generated by compactly supported continuous functions. The norm of a pos-
itive measure γ ∈ Γ≤(f, g) in the Banach space dual C∞(Rn × Rn)∗ co-
incides with its mass ‖γ‖C∗∞ = γ[Rd ×Rd]. Thus Γ≤(f, g) is bounded by
min {‖f‖L1 , ‖g‖L1}, and weak-∗ pre-compact by the Banach-Alaoglu theo-
rem. Any sequence γn ∈ Γ≤(f, g) has a weak-∗ convergent subsequence γn ∈
Γ(fn, gn) whose marginals fn → f∞ and gn → g∞ also converge weak-∗ in
C∞(Rn). Now γn → γ∞ ∈ Γ(f∞, g∞) according to [56, Proposition 9(ii)].
Since f∞ ≤ f and g∞ ≤ g we have Γ≤(f, g) weak-∗ compact.

Fixing λ = 0 for the moment, we may assume u, v ≤ 0. We also assume
both f have g have positive mass, since otherwise the lemma is trivially true.
Now extend u and v to R̂n by taking û(∞̂) = 0 = v̂(∞̂) so that (2.11) holds.
Since µ̂[∞̂] = ‖g‖1 in (2.2), we deduce ûĉ ≤ 0 from (2.4), and ûĉ(∞̂) = 0 from
u ≤ 0. Replacing v̂ by ûĉ ≥ v̂ and then û by ûĉĉ, it therefore costs no generality
to assume u ≤ 0 is a ĉ-concave function and v = ûĉ ≤ 0 in the hypotheses
(2.5). Moreover, û and v̂ are infima of continuous functions (2.4), hence upper
semicontinuous. The cost function c̃(x,y) := ĉ(x,y)− û(x)− v̂(y) ≥ 0 is now
bounded below, and lower semi-continuous, so the associated integral

C̃(γ̂) :=
∫
R̂n×R̂n

c̃(x,y)dγ̂(x,y)

is well-defined and weak-∗ lower semicontinuous on Γ(µ̂, ν̂) by a monotone
convergence theorem argument in which the cost c̃(x,y) is approximated from
below by a continuous cost vanishing at ∞(6= ∞̂). Now C̃(γ̂) differs from Cλ(γ)
by the finite constant

0 ≥
∫
R̂n

û(x)dµ̂(x) +
∫
R̂n

v̂(y)dν̂(y) > −∞
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so Cλ(γ) > −∞ and lower semicontinuous on Γ≤(f, g) for λ = 0.
Applying the same lemma to both c(x,y) = ±1 shows that the mass

m(γ) := γ[Rd ×Rd] is a weak-∗ continuous function on Γ≤(f, g). Thus weak-∗
lower semi-continuity of C0(γ) extends equally well to Cλ(γ) = C0(γ)− λm(γ)
for λ 6= 0. QED.

Lemma 2.3 (Optimality criterion). Let f, g and c satisfy the hy-
potheses of Lemma 2.2. Then the infimum (2.3) is finite, attained, and there
exists a ĉ-concave function û : R̂n −→ [−∞,∞[ such that every optimal mea-
sure γ̂ ∈ Γ(µ̂, ν̂) satisfies

(2.6) spt γ̂ ⊂ {(x,y) ∈ R̂n × R̂n | û(x) + ûĉ(y) = ĉ(x,y)} =: ∂ĉû.

Proof: According to Lemma 2.2, the cost function Cλ(γ) is weak-∗ lower semi-
continuous on the compact set Γ≤(f, g). Thus the infimum (1.8), or equiva-
lently (2.3), is attained in ]−∞, 0]; it is non-positive since γ̂ = µ⊗ δ∞̂+ δ∞̂⊗ν
is a competitor with zero cost (2.1). For a cost ĉ(x,y) ≥ 0 on X × Y :=
spt µ̂× spt ν̂, Gangbo and McCann [40, §2] construct a single ĉ-concave func-
tion û : X −→ [−∞,∞[ such that

spt γ̂ ⊂ ∂ĉû := {(x,y) ∈ X × Y | x ∈ arg min
z∈X

ĉ(z,y)− û(z)}

holds simultaneously for every optimizer γ̂ ∈ Γ(µ̂, ν̂). Non-negativity of ĉ is
used only to ensure Cλ(γ̂) is well-defined in their proof; since we have this
instead from Lemma 2.2, their proof extends to our signed costs also. This
gives the desired identity (2.6). Since û is ĉ-concave, Rachev and Rüschendorf
[66, §3.3.5] assert û = ûĉĉ. The functions û and ûĉ can be extended to all of
R̂n via (2.4) without modifying their values on X × Y . QED.

Corollary 2.4 (Active versus inactive locations). Take f, g, c as
in Lemma 2.2 and λ ∈ R. Suppose γλ ∈ Γ(f1, g1) minimizes (1.8). Then
(x1,y1) ∈ spt γλ implies c(x1,y1) ≤ λ. If x0 ∈ spt [f − f1] and/or y0 ∈
spt [g − g1] also exist, then c(x1,y1) ≤ min {c(x0,y1), c(x1,y0)} and if both
exist λ ≤ c(x0,y0). Thus U is disjoint from spt [f−f1], and V is disjoint from
spt [g − g1], where

U :=
⋃

(x1,y1)∈spt γλ

{x ∈ Rn | c(x,y1) < c(x1,y1)} and

V :=
⋃

(x1,y1)∈spt γλ

{y ∈ Rn | c(x1,y) < c(x1,y1)}.(2.7)

Proof: Let γ̂ from (2.2) extend γ := γλ. For all (x0,y0), (x1,y1) ∈ spt γ̂, the
standard monotonicity inequality

(2.8) ĉ(x0,y0) + ĉ(x1,y1) ≤ ĉ(x0,y1) + ĉ(x1,y0)
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is easily deduced from (2.4) and (2.6); see e.g. [40, §2.7]. Given (x1,y1) ∈ spt γ,
we have (x0,y0) = (∞̂, ∞̂) ∈ spt γ̂ from (2.2), whence c(x1,y1) ≤ λ from (2.8)
and (2.1). If there exists x0 ∈ spt [f − f1], then (x0, ∞̂) ∈ spt γ̂ so taking
y0 = ∞̂ yields ĉ(x1,y1) ≤ ĉ(x0,y1) in (2.8). Similarly y0 ∈ spt [g − g1]
implies c(x1,y1) ≤ c(x1,y0). Finally, applying (2.8) to the pair of points
(x0, ∞̂), (∞̂,y0) ∈ spt γ̂, yields λ ≤ c(x0,y0).

Turning to (2.7), we see that x ∈ U ∩ spt [f −f1] implies the contradiction

c(x,y1) < c(x1,y1) ≤ λ ≤ c(x,y1),

so U is disjoint from spt [f − f1]. Similarly, V is disjoint from spt [g − g1], by
symmetry under interchange of x ↔ y and f ↔ g. QED.

Example 2.5 (Interior ball condition). Taking c(x,y) = |x − y|p
with p > 0, and Br(x) := {y ∈ Rn | |x− y| < r} in the preceding corollary
yields

U =
⋃

(x,y)∈spt γλ

B|x−y|(y) andV =
⋃

(x,y)∈spt γλ

B|x−y|(x).(2.9)

Corollary 2.6 (Kantorovich duality). Fix f, g and c satisfying the
hypotheses of Lemma 2.2 and λ ∈ R. Then the maximum and minimum below
are attained — by any γ̂ ∈ Γ(µ̂, ν̂) and (û, v̂) = (ûĉĉ, ûĉ) satisfying (2.6) with
ĉ ∈ L1(dγ̂):
(2.10)

max
(û,v̂)∈L1(dµ̂×dν̂)
û(x)+v̂(y)≤ĉ(x,y)

∫
R̂n

û(x)dµ̂(x)+
∫
R̂n

v̂(y)dν̂(y) = min
γ̂∈Γ(µ̂,ν̂)

∫
R̂n×R̂n

ĉ(x,y)dγ̂(x,y).

Proof: Let û ∈ L1(dµ̂) and v̂ ∈ L1(dν̂) be functions satisfying

(2.11) û(x) + v̂(y) ≤ ĉ(x,y),

Integrating (2.11) against any γ̂ ∈ Γ(µ̂, ν̂) shows the infimum dominates the
supremum in (2.10); we have only to exhibit a case of equality to conclude the
proof.

Choose any γ̂ ∈ Γ(µ̂, ν̂) with ĉ ∈ L1(dγ̂) and û satisfying (2.4) and (2.6).
These exist by the preceding lemma, and setting v̂ = ûĉ implies (2.11). More-
over û(x) + v̂(y) = ĉ(x,y) ∈ R holds throughout spt γ̂. In particular û is
real valued µ̂-a.e., and v̂ is real valued ν̂-a.e. Extend uf and vg ∈ L1(Rn)
from (2.5) to vanish at ∞̂. Defining ũ := û − u, ṽ := v̂ − v = ũc̃ and
c̃(x,y) = ĉ(x,y)− u(x)− v(y) ≥ 0 yields ũ(x) + ṽ(y) ≤ c̃(x,y) with equality
on spt γ̂. In particular, ũ(x)+ ṽ(y) ≥ 0 on spt γ̂ shows ũ and ṽ bounded below
µ̂ and ν̂-a.e., respectively. This means

∫
ũdµ̂ and

∫
ṽdν̂ do not diverge to −∞.

Integrating (2.11) now yields

(2.12)
∫
R̂n

ũ(x)dµ̂(x) +
∫
R̂n

ũc̃(y)dν̂(y) =
∫
R̂n×R̂n

c̃(x,y)dγ̂(x,y) <∞,
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showing ũ ∈ L1(dµ̂) and ṽ ∈ L1(dν̂). Subtracting the finite integral of uf + vg

from both sides demonstrates that a finite equality in (2.10) is achieved by γ̂
and (û, v̂) = (ûĉĉ, ûĉ) ∈ L1(dµ̂× dν̂). QED.

Corollary 2.7 (Duality for partial-transfer). The hypotheses of
Lemma 2.2 also imply
(2.13)

max
u(x)+v(y)≤c(x,y)−λ

u(x),v(y)≤0

∫
Rn

u(x)f(x) dx+
∫
Rn

v(y)g(y) dy = min
γ∈Γ≤(f,g)

∫
Rn×Rn

(c−λ) dγ,

and the maximum is attained by the restriction to Rd ×Rd of (û− û(∞̂), ûĉ +
û(∞̂)) from Lemma 2.3.

Proof: The restriction of γ̂ ∈ Γ(µ̂, ν̂) to Rn gives a measure in Γ≤(f, g) and
the associated costs are the same since transportation to and from the isolated
reservoir is free (2.1). Moreover, each γ ∈ Γ≤(f, g) extends uniquely to a
measure γ̂ ∈ Γ(µ̂, ν̂): if γ has marginals f ′ ≤ f and g′ ≤ g, then γ̂ will have
density f − f ′ and g − g′ on Rn × {∞̂} and {∞̂} ×Rn, plus an isolated atom
of weight ‖f ′‖L1(Rn) = ‖g′‖L1(Rn) at (∞̂, ∞̂). Thus the minima in (2.10) and
(2.13) coincide; it remains to show the same for the maxima.

Any competitors (u, v) in (2.13) can be extended to R̂n by taking u(∞̂) =
0 = v(∞̂); this non-positive extension satisfies (2.11) because of (2.1). The
maximum (2.10) over the larger class of competitors can only dominate (2.13).
Conversely, the lemma and corollary preceding are unchanged if (û, v̂) are
replaced by (û + k, v̂ − k) for k ∈ R. Since û(∞̂) > −∞ for a finite ob-
jective, we are free to assume û(∞̂) = 0, in which case (2.1) and (2.11)
imply v̂(y) ≤ 0 throughout R̂n. At y = ∞̂, the only constraint is that
v̂(∞̂) ≤ infx∈R̂n −û(x) =: −umax, and equality can be assumed to hold for
the maximizing (û, v̂). Thus

(2.14)
∫
R̂n

ûdµ̂+
∫
R̂n

v̂dν̂ =
∫
Rn

v̂g +
∫
Rn

ûf dx− umax‖f‖L1(Rn),

and the sum of the last two terms is not positive since umax ≥ u(∞̂) ≥ 0.
Replacing u by min {u, 0} pointwise always increases the objective (2.14), and
makes it easier to satisfy the constraint (2.11). Therefore we conclude umax =
0, so the objective functionals in our two maximizations agree. Since the
restriction (u, v) of (û, v̂) to Rn now satisfies the constraints of (2.13), it is
clear that the latter maximization dominates (2.10). Hence the two maximum
values coincide, and the latter is attained by the restriction to Rd ×Rd of
(û, ûĉ) after normalizing û(∞̂) = 0 = ûĉ(∞̂) as described. QED.

To address uniqueness, mappings, and the regularity which follows, we
shall need the notion of a pushed-forward measure. Given a measure space
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(X, µ̂) and a measurable space Y , each measurable map s : X −→ Y induces
a measure s#µ̂ on Y , called the push-forward of µ̂ through s, and defined by
s#[V ] = µ̂[s−1(V )] for each measurable set V ⊂ Y . If ξ : Y −→ [−∞,∞] is
measurable, it is not hard to check

(2.15)
∫
Y
ξ d(s#µ̂) =

∫
X
ξ(s(x)) dµ̂(x),

when either integral is well-defined. As an example, the projection π : Rn ×
Rn −→ Rn given by π(x,y) = x pushes forward γ ∈ Γ(µ̂, ν̂) to its left marginal
µ̂ = π#γ. We shall use the notation dom ξ := {x ∈ X | |ξ(x)| <∞}, and if
X = Rn then dom∇ξ ⊂ Rn will denote the points of differentiability of ξ.

Lemma 2.8 (Uniqueness of transportation). Taking f, g, c as in Lemma
2.2, assume every ĉ-concave function û : R̂n −→ [−∞,∞[ has the property that
for f-a.e. x0 ∈ dom û\{∞̂}, the equation û(x0)+ ûc(y) = ĉ(x0,y) has at most
one solution y = sû(x0) in spt ν̂. Then a unique measure γ̂ ∈ Γ(µ̂, ν̂) of finite
cost ĉ ∈ L1(dγ̂) has restriction to Rn × R̂n given by γ̂1 = (id× sû)#f with û
a ĉ-concave function, and ûĉ = û(∞̂) = 0 on spt [ν̂ − sû#f ]. This γ̂ uniquely
minimizes (2.3).

Proof: Lemma 2.3 asserts the existence of at least one optimal measure γ̂ ∈
Γ(µ̂, ν̂) with (2.3) finite, and provides a ĉ-concave function û such that all
optimal measures are supported inside ∂ĉû. It costs no generality to assume
û(∞̂) = 0. The projection π(spt γ̂) under π(x,y) = x is σ-compact, and since
(x,y) ∈ spt γ̂ ⊂ ∂ĉû implies u(x) finite, π(spt γ̂) ⊂ dom û. By hypothesis,
some Borel set S ⊂ π(spt γ̂)\{∞̂} containing the full mass of f , admits a map
sû : S −→ spt ν such that S × R̂n ∩ spt γ̂ = G := {(x, sû(x)) | x ∈ S}. Note
that sû depends on û but not on γ̂, except possibly through the precise choice
of domain S. The graph G is clearly Borel. Since π : G −→ R̂n is Lipschitz
and univalent, Federer [34, §2.2.10, p. 67] shows s−1

û (B) = π(G ∩ (Rn × B))
is Borel whenever B ⊂ R̂n is. The map sû is therefore Borel. By [41, Lemma
2.4] we conclude the restriction γ̂1 := γ̂|Rn×R̂n is given by γ̂1 = (id × sû)#f .
Since γ̂2 := γ̂ − γ̂1 is supported on {∞̂} × R̂n, it is completely determined by
its right marginal ν̂2 := ν̂ − sû#f . If a second measure γ̂′ minimizes (2.3), the
same argument shows γ̂′ = (id× s′û)#f + δ∞̂ ⊗ (ν̂ − s′û#f), where s′û = sû on
the intersection of their domains S ∩S′. Since this intersection carries the full
mass of f , we conclude that finiteness of (2.3) implies the optimizer γ̂′ = γ̂ is
unique. Finally, since (x,y) ∈ spt γ̂2 = {∞̂} × spt ν̂2 implies û(x) + ûĉ(y) = 0
with x = ∞̂, we conclude ûĉ(y) = −û(∞̂) = 0 throughout spt ν̂2.

If any other ĉ-concave function û′ with û′ĉ = 0 = û′(∞̂) holding on spt [ν̂−
sû#f ] induces a measure γ̂′ = (id× sû′)#f + δ∞̂ ⊗ (ν̂ − sû′#f) in Γ(µ̂, ν̂), we
conclude γ̂′-a.e. (x,y) belongs to ∂ĉû′. Integrating the equality û(x)+ ûĉ(y) =
ĉ(x,y) ∈ L1(dγ̂′) against γ̂′, we conclude (2.12) holds and is finite, as in the
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last part of the proof of Corollary 2.6. Now duality shows γ̂′ to be optimal,
hence to coincide with the unique minimizer γ̂ in (2.10). QED.

The following theorem gives conditions on the cost which guarantee unique-
ness of partial transfer. These conditions suffice for the present purpose, though
we have no doubt that various refinements are possible and desirable, e.g. for
eliminating the compact support assumption from Theorem 4.3. We say a
function ξ : Rn −→ [−∞,∞] is superdifferentiable at x0 ∈ Rn if there exists
p ∈ Rn such that

lim sup
x→x0

ξ(x)− ξ(x0)− 〈p, x− x0〉
|x− x0|

≤ 0.

Any concave function ξ : Rn −→ [−∞,∞[ is superdifferentiable on int [dom ξ].

Proposition 2.9 (Ensuring uniqueness of partial transfer). Fix
0 ≤ f, g ∈ L1(Rn). Assume c(x,y) is Lipschitz and superdifferentiable on the
interior of conv [spt f × spt g]. Suppose for f-a.e. x0 ∈ Rn the map

(2.16) y ∈ D −→ ∇xc(x0,y) is non-vanishing and injective

on the set D ⊂ spt g where it is well-defined. Then — with the possible excep-
tion of the lower bounds (2.5) all hypotheses of Lemma 2.8 are satisfied.

Proof: McShane’s theorem gives a global extension of ĉ(x,y) to Rn×Rn with
Lipschitz constant L. Let û be a ĉ-concave function. Then (2.4) expresses û as
the infimum of a family of Lipschitz functions of x, with |∇xĉ(x,y)| ≤ L. Ac-
cording to e.g. [81, §10.26], û is real-valued and has the same Lipschitz constant
L, since the alternative û := −∞ is not ĉ-concave. Now û is differentiable f -
a.e. by Rademacher’s theorem. Choose x0 ∈ dom∇û∩ int [conv [spt f ]]. Recall
ĉ(x0,y) − û(x0) − ûĉ(y) ≥ 0 from (2.4). Suppose y0 ∈ spt ν̂ produces equal-
ity. Our non-negative function then attains a local minimum with respect to
both variables, so 0 ∈ Rn is a subgradient of ĉ(x,y0) − û(x) at x0. Since
x0 ∈ dom∇û, it follows that −∇û(x0) is a subgradient for h(x) := ĉ(x,y0)
at x0 6= ∞̂. Now h(x) is also superdifferentiable, so its derivative exists and
∇xĉ(x0,y0) = ∇û(x0). If y0 = ∞̂ we have ∇xĉ(x0,y0) = 0 from (2.1). Thus
∇û(x0) 6= 0 implies y0 ∈ spt g, in which case the injectivity hypothesis (2.16)
determines y0 ∈ spt g uniquely in terms of û and x0. On the other hand, if
∇û(x0) = 0 we can only have y0 ∈ {∞̂} = spt ν̂ \ spt g by the non-vanishing
restriction on ∇xc. Either way, y0 is uniquely determined, so the hypotheses
of Lemma 2.8 are verified. QED.

Example 2.10 (Square distance). Taking c(x,y) = |x − y|2/2, the
condition (2.16) for uniqueness becomes that f vanish a.e. on spt g. In par-
ticular, the mass distributions f and g must be mutually singular. Some such
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condition is obviously necessary, as the example f = g = χΩ with m < vol [Ω]
shows. When spt f is separated from spt g by a positive distance, (2.9) becomes
an interior ball condition for the active sets U and V . The bounds (2.5) hold
whenever f and g have finite second moments.

Corollary 2.11 (Lagrange multiplier for transport amount).

Take f, g and c as in Lemma 2.3. Suppose for each λ the optimizer γλ ∈
Γ≤(f, g) in (1.8) is unique. Then λ −→ γλ is a weak-∗ continuous curve
in C∞(Rn × Rn)∗ and −Cλ(γλ) is a convex differentiable function of λ ∈ R
whose slope −dCλ(γλ)/dλ = m(λ) := γλ[Rd ×Rd] ranges continuously from
m(−∞) = 0 to m(∞) = min {‖f‖L1 , ‖g‖L1}. Each distinct slope m(λ) = m(λ′)
corresponds to a unique measure γλ = γλ′. The extremal slopes are attained
for finite λ if c(x,y) is bounded on spt f × spt g.

Proof: Define Cλ(f, g) := Cλ(γλ). Let us first argue the weak-∗ continuity of
the curve λ −→ γλ of optimal measures. The chain of ineqaulities

Cλ(γλ+δ)− δm(λ+ δ) = Cλ+δ(f, g)

≤Cλ+δ(γλ) = Cλ(f, g)− δm(λ)

shows that as δ → 0, the energy Cλ(γλ+δ) converges to its minimum value
Cλ(f, g). Since our curve lies in the compact set Γ≤(f, g) of Lemma 2.2, every
sequence δ(n) → 0 admits a convergent subsequence γλ+δ(n(k)) → γ∞. The
lower semi-continuity of the same lemma guarantees γ∞ is a minimizer, hence
γ∞ = γλ by our uniqueness hypothesis. This shows continuity of the curve of
measures at λ ∈ R. As remarked at the conclusion of the proof of Lemma 2.2,
the mass functional Γ≤(f, g) −→ γ[Rn×Rn] is weak-∗ continuous, so we have
continuity of m(λ) as well.

Formulas (1.7)–(1.8) express the minimal cost as an infimum of non-
increasing affine function Cλ(γ) of λ, hence Cλ(f, g) is concave non-increasing
on λ ∈ R. Writing the difference quotient in two ways,

−m(λ+ δ)≤ Cλ(γλ+δ)− Cλ(f, g)− δm(λ+ δ)
δ

=
Cλ+δ(f, g)− Cλ(f, g)

δ

=
Cλ+δ(f, g)− Cλ+δ(γλ)− δm(λ)

δ
≤ −m(λ)

the limit δ → 0 shows the continuous function −m(λ) to be the slope of
Cλ(f, g).

If the same slope m(λ) = m(λ+ δ) is attained for two different Lagrange
multipliers λ 6= λ + δ, this means that the corresponding optimizers γλ and
γλ+δ have the same mass. From Cλ(γλ) ≤ Cλ(γλ+δ) and Cλ+δ(γλ+δ) ≤ Cλ+δ(γλ)
they must also have the same cost:

∫
c dγλ =

∫
c dγλ+δ. But then the last two
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inequalities become equalities, and the hypothesized uniqueness of minimizer
for Cλ(·) implies γλ+δ = γλ.

If the function c(x,y) is bounded, then taking λ negative enough ensures
c(x,y) − λ > 0, so the infimum (1.8) is attained by γλ = 0. Similarly, taking
λ positive enough so c(x,y)− λ < 0 ensures m(λ) = min {‖f‖1, ‖g‖1}: unless
equality holds in f1 ≤ f or g1 ≤ g, Corollary 2.4 contradicts c(x0,y0) < λ.
If c(x,y) is unbounded, then given any ε > 0, taking R > 0 sufficiently large
ensures both f and g have mass less than ε outside the ball BR(0) ⊂ Rn.
Taking λ extreme enough we can force c(x,y) − λ to have the sign of our
choice on BR(0) × BR(0). A positive sign ensures m(λ) < ε while a negative
sign ensures m(λ) + ε > min {‖f‖1, ‖g‖1}. QED.

3. Monotone expansion of active regions

Given distributions 0 ≤ f, g ∈ L1(Rn) of compact support and a con-
tinuous cost function c(x,y), let γλ denote the minimizer of the constrained
optimization problem (1.8); clearly γλ minimizes transportation costs among
all transfer schemes which transport massm(λ) = γλ[Rn×Rn] from f to g. We
turn now to showing that the marginals fλ ≤ f and gλ ≤ g of γλ ∈ Γ(fλ, gλ)
depend monotonically on λ ∈ R, or equivalently (by results of the preceding
section) on the amount m = m(λ) of mass transferred.

It is convenient to address this question for discrete measures µ, ν ≥ 0
on Rn, which approximate the desired distributions in the continuum limit
µ → f and ν → g. Given finite sets X ⊂ Rn and Y ⊂ Rn with cardinality
P = #(X) and Q = #(Y ), let us therefore consider the problem of choosing
M ≤ min {P,Q} distinct points {x1, . . . ,xM} ⊂ X and M distinct points
{y1, . . . ,yM} ⊂ Y , which minimize the sum

M∑
i=1

c(xi,yi)

among such choices. Letting ΓM≤ (µ, ν) ⊂ Γ≤(µ, ν) denote the set of mass
M = γ[Rn×Rn] joint measures whose left and right marginals are dominated
by µ and ν respectively. Given

(3.1) µ =
∑
x∈X

δx and ν =
∑
y∈Y

δy,

the problem described above is equivalent to finding an extremal measure γM =∑M
i=1 δ(xi,yi) in ΓM≤ (µ, ν) which minimizes Cλ(γ) among such choices. Our first

proposition asserts that the marginals of γM depend monotonically on M .

Proposition 3.1 (Discrete monotonicity of active region). Fix
disjoint sets X ⊂ Rn and Y ⊂ Rn of finite cardinality P = #(X) and
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Q = #(Y ) and the corresponding discrete measures (3.1). For each integer
M ≤ min {P,Q}, let ΓMext denote the set of extremal measures in ΓM≤ (µ, ν)
which minimize Cλ(γ). Fix γM ∈ ΓMext and denote its marginals by µM and
νM . If M < min {P,Q} there exists γM+1 ∈ ΓM+1

ext with µM+1 ≥ µM and
νM+1 ≥ νM ; similarly, if M > 0 there exists γM−1 ∈ ΓM−1

ext whose marginals
µM−1 ≤ µM and νM−1 ≤ νM are dominated by those of γM .

Proof: Fix γM ∈ ΓMext and γM+1 ∈ ΓM+1
ext for M < min {P,Q}. Let µM and

νM denote the left and right marginals of γM , and XM := sptµM , YM :=
spt νM and JM := spt γM their respective supports. Extremality of γM in
ΓM≤ (µ, ν) implies γM [(x,y)] = 1 for all (x,y) ∈ JM , or equivalently γM =∑

(x,y)∈JM δ(x,y). Since µ[x] = 1 for each x ∈ sptµ, we conclude both XM and
YM have M points.

By induction on the number of points in (XM \XM+1) ∪ (YM \ YM+1),
we shall show it is possible to construct γ′ ∈ ΓM+1

ext whose marginals dominate
those of γM , and γ ∈ ΓMext whose marginals are dominated by those of γM+1.

If the set named above is empty, we take γ = γM and γ′ = γM+1 and are
done. The inductive hypothesis asserts that γ and γ′ exist provided (XM \
XM+1) ∪ (YM \ YM+1) has less than j points. Let us therefore assume that
(XM \XM+1) ∪ (YM \ YM+1) has precisely j > 0 points.

We define a successor function σ : XM ∪ YM+1 −→ XM+1 ∪ YM by
σ(x) = y if (x,y) ∈ JM and σ(y) = x if (x,y) ∈ JM+1. This function is
well-defined since X and Y are disjoint. It is injective and surjective, since
σ−1(y) := x if (x,y) ∈ JM and σ−1(x) := y if (x,y) ∈ JM+1 gives a well-
defined inverse to σ. Notice that orbits of σ partitionXM∪XM+1∪YM∪YM+1

into equivalence classes. Those orbits which are not periodic have length less
than 4M + 2, and can only start in (XM \XM+1) ∪ (YM+1 \ YM ) and end in
(XM+1 \XM ) ∪ (YM \ YM+1).

Since j > 0, the set (XM \ XM+1) ∪ (YM \ YM+1) is non-empty. So σ
has at least one orbit which is not periodic and is distinguished by the fact
that it either starts in XM \XM+1 or ends in YM \ YM+1 (or both). Notice
the elements of this (and all) orbits of σ alternate between X and Y . We will
separate our discussion into two cases depending on whether the distinguished
orbit consists of an even or odd number of elements. If the distinguished orbit
has 2k+1 elements, then it starts in XM \XM+1 and ends in XM+1 \XM , or
else it starts in YM+1 \ YM and ends in YM \ YM+1 — a case which can be
handled similarly (by symmetry). Assuming the former without loss of gen-
erality, the orbit consists of a sequence of points x1,y1,x2,y2, . . .xk,yk,xk+1,
with (xi,yi) ∈ JM for 1 ≤ i ≤ k and (xi+1,yi) ∈ JM+1 for each 1 ≤ i ≤ k.
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Then xk+1 ∈ XM+1 \XM is not represented in γM , whose optimality implies

k∑
i=1

c(xi,yi) ≤
k∑
i=1

c(xi+1,yi).

The reverse inequality follows from optimality of γM+1 since the orbit starts
with a point x0 ∈ XM \XM+1 not present in γM+1. This shows the measures
γ+ ≤ γM and γ− ≤ γM+1 defined by

γ+ :=
k∑
i=1

δ(xi,yi) and γ− :=
k∑
i=1

δ(xi+1,yi)

have the same right marginals and the same cost; their left marginals differ by
δx0 − δxk+1 — the points which appear in XM and XM+1 respectively, but not
both. Thus γ := γM + γ− − γ+ ∈ ΓMext and γ′ := γM+1 + γ+ − γ− ∈ ΓM+1

ext .
Moreover, spt γ \ JM+1 has j − k points, so the inductive hypothesis yields an
element of ΓMext whose marginals are dominated by those of γM+1. Similarly,
JM \ spt γ′ has j − k points, so induction again yields an element of ΓM+1

ext

whose marginals dominate those of γM .
We turn now to the case that the distinguished orbit has an even number

2k of elements, with k ≥ 1 as before. In this case the orbit consists of a sequence
of points x1,y1,x2,y2, . . .xk,yk starting with x1 ∈ XM \ XM+1 and ending
with yk ∈ YM \ YM+1. Here (xi,yi) ∈ JM for all 1 ≤ i ≤ k and (xi+1,yi) ∈
JM+1 for 1 ≤ i < k, so the orbit includes one fewer couplet from JM than
from JM+1. Since #(JM+1) > #(JM ), at least one orbit of σ has more
couplets from JM+1 than from JM ; it must begin in YM+1 \ YM and end in
XM+1 \XM , thus consisting of a sequence of points y′0,x

′
1,y1′ , . . . ,x′`,y

′
`,x

′
`+1

of length 2` + 2, with (x′i,y
′
i) ∈ JM if 1 ≤ i ≤ `, and (x′i+1,y

′
i) ∈ JM+1 for

0 ≤ i ≤ `. Here ` ≥ 0. Optimality of γM implies

k∑
i=1

c(xi,yi) +
∑̀
i=1

c(x′i,y
′
i) ≤

k−1∑
i=1

c(xi+1,yi) +
∑̀
i=0

c(x′i+1,y
′
i),

while the reverse inequality follows from optimality of γM+1. This shows the
measures γ+ ≤ γM and γ− ≤ γM+1 defined by

γ+ :=
k∑
i=1

δ(xi,yi) +
∑̀
i=1

δ(x′i,y′i) and γ− :=
k−1∑
i=1

δ(xi+1,yi) +
∑̀
i=0

δ(x′i+1,y
′
i)

again have the same cost; their left marginals differ by δx1 − δx′`+1
and their

right marginals by δyk − δy′0 . Once again we find γ := γM + γ− − γ+ ∈ ΓMext
and γ′ := γM+1 + γ+ − γ− ∈ ΓM+1

ext . Moreover, spt γ \ JM+1 has j − k − `

points, so the inductive hypothesis yields an element of ΓMext whose marginals
are dominated by those of γM+1. Similarly, JM \ spt γ′ has j− k− ` points, so
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induction again yields an element of ΓM+1
ext whose marginals dominate those of

γM . This establishes the proposition. QED.

To address densities f, g ∈ L1(Rn) with respect to Lebesgue, let Γm≤ (f, g) ⊂
Γ≤(f, g) denote the joint measures γ ≥ 0 of total mass m = γ[Rn×Rn] whose
marginals are dominated by f and g. We shall need to recall two elementary
lemmas from functional analysis. Let C∞(Rn) denotes the Banach space of
continuous functions which tend to zero at ∞ equipped with the supremum
norm. Its dual C∞(Rn) consists of measures with finite total mass, normed by
total variation.

Lemma 3.2 (Compactness). Fix a sequence of joint measures γk ∈
Γmk

≤ (µk, νk). Suppose the marginal bounds µk ≥ 0 and νk ≥ 0 converge weak-∗
in C∞(Rn)∗ to respective limits µ and ν as k → ∞. If µk[Rn] → µ[Rn] and
νk[Rn] → ν[Rn], then a subsequence of γk converges weak-∗ in C∞(Rn×Rn)∗

to some limit γ ∈ Γ≤(µ, ν). Moreover, the marginals and mass of γk converge
weak-∗ to those of γ.

Proof: Fix sequences γk, µk → µ and νk → ν satisfying the hypotheses of the
lemma. Let Rn denote the one point compactification of Rn. Let µ̂ denote
the extension of µ to Rn which vanishes on infinity, and γ̂k the extension of γk
to Rn ×Rn which vanishes on both {∞}×Rn and Rn×{∞}. It follows that
µ̂k and ν̂k are the marginals of γ̂k. Since any continuous function ξ ∈ C(Rn)
can be decomposed as a constant plus ξ− ξ(∞) ∈ C∞(Rn), we deduce µ̂k → µ̂

and ν̂k → ν̂ from the hypothesized conservation of mass µk[Rn] → µ[Rn] and
νk[Rn] → ν[Rn].

Choose a uniform bound R for the total variation of the measures µk and
νk (and hence γk). The ball of radius R in the dual space C(Rn ×Rn)∗ is
compact by the Banach-Alaoglu theorem. The weak-∗ topology is metrizable
on this ball, so the sequence γ̂k admits a weak-∗ convergent subsequence. We
abandon the original sequence and denote the convergent subsequence by γ̂k →
γ̂. Since 1 ∈ C(Rn) ⊂ C(Rn ×Rn), the marginals and mass of γ̂k converge to
those of γ̂.

We need to check that γ̂ assigns no mass to infinity. Let πi#(γ̂) denote
the marginals of γ̂, where π1(x,y) = x and π2(x,y) = y. Taking k → ∞ in
the hypotheses π1

#(γ̂k) ≤ µ̂k yields π1
#(γ̂) ≤ µ̂, and π2

#(γ̂) ≤ ν̂ similarly. Since
µ̂[{∞}] = 0 = ν̂[{∞}], we conclude γ̂ vanishes on {∞} ×Rn and Rn × {∞}.

Weak-∗ convergence of γk to the restriction γ of γ̂ to Rn×Rn follows from
C∞(Rn × Rn) ⊂ C(Rn ×Rn), as does weak-∗ convergence of the marginals
πi#(γk) → πi(γ) = πi(γ̂) from C∞(Rn) ⊂ C(Rn ×Rn). Thus γ ∈ Γ≤(µ, ν) as
desired, and γ[Rn × Rn] = γ̂[Rn × Rn] is the limit of the masses of the γk.
QED.
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Lemma 3.3 (Optimality survives limits). Let µk, νk ≥ 0 be mea-
sures which converge weak-∗ to f, g ∈ L1(Rn), with µk[Rn] → ‖f‖L1 and
νk[Rn] → ‖g‖L1 as k →∞. Take ck(x,y) continuous converging uniformly to
c0 ∈ C∞(Rn ×Rn), and γk → γ0 weak-∗ with mk := γk[Rn ×Rn] ≤ m0. If γk
minimizes the associated cost function Ck0 (γ) on Γmk

≤ (µk, νk) for each k ≥ 1,
then γ0 minimizes C0

0(γ) on Γm0
≤ (f, g).

Proof: Take γk ∈ Γmk

≤ (µk, νk) converging weak-∗ to γ0 and ck → c0 ∈
C∞(Rn ×Rn) uniformly as hypothesized. Then mk → m0 := γ0[Rn ×Rn] by
the preceding lemma. For each γ̃ ∈ Γm0

≤ (f, g) we claim C0
0(γ̃) ≥ C0

0(γ0). We
assume f and g are non-zero since otherwise there is nothing to prove.

Define dµ0(x) := f(x)dx and dν0(y) := g(y)dy and probability measures
µ̂k = µk/µk[Rn] and ν̂k = νk/νk[Rn] for each k ≥ 0. By Brenier’s theorem
[12], there exist convex functions ψk and φk : Rn −→ ]−∞,∞] such that
∇ψk#µ̂0 = µ̂k and ∇φk#ν̂0 = ν̂k. Shifting ψk by a constant depending on k

allows us to extract a subsequence which converges pointwise a.e. to a convex
limit ψ : Rn −→ ]−∞,∞] finite at some Lebesgue point of f . It follows that
∇ψk → ∇ψ a.e. on domψ. Since ∇ψk → ∞ outside domψ, tightness of the
measures µ̂k → µ̂0 implies µ̂0[domψ] = 1, and ∇ψ#µ̂0 = µ̂0 by Lebesgue’s
dominated convergence theorem. The convex gradient mappings of Brenier’s
theorem are unique, so we conclude ∇ψ(x) = x f -a.e. Similarly, ∇φk →
∇φ = id g-a.e. for a further subsequence. Given γ̃ ∈ Γm0

≤ (f, g), observe γ̃k :=
(∇ψk × ∇φk)#(γ̃) belongs to Γm0

≤ (µk, νk). Optimality of γk ∈ Γmk

≤ (µk, νk)
implies Ck0 (γk) ≤ (mk/m0)Ck0 (γ̃k) since mk ≤ m0. We plan to take the limit
k →∞.

First observe γ̃k → γ̃ weak-∗; indeed ξ(x,y) bounded and continuous
implies ∫

Rn×Rn

ξ dγ̃k =
∫
Rn×Rn

ξ(∇ψk(x),∇φk(y)) dγ̃(x,y)

→
∫
Rn×Rn

ξ dγ̃

as k →∞ by the dominated convergence theorem. Taking ξ = c0 ∈ C∞(Rn ×
Rn) yields∫

Rn×Rn

c0 d(γ0 − γ̃) = lim
k→∞

∫
Rn×Rn

c0 d(γk −mkγ̃k/m0)

= lim
k→∞

∫
Rn×Rn

ck d(γk −mkγ̃k/m0)

≤ 0.

Here the uniform convergence ck → c0 has been used, and a bound on the
masses mk → m0. Thus C0

0(γ0) ≤ C0
0(γ̃) as desired. QED.
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Theorem 3.4 (Monotone expansion of active regions). Fix 0 ≤
f, g ∈ L1(Rn) compactly supported and a continuous cost c(x,y) on Rn×Rn.
Let Γmopt denote the minimizers of C0(γ) among joint measures γ ∈ Γm≤ (f, g)
of mass m ≥ 0. There is a curve m ∈ [0,min {‖f‖L1 , ‖g‖L1}] −→ γm ∈ Γmopt
along which the left and right marginals of γm+ε dominate those of γm whenever
ε > 0. Moreover, each measure γ ∈ Γmopt with C0(γ) <∞ lies on such a curve.

Proof: Suppose γ̃ ∈ Γm̃opt has finite cost for some m̃ ≤ mmax. We shall
construct a curve γm ∈ Γmopt whose marginals increase with m ∈ [0,mmax] and
which passes through γ̃. Recall that the convex set Γm≤ (f, g) is weak-∗ compact,
as a consequence of Lemma 3.2. It costs no generality to assume γ̃ is an exposed
point of Γm≤ (f, g): if γ̃ is not an exposed point, it can be weak-∗ approximated
by a linear combination of exposed points using the Krein-Milman theorem.
The same linear combination of curves through these exposed points will pass
arbitrarily close to γ̃. Taking a subsequential limit of these curves on rational
points in [0,mmax], allows the desired curve to be constructed following the
procedure below. We do not claim continuity of this curve.

Since γ̃ is an exposed point of Γm≤ (f, g), there is a cost function c̃ ∈
C∞(Rn × Rn) tending to zero at infinity whose integral C̃0(γ) against γ ∈
Γm≤ (f, g) is uniquely minimized at γ̃. Then γ̃ also minimizes (1 − t)C0 + tC̃0

on Γm≤ (f, g) uniquely. Suppose for each t = 1/k, we can construct a curve γmk
minimizing (1 − t)C0 + tC̃0 on Γm≤ (f, g), with marginals depending monoton-
ically on m ∈ [0,mmax] and passing through γ̃. Letting k → ∞, a weak-∗
subsequential limit of these curves at m̃ and the rational points of [0,mmax]
allows the desired curve γm through γ̃ to be constructed.

From the foregoing, it costs no generality to establish the theorem assum-
ing γ̃ minimizes C0(γ) uniquely on Γm≤ (f, g). Let [[λ]] denote the integer part
of any real number λ ∈ R. As in [56, Lemma 7], it is possible to find sequences

µk =
1
2k

[[2k‖f‖1]]∑
i=1

δxki and νk =
1
2k

[[2k‖g‖1]]∑
j=1

δykj

of discrete measures which converge sub-sequentially µk → f(x)dx and νk →
g(y)dy in the weak-∗ sense as k → ∞. By displacing them slightly, we may
take all points xki and ykj to be distinct for each given k. It costs no generality
to suppose they are all contained in a bounded set Ω independent of k; also,
we can multiply the cost c by a cutoff function outside of Ω× U so it belongs
to C∞(Rn × Rn0. Using Proposition 3.1, we find a measure γ

M/2k

k which
minimizes C0(γ) on ΓM (µk, νk) and whose marginals satisfy µM/2k

k ≥ µ
(M−1)/2k

k

and ν
M/2k

k ≥ ν
(M−1)/2k

k inductively for each integer M ∈ [1, 2kmmax]. Using
a diagonal process, we find a subsequence k → ∞ such that the measures γmk
converge weak-∗ to a limit γm on each dyadic rational m = M/2j in [0,mmax].
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By Lemmas 3.2 and 3.3, the limit measure γm ∈ Γmopt inherits optimality, and
its marginals are dominated by those of γm+ε whenever 0 < m < m+ε ≤ mmax

are dyadic rationals. If m ∈ [0,mmax] is not a dyadic rational, we use Lemma
3.2 to find a sequence of dyadic rationals m(i) increasing to m, for which the
measures γm(i) converge, and define γm as their weak-∗ limit. Again γm ∈ Γmopt
by Lemma 3.3. Since the marginals of γm(i) are dominated by those of γm(i)+ε(i)

for ε(i) ≥ 0 dyadic, Lemma 3.2 implies the same is true in the limit ε(i) → ε.
The theorem is now complete since the curve γm passes through Γm̃opt = {γ̃}.
QED.

4. Monge-Ampère double obstacle problem

Given 0 ≤ f, g ∈ L1(Rn) and obstacle functions h and k : Rn −→ R, one
may ask whether it is possible to find a convex function ψ : Rn −→ ]−∞,∞]
such that

(4.1) g(∇ψ(x)) det
[
D2ψ(x)

]
= f(x) on Uψ := {x ∈ Rn | ψ(x) > h(x)}.

Without boundary conditions, this problem is severely under-determined. We
claim the following auxiliary conditions on its Legendre transform ψ∗ (1.11)
resolve the degeneracy:
(4.2)

∇ψ(Uψ) ⊂ Vψ := {y ∈ Rn | ψ∗(y) > k(y)} and
∫
Vψ

g(y) dy =
∫
Uψ

f(x) dx.

As the obstacles are removed, h, k → −∞, this problem converges to the
familiar Monge-Ampère second boundary value problem. To see it remains well-
determined with obstacles present, we introduce a notion of weak-∗ solution
motivated by Brenier [12].

Definition 4.1 (Weak-∗ solutions to Monge-Ampère obstacle).

Fix 0 ≤ f, g ∈ L1(Rn) and Lipschitz obstacles h and k : Rn −→ R. A convex
function ψ : Rn −→ ]−∞,∞] is a weak-∗ solution to (4.1)–(4.2) if its gra-
dient pushes fχUψ forward to gχVψ . In other words, each Borel test function
ξ : Rn −→ R must verify

(4.3)
∫
{x|ψ(x)>h(x)}

ξ(∇ψ(x))f(x) dx =
∫
{y|ψ∗(y)>k(y)}

ξ(y)g(y) dy.

Remark 4.2 (Exchange symmetry). A convex function ψ is a weak-
∗ solution to the Monge-Ampère obstacle problem (4.1)–(4.2) if and only if
its Legendre transform ψ∗ solves the corresponding problem with data f ↔ g

and obstacles h↔ k interchanged: ∇ψ#(fχUψ) = gχVψ implies ∇ψ∗#(gχVψ) =
fχUψ by [56, Remark 16].
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Theorem 4.3 (Obstacle problem via optimal partial transfer).

Fix 0 ≤ f, g ∈ L1(Rn) compactly supported and two superdifferentiable, locally
Lipschitz obstacles h and k : Rn −→ R, with the property that f vanishes a.e.
on ∇h−1(spt g) and g vanishes a.e. on ∇k−1(spt f). Then (4.1)–(4.2) admits
a weak-∗ solution ψ. Moreover both Uψ and ∇ψ are uniquely determined up to
sets of f measure zero, and γψ := (id×∇ψ)#(fχUψ) uniquely minimizes (1.8)
for the cost c(x,y) := h(x)− 〈x, y〉+ k(y) with λ = 0.

Proof: Define c(x,y) := h(x) − 〈x, y〉 + k(y), and notice that the map
y ∈ spt g −→ ∇xc(x0,y) = ∇h(x0) − y is injective and non-vanishing for
x0 ∈ (dom∇h) \ ∇h−1(spt g). It is now easy to check that all hypotheses of
Proposition 2.9 are satisfied — including the existence of integrable bounds
(2.5). Thus the partial transfer problem (1.8) has a unique solution for λ = 0.
Let us use this to deduce that the weak-∗ solution ψ to the Monge-Ampère
obstacle problem, if it exists, is unique. We claim γψ := (id × ∇ψ)#(fχUψ)
coincides with the minimizer γ from (2.13). Since this minimizer γ ∈ Γ≤(f, g)
is unique, and γ ∈ Γ(f1, g1) for some f1 ≤ f and g1 ≤ g, the above claim
implies fχUψ = f1 and gχVψ = g1, whence Uψ := {ψ > h} is unique up to a set
where f vanishes, and ∇ψ is the unique convex gradient pushing f1 forward
to g1 [56].

To see that γψ minimizes (1.8), start with Young’s inequality (6.2)

〈x, y〉 − h(x)− k(y) ≤ [ψ(x)− h(x)] + [ψ∗(y)− k(y)],

noting that equality holds when y = ∇ψ(x). Setting −u = [ψ − h]+ and
−v = [ψ∗ − k]+ yields

(4.4) −c(x,y) ≤ −u(x)− v(y),

and we still have equality when y = ∇ψ(x) provided x ∈ Uψ and y ∈ Vψ.
Since Vψ has full measure for gχVψ = ∇ψ#(fχUψ), it follows that ∇ψ−1(Vψ)
has full measure for fχUψ . Thus integrating γψ = (id ×∇ψ)#(fχUψ) against
(4.4) yields∫

Rn×Rn

c(x,y)dγψ(x,y) =
∫
Uψ∩∇ψ−1(Vψ)

c(x,∇ψ(x))f(x) dx

=
∫
Uψ

u(x)f(x) dx +
∫
Vψ

v(y)g(y) dy.

Since u(x) ≤ 0 and v(x) ≤ 0 become equalities outside Uψ × Vψ, the last
integrals can be extended to all of Rn. Having found a case of equality in
(2.13), we have conclude γψ is the desired minimizer.

On the other hand, to demonstrate existence of a weak-∗ solution to (4.1-
4.2), let us begin with a solution γ ∈ Γ(f1, g1) to the partial transfer problem
(1.8) coupled with the maximimizing pair of non-negative functions (u, v) =
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(û− û(∞̂), ûĉ + û(∞̂))|Rn×Rn from Corollary 2.7. The constraint

〈x, y〉 ≤ [h(x)− u(x)] + [k(y)− v(y)]

is satisfied for all x,y ∈ Rn, with equality on spt γ ⊂ ∂ĉû. Furthermore,
u(f−f1) = 0 and v(g−g1) = 0. Define the convex function ψ := (k−v)∗ ≤ h−u
using the Legendre transform (1.11), and notice that ψ∗ = (k − v)∗∗ ≤ k − v.
From (6.2)

〈x, y〉≤ψ(x) + ψ∗(y)
≤ [h(x)− u(x)] + [k(y)− v(y)],(4.5)

and equality holds on (x,y) ∈ spt γ. Thus spt γ ⊂ ∂ψ, which implies ∇ψ#f1 =
g1 and similarly ∇ψ∗#g1 = f1 [56, Proposition 10]. It remains to show f1 =
fχUψ and g1 = gχVψ to complete the proof of (4.3). Letting π(x,y) = x and
π′(x,y) = y, as in (4.5) we have ψ(x) ≤ h(x)− u(x) with equality on π(spt γ)
and ψ∗(y) ≤ k(y)− v(y) with equality on π′(spt γ). Thus ψ ≥ h holds f1-a.e.,
and ψ∗ ≥ k holds g1-a.e., since u, v ≤ 0. Moreover,

Uψ := {ψ > h}⊂{x ∈ Rn | u(x) < 0}
Vψ := {ψ∗ > k}⊂{y ∈ Rn | v(y) < 0}

Since (f−f1)u = 0, we conclude f−f1 ≤ fχRn\Uψ and fχUψ ≤ f1 ≤ fχ{ψ≥h}.
Finally we claim {x | ψ(x) = h(x)} is a set of f1 measure zero, so that fχUψ =
f1. At any point where {ψ = h} has full Lebesgue density, we have ∇ψ = ∇h
since ψ is subdifferentiable and h is assumed superdifferentiable. But this can
only happen on an f1 negligible set, since ∇ψ(x) ∈ spt g1 and ∇h(x) 6∈ spt g
elsewhere. A similar argument starting from gχVψ ≤ g1 ≤ gχ{ψ∗≥k} shows
gχVψ = g1. QED.

Example 4.4 (Square Distance). Parabolic obstacles h(x) = (|x|2 −
λ)/2 and k(y) = (|y|2 − λ)/2 correspond to the quadratic cost c(x,y) = |x −
y|2/2− λ.

Corollary 4.5 (Quadratic Obstacles). Fix h(x) = k(x) = (|x|2 −
λ)/2 and λ > 0. If a convex function ψ : Rn −→ R satisfies the constraints
h ≤ ψ ≤ h + λ, so will its Legendre transform. Defining non-contact sets
Uψ := {x | h < ψ}, Aψ := {x | ψ < h+ λ} and Wψ := Uψ ∩ Aψ then yields
Uψ∗ = Aψ and Wψ = Wψ∗. If g vanishes outside Uψ and f vanishes outside Aψ,
and ∇ψ#(fχWψ

) = gχWψ, then ψ is a weak-∗ solution to the Monge-Ampère
obstacle problem (4.3). Moreover, the hypotheses of Theorem 4.3 imply at least
one weak-∗ solution satisfies all these additional constraints.

Proof: To begin, assume a convex function ψ satisfies h ≤ ψ ≤ h + λ. Since
h∗ = h+ λ, taking Legendre transforms yields h+ λ ≥ ψ∗ ≥ h. We also claim
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that the equations ψ(x) = h(x) +λ and ψ∗(x) = h(x) have the same solutions
x ∈ Rn. If either equation holds, then x = ∇ψ(x) ∈ ∂ψ(x). The case of
equality in (6.2) then yields |x|2 = ψ(x)+ψ∗(x). Substituting ψ(x) = h(x)+λ
gives ψ∗(x) = h(x) and conversely, completing the proof that Aψ = Uψ∗ . Now
Wψ = Uψ∗ ∩ Uψ =: Wψ∗ is clear.

Assume in addition that ∇ψ#(fχWψ
) = gχWψ

, while g vanishes outside
Uψ and f vanishes outside Aψ. Then fχUψ = fχWψ

and gχAψ = gχWψ
, so ψ

verifies our definition ∇ψ#(fχUψ) = gχUψ∗ of weak-∗ solution to the Monge-
Ampère obstacle problem.

To show a solution exists satisfying these extra constraints, let ψ̃ be the
weak-∗ solution provided by Theorem 4.3; i.e., a convex funtion — lower semi-
continuous after modifying its values on a negligle set — whose gradient pushes
fχUψ̃ forward to gχUψ̃∗ . As before, we use the notation Vψ := Uψ∗ for con-
venience. Thus ∇ψ̃(x) ∈ Vψ̃ ∩ spt g for f -a.e. x ∈ Uψ. Defining the convex
function φ := max {ψ̃∗, h}, we see φ(y) ≥ ψ̃∗(y) with equality on Uφ = Vψ̃.
Thus φ∗(x) ≤ ψ̃∗∗(x) = ψ̃(x) with equality if ∂ψ̃(x) intersects Vψ̃. The latter
inequality implies Uφ∗ ⊂ Uψ̃, while the cases of equality gives φ∗ coincident
with ψ̃ f -a.e. on Uψ̃. Thus Uψ̃ \ Uφ∗ has f measure zero, and ∇φ∗ = ∇ψ̃
holds f -a.e. on Uψ̃. We conclude φ∗ is a weak-∗ solution to the same Monge-
Ampère obstacle problem as ψ̃. By Remark 4.2, this is equivalent to asserting
that φ∗∗ = max {ψ̃∗, h} solves the same Monge-Ampère obstacle problem as
ψ̃∗. The symmetry f ↔ g then shows that ψ := max {φ∗, h} solves the same
Monge-Ampère obstacle problem as φ∗, and hence as ψ̃. We claim ψ is the
desired solution.

Obviously, h ≤ ψ from the definition, while ψ ≤ h+ λ follows from φ ≥ h

via φ∗ ≤ h∗. The corollary will be complete if we can prove f -vanishes outside
Aψ = Vψ and g vanishes outside Uψ. Notice x 6∈ Aψ implies ψ(x) = h(x) + λ

hence ∇ψ(x) = ∇h(x) = x. Thus ∇ψ coincides with the identity map on
Rn \ Aψ ⊂ Uψ, the inclusion following from λ > 0. Now [Rn \ Aψ] \ spt g
carries zero mass for gχVψ = ∇ψ#(fχUψ), hence zero mass for f . We conclude
f vanishes throughout Rn \Aψ, since it vanishes on spt g by the hypotheses of
the theorem.

By symmetry ∇ψ∗ pushes fχUψ∩Aψ forward to gχVψ , and the preceding
paragraph, applied to ψ∗ instead of ψ, shows g vanishes outside Uψ = Aψ∗ .
Thus ∇ψ#(fχWψ) = gχAψ = gχWψ

, concluding the proof of the corollary.
QED.

Remark 4.6 (Points outside active region are fixed). Note h ≤
ψ ≤ h+ λ, or equivalently ψ(x)− |x|2/2 ∈ [−λ/2, λ/2], forces the convex gra-
dient ∇ψ(x) = x to coincide with the identity map for a.e. x in the closed
contact set Rn \Wψ. Thus ∇ψ#(f + g(1− χWψ

)) = f(1− χWψ
) + g.
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5. Semiconcavity of free boundary

Let us return now to the constrained optimization problem of trans-
porting a fixed fraction m ≤ min{‖f‖L1 , ‖g‖L1} of the total available mass,
choosing the locations transported and supplied so as to minimize the special
cost c(x,y) := |x − y|2/2. In the preceding §4 this was demonstrated to be
equivalent to solving a Monge-Ampère obstacle problem (4.3) with obstacle
h(x) = k(x) := (|x|2 − λ)/2 for a suitable Lagrange multiplier λ ≥ 0. The
solution was unique if f vanishes a.e. on spt g, and takes the form of a convex
function ψ sandwiched between the parabolas h ≤ ψ ≤ h+ λ, whose gradient
on the active region Wψ := {h < ψ < h+ λ} pushes fχWψ

forward to gχWψ
.

We wish to investigate smoothness of the free boundary of the active region,
and of the map ∇ψ. Our first step is to show that ∂Wψ carries none of the
mass of either f or of g, under the simplifying assumption that a hyperplane
separates spt f from spt g. Negligibility of the boundary plays a techical role
in our subsequent arguments for differentiability of ψ and ∂Wψ, and can be
summarized philosophically by stating that almost every source and sink must
be either unambiguously active or unambiguously inactive, in the sense that it
has a whole neighbourhood belonging to one of the open sets Wψ or Rn \Wψ.
Since an interior ball condition was derived in Corollary 2.4–2.5, our start-
ing point will be a familiar lemma about unions of spheres — or equivalently,
suprema of half-spherical graphs.

Lemma 5.1 (Semiconvex suprema of hemispherical graphs). Fix
0 < δ < R0. Extend the hemispherical cap hR(X) =

√
R2 − |X|2 to Rn−1 by

setting hR(X) = −∞ if |X| ≥ R. If

(5.1) u(X) = sup
(Y,λ,R)∈A

[hR(X−Y)− λ]+,

where A ⊂ Rn−1 × [δ,∞] × [0, R0] and [λ]+ := max {λ, 0}, then u(X) +
δ−3R2

0|X|2/2 is convex on Rn−1.

Proof: Define

hδR(r) :=


√
R2 − r2 if r ≤

√
R2 − δ2

R2 − r
√
R2 − δ2

δ
if r ≥

√
R2 − δ2

and notice that hδR(r) + δ−3R2r2/2 is convex on r ∈ R, and hδR(|X|) ≥ hR(X)
with equality if hδR(|X|) ≥ δ. For λ ≥ δ we have [hR(X−Y)−λ]+ = [hδR(|X−
Y|)− λ]+. From (5.1),

u(X) +
R2

0|X|2

2δ3
= sup

(Y,λ,R)∈A
max

{
R2

0|X|2

2δ3
,
R2

0|X|2

2δ3
+ hδR(|X−Y|)− λ

}
expresses u(X) + δ−3R2

0|X|2/2 as a supremum of convex functions. QED.
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In the sequel, we denote the distance between two subsets U, V ⊂ Rn by

dist (U, V ) := inf
x∈U,y∈V

|x− y|.

Proposition 5.2 (Semiconcavity of the active domain). Fix 0 ≤
f, g ∈ L1(Rn) compactly supported, with spt f in the upper halfspace H =
Rn−1

+ := {(X, xn) ∈ Rn | xn > 0} and spt g in the lower halfspace Rn \ H.
Let ψ be a convex function satisfying the constraints h ≤ ψ ≤ h + λ, where
h(x) = (|x|2 − λ)/2. If ∇ψ#(fχWψ

) = gχWψ
on the noncontact set Wψ :=

{x ∈ Rn | 0 < ψ − h < λ}, there is a function u : Rn−1 −→ [0,∞) such that
the domain U+ := {(X, xn) ∈ Rn | xn < u(X)} differs from Wψ by a set of f
measure zero. Moreover, u(X)+δ−3R2|X|2/2 is convex on Rn−1, if |x−y| ≤ R

for all (x,y) ∈ spt f × spt g and δ = dist (spt g, ∂H).

Proof: By Theorem 4.3 and its corollary, γλ := (id × ∇ψ)#(fχWψ
) is the

unique minimizer of (1.8). Define the set U by (2.9). Then U is a union
of balls of radius at most R, centered at points y = (Y, λ) ∈ spt g at least
distance λ ≤ −δ into the lower halfspace. Therefore, U ∪ [Rn \ H] coincides
with a domain U+ := {(X, xn) ∈ Rn | xn < u(X)}, whose boundary is the
graph of a function u(X) of the form (5.1). Lemma 5.1 asserts convexity of
u(X) + δ−3R2|X|2/2.

It remains to show that U+ differs from Wψ by a set of f measure zero.
From its definition, U contains the projection π(spt γλ) under π(x,y) = x of
spt γλ. Thus U+ contains spt fχWψ

. Since we have just shown the boundary of
U+ to be a semiconvex graph, it has Hausdorff dimension n−1 and is negligible
with respect to f . Thus U+ contains the full mass of fχWψ

. On the other hand,
Corollary 2.4 asserts that U carries zero mass for f(1−χWψ

). The same is true
for U+, since spt f lies in the upper halfspace. Thus, apart from an f neglible
set, U+ = Wψ as desired. QED.

6. Partial transfer regularity and free boundary

Let us now return to our analysis of transporting that portion m ≤
min{‖f‖L1 , ‖g‖L1} of the total available mass which minimizes the special cost
c(x,y) := |x− y|2/2, we recall its equivalence to the Monge-Ampère obstacle
problem (4.3) with obstacles h(x) = k(x) := (|x|2 − λ)/2 for a suitable La-
grange multiplier λ > 0. The solution was essentially unique if f vanishes a.e.
on spt g, and for some λ ≥ 0 takes the form of a convex function ψ sandwiched
between the parabolas h ≤ ψ ≤ h + λ, whose gradient on the active region
Wψ := {h < ψ < h+ λ} pushes fχWψ

forward to gχWψ
. In Section §5 we saw

that when a hyperplane separates spt f from spt g, then Wψ is semiconcave.
Our goal for the next two sections will be to prove Hölder differentiability of
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ψ and ψ∗ on Wψ, and of the free boundary ∂Wψ itself. Differentiability is
deduced in the present section relying on [15]; Hölder estimates are postponed
to the next section. As a byproduct, we improve our uniqueness result to as-
sert that ψ is uniquely determined, and not merely up to additive constants
or almost everywhere; compare Corollary 6.4 to Theorem 4.3. We also deduce
that free boundary always maps to fixed boundary, and path-connectedness
of the active regions. Of course, all these results require additional convexity
and boundedness assumptions concerning the geometry of mass distributions
0 ≤ f, g ∈ L1(Rn):

Definition 6.1 (Data of convex support). The trio (f, g, h) of func-
tions on Rn consitute data of convex support if h(x) = k(x) := (|x|2 − λ)/2
for some λ ∈ R, and there exist bounded, strictly convex domains Ω ⊂ Rn and
Λ ⊂ Rn separated from each other by positive distance, such that 0 ≤ f = fχΩ

and 0 ≤ g = gχΛ with log f and log g bounded away from ±∞ on the respective
domains Ω and Λ.

Even with such assumptions, we cannot expect the free regions Wψ∩Ω and
Wψ∗ ∩ Λ to be convex. However, since ∇ψ(x) = x coincides with the identity
outside Wψ, it was noted at Remark 4.6 that ∇ψ#(f + g(1 − χWψ

)) = f(1 −
χWψ

) + g. The target measure g = gχΛ is assumed to be bounded above and
below on the convex set Λ, so we shall presently be able to invoke Caffarelli’s
interior regularity theory [15] to deduce local regularity on the relevant domain
for the complete transfer problem ∇ψ#(fχWψ

+ g(1 − χWψ
)) = g. Recall the

results of that theory:

Theorem 6.2 (Map to a convex target is locally smooth [15]).

Fix f = fχΩ and g = gχΛ nonnegative, where Ω ⊂ Rn and Λ ⊂ Rn are open
and Λ is convex. Here | log f | and | log g| are assumed to be bounded on Ω and
Λ respectively, and to satisfy (1.1). If ψ : Rn −→ ]−∞,∞] is convex with
gradient pushing f forward to g, then ψ is C1,α

loc (Ω) smooth and strictly convex
on Ω [15]. If f and g are Hölder continuous where positive, Caffarelli goes
on to assert ψ ∈ C2,α

loc (Ω) for some α > 0. Smoother f and g imply further
regularity of u via standard elliptic theory [44].

In the next theorem we improve this result slightly, by using strict con-
vexity of the domains to deduce continuity of the map up to the boundary,
including the free boundary in the partial mass transfer problem, or equiva-
lently the Monge-Ampère double obstacle problem. We derive differentiability
of the free boundary at the same time. As corollaries to the proof, we obtain
a strengthened uniqueness result, and observe that the free boundary of Wψ

in Ω is a C1 hypersurface, along which the transportation map displaces only
in the perpendicular direction.



28 LUIS A. CAFFARELLI AND ROBERT J. MCCANN

Let us first recall the subdifferential of a convex function ψ : Rn −→
]−∞,∞] defined by

∂ψ := {(x,y) ∈ Rn ×Rn | ψ(z) ≥ ψ(x) + 〈y, z− x〉 for all z ∈ Rn}.

It consists of the (point,slope) pairs which parameterize supporting hyper-
planes to graph(ψ). For x ∈ X ⊂ Rn, we also write ∂ψ(x) := {y ∈ Rn | (x,y) ∈ ∂ψ}
and ∂ψ(X) := ∪x∈X∂ψ(x); thus ∂ψ(x) = {∇ψ(x)} at a point x ∈ dom∇ψ of
differentiability. Any pair of points (x,y), (x′,y′) ∈ ∂ψ satisfy the monotonic-
ity condition

(6.1) 〈x− x′, y − y′〉 ≥ 0,

a relation which we shall often have use for. An important connection between
ψ and its Legendre transform ψ∗ (1.11) is given by Young’s inequality

(6.2) ψ(x) + ψ∗(y) ≥ 〈x, y〉,

in which equality holds if and only if (x,y) ∈ ∂ψ. When ψ is lower semi-
continuous as well as convex, then ψ∗∗ = ψ, and (x,y) ∈ ∂ψ is equivalent to
(y,x) ∈ ∂ψ∗. We use the notation int [X] and X to denote the interior and
closure, respectively, of a set X ⊂ Rn.

Theorem 6.3 (Optimal homeomorphism between active regions).

Fix data of convex support (f, g, h = k), and a weak-∗ solution ψ to the obstacle
problem (4.3). If Uψ := {x ∈ Rn | ψ > h}, then some ψ̃ ∈ C1(Rn) ∩ C1,α

loc (Ω ∩
Uψ) agrees with ψ on Ω∩Uψ and with h∗ on Λ\Uψ∗, and ∇ψ̃(Rn) = Λ. Further-
more, ∇ψ̃ : Ω ∩ Uψ −→ Λ ∩ Uψ∗ is a homeomorphism, where Ω := int [spt f ]
and Λ := int [spt g] are the convex domains of f and g. Hölder continuity of f
on Ω and g on Λ imply ψ ∈ C2,α

loc (Ω ∩ Uψ).

Proof: The theorem is proved in two parts. First we establish the conclusion
for a particular weak-∗ solution ψ to the double obstacle problem. Then in
Corollary 6.4, we deduce that no other solutions exist, concluding the theorem
as stated. Let us begin with an elementary observation:

Claim #1: Given three domains Ω, U,W ⊂ Rn, if Ω ∩ ∂U is a locally
Lipschitz submanifold and Ω intersects U∆W := (U \W ) ∪ (W \ U) in a set
of zero volume, then W ∩ Ω ⊂ U .

Proof of claim: Every ball Bε(x) ⊂ W ∩ Ω intersects U in a set of full
volume, so x ∈ U . However, x 6∈ ∂U since the Lipschitz boundary of U would
divide the ball into two subsets of positive volume one of which lies outside of
U . This forces x ∈ U . End of claim.

Now let Ω and Λ ⊂ Rn denote the bounded strictly convex domains whose
closures form disjoint sets spt f and spt g, and note f(x) dx and g(y) dy are
mutually absolutely continuous with respect to Lebesgue on the domains Ω and
Λ respectively. Use invariance of the problem under rigid motions to choose
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coordinates so that Ω and Λ are strictly separated by the boundary of the
upper half-space H = Rn

+ := {(X, xn) ∈ Rn | xn > 0}. Corollary 4.5 provides
a weak-∗ solution to the Monge-Ampère obstacle problem (4.3) satisfying the
following additional constraints: h ≤ ψ ≤ h + λ and f(1 − χUψ∗ ) = 0 =
g(1 − χUψ); i.e. a convex funtion ψ whose gradient pushes fχWψ

forward to
gχWψ

, where Wψ := Uψ ∩ Uψ∗ . Remark 4.2 shows the Legendre transform ψ∗

of ψ satsifies ∇ψ∗#(gχWψ
) = fχWψ

. Notice ψ∗∗ = ψ since ψ is convex and
continuous. Proposition 5.2 provides a domain U := {(X, xn) | xn < u(X)}
which differs from Uψ by a set of f measure zero; (the difference is also g

negligible, since U ⊃ Rn \ H contains spt g). Moreover, semiconvexity of
u guarantees ∂U is a Lipschitz graph over ∂H and hence has measure zero.
Since f is mutually continuous with respect to Lebesgue on Ω, we conclude
Uψ ∩Ω ⊂ U ∩Ω from Claim #1. Similarly, there exists a semiconvex function
v : ∂H −→ R such that V := {(X, xn) | xn > v(X)} differs from Uψ∗ by a set
of f + g measure zero, with ∂V having zero volume and Uψ∗ ∩ Λ ⊂ V ∩ Λ.

By Remark 4.6, we have h ≤ ψ∗ ≤ h + λ with ∇ψ∗(y) = y a.e. outside
Wψ∗ = Wψ, so ∇ψ∗#(f(1−χU )+gχV ) = f also. This represents transportation
by convex gradient to a density f = fχΩ bounded away from zero and infinity
on the (strictly) convex domain Ω. The source measure f(1− χU ) + gχV has
density bounded away from zero and infinity on the domain (V ∩Λ)∪ (Ω \U),
and this domain has full mass since ∂U is a set of zero volume. The interior
results of Caffarelli [15, our Theorem 6.2] then assert that ψ∗ is C1,α

loc smooth
and strictly convex on V ∩ Λ, with ψ∗ ∈ C2,α

loc (Λ ∩ V ) if f and g are Hölder
continuous on Ω and on Λ. Since ψ∗(y) = (|y|2 − λ)/2 outside U∗ψ, strict
convexity of ψ∗ extends to the full domain Λ. We claim

ψ̃ := φ∗ whereφ(y) =
{
ψ∗(y) if y ∈ Λ
+∞ otherwise,

(6.3)

is the desired extension of ψ. Notice y ∈ ∂φ∗(x) implies y ∈ Λ from the
equality cases in Young’s inequality (6.2). Thus φ∗ is globally Lipschitz, since
∂φ∗(Rn) ⊂ Λ and Λ is bounded. We assert φ∗ ∈ C1(Rn). If not, there must be
a point x 6∈ dom∇φ∗. Then strict convexity of φ fails on a segment in ∂φ∗(x)
passing through the interior of the strictly convex domain Λ. The contradicts
the strict convexity asserted above, establishing continuous differentiability
globally φ∗ ∈ C1(Rn).

It remains to show that ψ = φ∗ throughout Ω. Notice φ(y) ≥ ψ∗(y) with
equality on Λ. Thus φ∗(x) ≤ ψ(x) with equality if ∂ψ(x) intersects Λ, again
from the cases of equality in (6.2). From ∇ψ#(fχU+g(1−χV )) = g in Remark
4.6 we have ∇ψ(x) ∈ Λ a.e. on (U ∩Ω)∪ (Λ \V ), hence everywhere since both
convex functions are continuous. Note ψ = h + λ on Rn \ V from the same
remark. We also conclude ∇ψ : U ∩ Ω −→ Λ extends to a continuous map
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from U ∩ Ω into V ∩ Λ; it cannot take values outside V since f doesn’t vanish
on U and ∇ψ#(fχU ) = gχV is supported on V .

Claim #2: The free boundary ∂Uψ ∩ Ω is contained in the graph of a
C1 function over ∂H. The direction ∇ψ̃(x) − x transported gives the inward
normal to Uψ at any point x ∈ Ω ∩ ∂Uψ.

Proof of claim: Notice the C1 function h−ψ̃ increases with xn in the upper
half space. Indeed ∂(h − ψ̃)/∂xn > 0 throughout H, since ∇h(x) = x ∈ H

and ∇ψ̃(x) ∈ Λ lie on opposite sides of the hyperplane xn = 0. Thus the zero
set Z+ := {x ∈ H | h(x) = ψ̃(x)} is contained in the graph of a C1 function
xn = ũ(X) over ∂H, by the implicit function theorem. Moreover, Z+ ∩ Ω =
Ω ∩ ∂Uψ, since ψ ≥ ψ̃ becomes an equality on the closure of Uψ ∩ Ω ⊂ U ∩ Ω.
This proves the first part of the claim. Since ψ̃ − h vanishes along the free
boundary x ∈ Ω ∩ ∂Uψ, its gradient ∇ψ̃(x) − x must be orthogonal to ∂Uψ;
this gradient is non-vanishing as noted and must be directed towards Uψ since
ψ̃ − h > 0 inside Uψ ∩ Ω. End of claim.

Now that Ω∩∂Uψ is C1 smooth, Claim #1 yields Uψ∩Ω = U∩Ω. Since Ω is
open, we may henceforth write Ω∩∂U and Ω∩∂Uψ interchangeably. To see U∩
Ω = int [U ∩ Ω ] as in Remark 6.6, observe U ∩ Ω ⊂ {(X, xn) ∈ Ω | xn ≤ u(X)},
whence

int [U ∩ Ω ] ⊂ {(X, xn) ∈ Ω | xn < u(X)} = U ∩ Ω.

The reverse inclusion is obvious.
On the other hand, Remark 4.6 also asserts that the gradient of ψ pushes

fχU +g(1−χV ) forward to a measure gχV with convex support. Applying the
same arguments again, Caffarelli asserts ψ ∈ C1,α

loc (Ω ∩ Uψ) is strictly convex,
with ψ ∈ C2,α

loc (Ω∩Uψ) if the data are Hölder. The exchange symmetry f ↔ g

then shows ∂V ∩Λ is a continuously differentiable graph over ∂H and V ∩Λ =
Uψ∗ ∩ Λ. Likewise ∇ψ∗ : V ∩ Λ −→ U ∩ Ω extends to a continuous map
from V ∩ Λ into U ∩ Ω. Finally, ∇ψ∗ is one-to-one by strict convexity, hence
invariance of domain [63] shows ∇ψ∗(V ∩ Λ) is an open subset of U and of Ω.
Since Ω is convex and U is semiconcave, we conclude ∇ψ∗(V ∩ Λ) ⊂ U ∩ Ω.
By exchange symmetry, it must also be true that ∇ψ(U ∩ Ω) ⊂ V ∩ Λ.

Now, for each x ∈ U ∩Ω and y ∈ V ∩Λ the equality conditions in Young’s
inequality (6.2) imply ∇ψ∗(∇ψ(x)) = x and ∇ψ(∇ψ∗(y)) = y. Thus ∇ψ :
U ∩Ω −→ V ∩Λ is a homeomorphism with inverse map ∇ψ∗. Since both maps
extend continuously to the boundary, their extensions give a homeomorphism
∇ψ̃ between U ∩ Ω and V ∩ Λ. Recalling ∂ψ̃(Rn) ⊂ Λ with ψ̃ = h + λ = h∗

on Λ \ V (hence on Λ \ Uψ∗) , ∇h∗(y) = y makes it clear that ∇ψ̃(Rn) = Λ.
The conclusions of the proposition have now been established for the spe-

cial weak-∗ solution provided by Corollary 4.5. We show they extend to all
weak-∗ solutions in the following corollary, which will be derived from the re-
sults proved so far. QED.
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Corollary 6.4 (Uniqueness, not just a.e.). Given data (f, g, h =
k) of convex support, any two weak-∗ solutions ψ and φ to the obstacle problem
(4.3) satisfy Ω ∩ Uψ = Ω ∩ Uφ, where Uψ := {x ∈ Rn | ψ(x) > h(x)} and
Ω = int [spt f ]. Moreover, ψ − φ is constant on Ω ∩ Uψ, and the constant
vanishes unless transportation is complete (1.1) and both obstacles fail to bind:
Ω ⊂ Uψ and Λ := int [spt g] ⊂ Uψ∗.

Proof: Let ψ be the weak-∗ solution for which the conclusions of the propo-
sition were derived above, and φ any other solution to the Monge-Ampère
obstacle problem ∇φ#(fχUφ) = gχUφ∗ . The uniqueness assertion of Theorem
4.3 claims ∇φ differs from ∇ψ and Uφ differs from Uψ only on a set of f mea-
sure zero. Since f is mutually continuous with respect to Lebesgue measure
on Ω, and Ω ∩ ∂Uψ is C1, we conclude Ω ∩ Uφ ⊂ Uψ from claims #1–2 of the
preceding proof. On each connected component Ui of Ω ∩ Uψ, we have ψ − φ

constant since their gradients agree a.e. If Ω ∩ ∂Ui is non-empty for every
connected component, then ψ(x) = h(x) at some x ∈ Ω ∩ ∂Ui. Now, every
neighbourhood of x intersects Uφ, so φ(x) ≥ h(x). But strict equality would
force x ∈ Ω ∩ Uφ ⊂ Uψ contradicting x ∈ ∂Ui. Since ψ − φ is constant on one
side of the C1 curve ∂Ui and vanishes at x, continuity implies the constant is
zero. (If x 6∈ int [domφ], then φ = +∞ in a half space on the other side of the
curve ∂Ui, forcing Uψ to approach x from both sides of ∂Ui and contradicting
Proposition 5.2.) Thus φ = ψ on Ω ∩ Uψ = ∪iUi and hence on the subset
Ω ∩ Uφ. The definition of Uψ then forces Ω ∩ Uφ = Ω ∩ Uψ.

It remains to consider the possibility Ω∩∂Ui empty for some i. In that case
Ui contains the connected set Ω, since its construction ensures Ui is not disjoint
from Ω unless Ω∩Uψ is empty, in which case the corollary is trivial: ψ = φ = h

on Ω. Therefore, assume ψ−φ differ by a constant on Ω ⊂ Ui. Symmetry under
the interchange f ↔ g implies either Uψ∗ ⊃ Λ — in which case ‖f‖L1 = ‖g‖L1

and transportation is complete — or else ψ∗ = φ∗ on Uψ∗ ∩ Λ as above. In
the latter case, choose any point x ∈ Ω ⊂ Ui; then ∇φ(x) = ∇ψ(x) = y ∈ Λ
by Theorem 6.3 and the equality ψ(x) = 〈x, y〉 − ψ∗(y) = φ(x) forces ψ = φ

throughout Ω to conclude the argument. On the other hand, if transportation
is complete, it remains to show Ω ⊂ Uφ. If not, take x ∈ Ω\Uφ. There∇ψ(x) =
∇φ(x) = ∇h(x) = x 6∈ Λ, contradicting the proposition and concluding the
corollary. QED.

Remark 6.5 (Map is continuous and normal to free boundary).

If a hyperplane ∂H separates spt f from spt g strictly, the free boundary ∂Uψ∩Ω
is contained in the graph of a C1 function over ∂H. Morever, ∇ψ̃(x)−x gives
the inward normal to Uψ at x ∈ Ω ∩ ∂Uψ. This is Claim #2 of Theorem 6.3’s
proof.
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Remark 6.6 (Homeomorphism of active interiors). From the end
of the preceding proof, it is also worth noting Uψ ∩ Ω = int

[
Uψ ∩ Ω

]
, and

∇ψ : Uψ ∩ Ω −→ Uψ∗ ∩ V is a homeomorphism.

Corollary 6.7 (Path-connectedness of active region). If ψ̃, Uψ,
Ω and Λ are from Theorem 6.3, then Ω ∩ Uψ is path connected.

Proof: Fix x0,x1 ∈ Ω ∩ Uψ and consider the segment xt := (1 − t)x0 + tx1

joining them. Let ]t′, t′′[ be a maximal subinterval of [0, 1] corresponding to
a piece of the segment [x0,x1] not contained in Ω ∩ Uψ, if any such piece
exists. We shall prove the corollary by constructing a path connecting xt′
to xt′′ in Ω ∩ Uψ for each such maximal open subinterval. Since the entire
segment [x0,x1] lies in the strictly convex set Ω, both xt′ and xt′′ lie on the free
boundary Ω∩∂Uψ. We will prove the segment ys := (1−s)∇ψ̃(xt′)+s∇ψ̃(xt′′)
parameterized by s ∈ [0, 1] lies in Λ ∩ Uψ∗ . Then the homeomorphism ∇ψ̃ of
the theorem gives the desired path t ∈ [t′, t′′] −→ ∇ψ̃−1(y(t−t′)/(t′′−t′)) in
Ω ∩ Uψ linking xt′ to xt′′ .

Let zs := (1 − s)xt′ + sxt′′ reparameterize the segment [xt′ ,xt′′ ]. At
the endpoints s = 0, 1, we have (zs,ys) in the support of the optimal joint
measure γλ := (id ×∇ψ̃)#(fχUψ), hence |zs − ys|2/2 ≤ λ from Corollary 2.4
(and Theorem 4.3). The same inequality holds on the interior s ∈ ]0, 1[ of the
segments due to convexity of the cost. There zs ∈ Ω\Uψ by construction. Since
we are dealing with data (f, g, h) of convex support, ys ∈ Λ \ Uψ∗ would force
|x−y|2/2 ≥ λ in a whole neighbourhood of (zs,ys) by Corollary 2.4, producing
the contradiction |zs − ys|2/2 > λ. We can only conclude ys ∈ Λ ∩ Uψ∗ for all
s ∈ [0, 1], which completes the corollary. QED.

Lemma 6.8 (Ball condition; free boundary never maps to free boundary).

Take ψ̃, Uψ, Ω and Λ from Theorem 6.3. If x ∈ Uψ ∩ Ω and y := ∇ψ̃(x) then
Ω ∩ B|x−y|(y) ⊂ Uψ. Likewise Λ ∩ B|x−y|(x) ⊂ Uψ∗. If x ∈ Ω ∩ ∂Uψ then
y 6∈ Λ ∩ ∂Uψ∗.

Proof: Recall that ψ is a weak-∗ solution to the Monge-Ampère double
obstacle problem with data (f, g, h = k) of convex support. Thus γ :=
(id×∇ψ)#(fχU ) is the measure minimizing (1.8) according to Theorem 4.3.
The continuous dependence of y = ∇ψ̃(x) on x ∈ Uψ ∩ Ω proved in Theorem
6.3 combines with positivity of f on the domain Uψ ∩Ω to yield (x,y) ∈ spt γ.
Thus the ball B|x−y|(x) is disjoint from spt [g(1− χV )] = Λ \ V , according to
Example 2.5; here V := Uψ∗ . We conclude Λ ∩ B|x−y|(x) is contained in V ,
and Ω ∩B|x−y|(y) ⊂ Uψ follows from the usual exchange symmetry f ↔ g.

For the second part of the lemma, we’ll assume x ∈ Ω ∩ ∂Uψ and y ∈
Λ ∩ ∂V to derive a contradiction. The free boundary Λ ∩ ∂V is C1 by Remark
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6.5, and y−x is a positive multiple of the outward normal vector n̂V (y) to the
active region V at y. Now xr := x + rn̂V (y) parameterizes the line segment
from x to y. Setting yr := ∇ψ̃(xr) we have Ω ∩ B|xr−yr|(yr) ⊂ Uψ for each
r ≥ 0 small enough that xr ∈ Uψ ∩ Ω. Since r = 0 is certainly small enough
and Bε(x0) ⊂ Ω for some ε > 0, we conclude r = ε is also small enough because
xε ∈ Ω ∩ B|x0−y0|(y0) ⊂ Uψ. On the other hand, monotonicity of ∇ψ̃ implies
0 ≤ 〈xε − x0, yε − y0〉 = ε〈 n̂V (y0), yε − y0〉. Now xε lies on the line segment
joining x0 to y0, and yε 6= y0 because ∇ψ̃ is a homeomorphism of Uψ ∩ Ω onto
V ∩ Λ. In the halfspace {y ∈ Rn | 〈 n̂V (y0), y − y0〉 ≥ 0} containing yε 6= y0,
we see y0 is the point closest to xε. Thus y0 ∈ B|xε−yε|(xε). Any point
ỹ ∈ Λ ∩ V sufficiently close to y0 must also belong to Λ ∩ B|xε−yε|(xε) ⊂ V .
But this contradicts y0 ∈ Λ ∩ ∂V as desired. QED.

Corollary 6.9 (Inactive region maps to target boundary). Take
ψ̃, Uψ, Ω and Λ from Theorem 6.3. If z ∈ Ω \ Ω ∩ Uψ then ∇ψ̃(z) ∈ ∂Λ.

Proof: Theorem 6.3 asserts that ∇ψ̃(Rn) = Λ, with ∇ψ̃(y) = y on Λ \ Uψ∗
and ∇ψ̃ : Ω ∩ Uψ −→ Λ ∩ Uψ∗ a homeomorphism. If the corollary failed to be
true, some z ∈ Ω \ Ω ∩ Uψ would map to y := ∇ψ̃(z) ∈ Λ. We consider the
three possibilities (i) y ∈ Λ \Uψ∗ , (ii) y ∈ Λ∩Uψ∗ , and (iii) y ∈ Λ∩ ∂Uψ∗ , one
at a time. In case (i) convexity of ψ̃ implies ∇ψ̃ is constant on the line segment
]z,y[, which cannot happen since ∇ψ̃ is the identity map in a neighbourhood
of y. In case (ii), y = ∇ψ̃(x) for some x ∈ Ω ∩ Uψ; again ∇ψ̃ would be
constant on the segment ]z,x[, which contradicts ∇ψ̃ being a homeomorphism
near x. Finally, in case (iii) y = ∇ψ̃(x) for some x on the boundary of Ω ∩ Uψ,
and x 6∈ Ω ∩ ∂Uψ by Lemma 6.8 and exchange symmetry x ↔ y. Then
Ω∩Br(x) ⊂ Uψ for r > 0 sufficiently small, and ∇ψ̃ would be constant on the
segment ]z,x[. Strict convexity of Ω forces this segment into Ω hence into Uψ,
contradicting that ∇ψ̃ is a homeomorphism on Ω ∩ Uψ. The only conclusion
can be that the corollary is true: ∇ψ̃(z) ∈ ∂Λ. QED.

7. Bi-Hölder estimates for maps and free normals

To quantify continuous differentiability of the potential ψ and the free
boundary through Hölder derivative estimates, we exploit the renormalization
methods developed by Caffarelli to treat boundary regularity for data of convex
support in the complete transfer case m = ‖f‖L1 = ‖g‖L1 [16] [17]. However,
even for data of convex support, we cannot expect the free regions Uψ ∩Ω and
Uψ∗ ∩ Λ to be convex, which means new arguments are needed to localize the
situation before this method applies. In Caffarelli’s approach, convexity of the
domain and range play different roles. Domain convexity is used locally, to
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ensures the Monge-Ampère measure has a doubling property, while convexity
of the range is used globally, to ensure all Aleksandrov mass is accounted for,
so in the entire space the Monge-Ampère measure has no singular part. In the
discussion below, convexity of Λ proves sufficient for the latter purpose. By
localizing the former property, we shall be able to quantify strict convexity of
ψ up to the fixed boundary ∂Ω, and to any parts of the free boundary which
happen to be convex locally. Now recall Lemma 6.8, which states that free
boundary never maps to free boundary; in other words, the free boundary of
Uψ∗∩Λ is parameterized by part of the fixed boundary of Uψ∩Ω. Thus showing
ψ is p-uniformly convex (7.14) away from the free boundary of Uψ ∩Ω implies
∇ψ∗ is Hölder continuous up to the free boundary ∂Uψ∗ ∩Λ, where it gives the
inward normal nUψ∗ (y) = ∇ψ∗(y)− y. The usual exchange symmetry f ↔ g

implies ∇ψ too is Hölder continuous up to the free boundary of its domain
Uψ ∩Ω, and bi-Hölder up to those parts of the fixed boundary ∂Ω which map
to points where the target set Uψ∗ ∩ Λ is convex.

To make this result precise, it is useful to distinguish certain types of
boundary points. A domain U ⊂ Rn is called locally convex at x ∈ Rn if
U ∩ BR(x) is a convex set for some ball of radius R > 0 around x. The
non-convex part of the free boundary is then a closed set denoted by

(7.1) ∂ncUψ := {x ∈ Ω ∩ Uψ | Ω ∩ Uψ fails to be locally convex at x}.

We have not been able to quantify uniform convexity of the solution ψ at
such points. Also, we are not able to rule out the possibility of a tangential
intersection of the free with the fixed boundary, nor to prove Hölder continuity
of the map or free normal at such intersections. Since they are distinguished
by method, we denote these non-transverse intersection points by

(7.2) ∂ntΩ := {x ∈ ∂Ω ∩ Ω ∩ ∂Uψ | 〈∇ψ̃(x)− x, z〉 ≤ 0 for all z ∈ Ω}.

Here ψ̃ is the extension of ψ from Theorem 6.3. Notice that when ∂Ω is
differentiable at x ∈ ∂ntΩ, then ∇ψ̃(x) − x gives the outward normal to Ω
by (7.2); it gives the inward normal to Uψ by Remark 6.5. We define the
non-convex points ∂ncUψ∗ and non-transverse intersections ∂ntΛ in the target
domain analogously.

Let us briefly review Caffarelli’s method, which develops dramatically from
ideas going back to Aleksandrov [4]. Given a convex function ψ :−→ ]−∞,∞],
we associate to it a measure Mψ on Rn — called the Monge-Ampère measure
— given by

(7.3) Mψ(B) := vol [∂ψ(B)]

for every Borel set B ⊂ Rn. If ψ is smooth and strictly convex, then

Mψ(B) =
∫
B

det
[
D2ψ(x)

]
dx,
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which motivates the name, but Mψ is a Radon measure on the interior of
domψ := {ψ < +∞} in any case; see e.g. Gutiérrez [45] or McCann [57, Lemma
4.1].

Definition 7.1 (Universal constant). For the purpose of this pa-
per, a universal constant is one which depends only on dimension n, and
‖ log(f(x)/g(y))‖L∞(Ω×Λ).

This unorthodox terminology is employed to highlight independence of
such constants on choice of solution ψ, data f and g, or domains Ω,Λ ⊂ Rn,
except through

(7.4) − log δ0 := ‖ log(f(x)/g(y))‖L∞(Ω×Λ).

When f and g are both characteristic functions, then δ0 = 1; if they are merely
continuous on there respective domains, δ0 is the lesser of infΩ f/ supΛ g and
infΛ g/ supΩ f .

Lemma 7.2 (Mass lives in active domain and inactive target).

Fix data of convex support (f, g, h = k), and a weak-∗ solution ψ to the obsta-
cle problem (4.3). Set Uψ := {x ∈ Rn | ψ > h}. The extension ψ̃ ∈ C1(Rn)
of ψ from Uψ ∩ Ω to Rn given by Theorem 6.3 has a Monge-Ampère mea-
sure absolutely continuous with respect to Lebesgue, and whose Radon-Nikodym
derivative dMψ̃/dvol satisfies

(7.5) χΛ\Uψ∗ + δ0χΩ∩Uψ ≤ dMψ̃/dvol ≤ χΛ\Uψ∗ +
1
δ0
χΩ∩Uψ

for the universal constant δ0 > 0 of (7.4).

Proof: Theorem 6.3 extends the homeomorphism∇ψ̃ : Ω ∩ Uψ −→ Λ ∩ Uψ∗ to
the identity map on Λ\Uψ∗ , with∇ψ̃(Rn) = Λ and∇ψ̃#(fχUψ+g(1−χUψ∗ )) =
g. Since ∂ψ̃(Rn) ⊂ Λ we have Mψ̃(B) = ρ[∂ψ̃(B)] with ρ = vol |Λ. This means
Mψ̃ = ∇φ#ρ is the push-forward of ρ through the gradient of the Legendre
transform φ of ψ̃ [57, Lemma 4.1]. From

‖1
g
‖−1
L∞(Λ)ρ ≤ g ≤ ‖g‖L∞(Λ)ρ

‖ 1
f
‖−1
L∞(Ω)χΩ ≤ f ≤ ‖f‖L∞(Ω)χΩ

we find

‖g‖−1
L∞(Λ)∇φ#g≤∇φ#ρ

= Mψ ≤ ‖1/g‖L∞(Λ)∇φ#g,

whence ∇φ#g = fχUψ + g(1 − χUψ∗ ) implies (7.5), but with the universal
constant δ0 multiplying both terms on the left and dividing both terms on the
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right. Since ∇φ(y) = y on Λ\Uψ∗ we conclude that the coefficients multiplying
χΛ\Uψ∗ are unnecessary. QED.

Definition 7.3 (Convex bodies and homothety). A bounded con-
vex set Z ⊂ Rn with non-empty interior is called a convex body. The barycen-
ter z of Z always refers to its center of mass with respect to Lebesgue volume.
For t > 0, t·Z := (1− t)z + tZ = {x ∈ Rn | x− z = t(y − z) for some y ∈ Z}
denotes the dilation of Z by a factor of t around its center of mass z.

Definition 7.4 (Affine doubling). A Borel measure µ on Rn dou-
bles affinely on X ⊂ Rn if there exists δ > 0 such that each point x ∈ X has a
neighbourhood Nx ⊂ Rn on which µ is a Radon measure, and each convex body
Z ⊂ Nx with barycenter in X satisfies µ[12·Z] ≥ δ2µ[Z]. We call δ the doubling
constant of µ on X, and Nx the doubling neighbourhood of µ around x.

Lemma 7.5 (MA Measure doubles away from non-convexities).

Fix data of convex support (f, g, h = k), and a weak-∗ solution ψ to the
obstacle problem (4.3). The extension ψ̃ ∈ C1(Rn) of ψ in Theorem 6.3
has a Monge-Ampère measure Mψ̃ which doubles affinely on Ω ∩ Uψ \ ∂ncUψ
with Uψ := {x ∈ Rn | ψ > h} and ∂ncUψ as in (7.1). The doubling constant
δ = 2−n/2δ0 is universal (7.4), while any ball Nx = BR(x) whose intersection
with (Ω∩Uψ)∪ (Λ \Uψ∗) is convex forms a doubling neighbourhood around x.

Proof: For x ∈ X := Ω ∩ Uψ \ ∂ncUψ there exists R > 0 small enough that
BR(x) is disjoint from Λ \ Uψ∗ and the intersection W = Ω ∩ Uψ ∩ BR(x) is
convex. For any convex body Z ⊂ BR(x) we therefore have

δ0vol [W ∩ Z]≤Mψ̃[Z](7.6)

≤ 1
δ0

vol [W ∩ Z](7.7)

from (7.5). Now the remainder of the argument follows [17, Lemma 2.3].
Indeed, suppose the barycenter z of Z lies in X, a fortiori in W , and let
z = 0 without loss of generality. Define the (not necessarily convex) cone
K := {λx ∈ Rn | λ > 0, x ∈ W ∩ ∂[12 ·Z]} with vertex at z = 0. Convexity of
W and Z imply K∩ 1

2·Z ⊂W∩ 1
2·Z whereas W∩(Z\ 1

2·Z) ⊂ K∩(Z\ 1
2·Z). These

two inclusions combine with (7.7) and (7.6) to imply the doubling property

δ0Mψ̃[Z]≤ vol [W ∩ 1
2 ·Z] + vol [K ∩ (Z \ 1

2 ·Z)]

= vol [W ∩ 1
2 ·Z] + (2n − 1)vol [K ∩ 1

2 ·Z]

≤ 2nvol [W ∩ 1
2 ·Z]

≤ 2n

δ0
Mψ̃[12 ·Z]
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of Mψ̃ on X. QED.

As a final ingredient before the method applies, we must be able to isolate
the behaviour of convex function ψ̃ near any locally convex point z ∈ Ω ∩ Uψ \
∂ncUψ by choosing a centered affine section

(7.8) Zε(z) = Zψ̃ε (z) := {x ∈ Rn | ψ̃(x) < ε+ ψ̃(z) + 〈vε, x− z〉}.

Here ε > 0, and vε ∈ Rn is chosen to ensure that z is the barycenter of the
bounded set Zε(z); such a choice is unique according to Theorems A.7–A.8;
see also [16] [17]. The superscript ψ̃ in Zψ̃ε (z) is often omitted, and used only
to clarify ambiguities when several convex functions are being discussed.

The basic result we will use to quantify strict convexity is a local version
of Caffarelli’s fundamental lemma [16, Lemma 4] [18, Lemma 2.2], adapted to
the situation at hand. For completeness, we recall the proof; the figures from
[18] may be helpful. An alternate approach to Caffarelli’s result may be found
in Gutiérrez and Huang [46].

Lemma 7.6 (Geometric decay of sections). Given 0 ≤ t < t̄ ≤ 1
and δ > 0, there exists s0(t, t̄) ∈ ]0, 1[ (depending only on t, t̄, δ, and dimension
n), such that whenever Zε(x) is a fixed section centered at x ∈ X := sptMψ of
a convex function ψ : Rn −→ ]−∞,∞] whose Monge-Ampère measure satisfies
the doubling condition

(7.9) Mψ[12 · Zsε(z)] ≥ δ2Mψ[Zsε(z)]

for all s ∈ [0, 1] and all z in the convex set X ∩ Zε(x), then z ∈ X ∩ t · Zε(x)
implies Zsε(z) ⊂ t̄ · Zε(x) for all s ≤ s0(t, t̄).

Proof: Fix 0 ≤ t < 1 and δ > 0. It suffices to show there exists s0(t) >
0 and t0 < 1, both depending only on n, δ and t, such that: whenever a
convex function ψ : Rn −→ ]−∞,∞] admits a section Zε(x) centered at x ∈
X := sptMψ such that X ∩ Zε(x) is convex, and the doubling condition (7.9)
holds for all s ∈ [0, 1] and z ∈ X ∩ Zε(x), then z ∈ X ∩ t · Zε(x) implies
Zsε(z) ⊂ t0 · Zε(x) for all s ≤ s0(t). Once this intermediate claim is proved,
we see convexity of X ∩ Zsε(x0) follows from that of X ∩ Zε(x) for any new
center x0 ∈ X ∩ t · Zε(x) and height sε with s ≤ s0(t), as does the doubling
property (7.9) for all z ∈ X ∩ Zsε(x0). Thus the intermediate claim implies
Zs2ε(x0) ⊂ t0 ·Zsε(x0), and similarly, Zskε(x0) ⊂ t0 ·Zsk−1ε(x0) ⊂ tk−1

0 ·Zsε(x0)
for each integer k ≥ 1 by induction. Since t0 < 1, the sections Zskε(x0) shrink
to their common center x0 ∈ t · Zε(x), so for any t̄ > t taking k = k(t, t̄) large
enough ensures tk−1

0 · Zsε(x0) ⊂ t̄ · Zε(x). Choosing s0(t, t̄) := s0(t)k(t,t̄) then
completes the lemma. We can take k(t, t̄) to depend on t, t̄ and t0, but not
on the geometry of the sections, by using affine invariance of the geometry
and Lemma A.3 to assume Z = Zε(x) has center of mass at the origin, and
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B1(0) ⊂ Z ⊂ Bn3/2(0) without loss of generality. This yields k(t, t̄) via an
upper bound on the distance separating tZ from Rn \ (t0Z), and a lower
bound on the distance separating tZ from Rn \ (t̄Z).

The intermediate claim will be argued by contradiction. If it fails to be
true, then for some fixed δ > 0 and t ∈ [0, 1[, there is a fortiori a sequence of
convex functions ψk : Rn −→ ]−∞,∞], and centered affine sections Zε(k)(0)
with Xk ∩ Zε(k)(0) convex, on which the doubling condition (7.9) is satisfied
with Xk := sptMψk , and points zk ∈ Xk ∩ t · Zε(k)(0) such that Zε(k)/k(zk) is
not contained in (1 − 1/k) · Zε(k)(0). Since the hypothesis and conclusion of
the lemma are invariant under pre-composition of ψk with an affine function,
and post-multiplication of ψk by a positive scalar, it costs no loss of generality
to assume the normalizations B1(0) ⊂ Zε(k)(0) ⊂ Bn3/2(0) for each k, and
Mψk [Zε(k)(0)] = 1. Furthermore, subtracting an affine function allows us to
assume Zε(k)(0) = {x | ψk(x) < 0}.

Using Blaschke’s theorem together with Lemma A.4, we extract a limiting
convex function ψ∞ : Rn −→ ]−∞,∞] from a subsequence, and a section
S∞ = {x | ψ∞ < 0} containing B1(0) and contained in Bn3/2(0), with center
of mass at the origin. We have ψ∞(0) = limk→∞ ε(k) bounded above and
below by constants depending only on n and δ > 0, while Lemma A.1 implies
ψ∞ vanishes uniformly as the boundary of S∞ is approached from the interior.
Now the height of the sections Zε(k)/k(zk) tends to zero like 1/k. Since these
sections extend beyond (1− 1/k) · Zε(k)(0) from their centers in tZε(k)(0), the
graph of ψ∞ must coincide with an affine function L∞ on a setK which extends
from z∞ ∈ tZ∞ to y∞ ∈ ∂Z∞, where z∞ and y∞ are subsequential limits of
the zk and points yk ∈ Zε(k)/k(zk) ∩ ∂(1 − 1/k) · Zε(k)(0) respectively. Since
the sections are roughly balanced around their barycenters zk, there is also a
point ỹ∞ ∈ K with z∞ = aỹ∞ + (1− a)y∞ and a−1 ∈ [1 + n−3/2, n3/2 + 1].

Now pick a point x∞ which minimizes ψ∞ on K,

(7.10) ψ(x∞) = min
x∈K

ψ∞(x) < 0,

and which is extremal in the convex set K ∩ {x | ψ(x) = ψ(x∞)} of such min-
imizers. It follows that x∞ ∈ Z∞ from (7.10) and is extremal in the graph of
ψ∞. Corollary A.2 then implies x∞ lies in X∞ := sptMψ∞ . Since Mψ∞ coin-
cides with the weak-∗ limit of the Monge-Ampère measures Mψk as in Gutiérrez
[45], we can find xk ∈ Xk ∩ Zε(k)(0) converging to x∞. We also note

ψ(x∞)≤ (1 + h)ψ∞(z∞)(7.11)

≤−h(7.12)

for some h > 0 depending on 1− t, which keeps x∞ and z∞ separated.
Fix η, σ > 0 small, to be specified later, independent of k. Consider the

affine sections Zσε(k)(wk) = {x | ψk ≤ Lk} centered at the convex combination
wk = (1−η)xk+ηzk. Their centers wk lie near xk since η is small, belong to the
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convex setXk∩Zε(k)(0), and approach w∞ = (1−η)x∞+ηz∞ as k →∞. Thus
maxx∈Zσε(k)(wk)(Lk −ψk)(x) remains comparable to σ as k →∞, according to
Lemma A.4. Consider the segment Ik = [pk,qk] obtained by intersecting
Zσε(k)(wk) with the line through zk and xk. Assume ψk(pk) ≥ ψk(qk), so
that pk denotes the upper and qk the lower end of this segment. The segment
must be roughly balanced around the section’s center of mass wk = akpk +
(1− ak)qk, with a−1

k ∈ [1+n−3/2, n3/2 +1]. Extracting subsequences as usual,
the limit k →∞ yields a segment Iσ = [pσ,qσ], possibly (semi-)infinite, with
w∞ = a∞pσ + (1 − a∞)qσ, and an affine function Lσ = limk Lk such that
ψ∞ < Lσ < ψ∞ + Cσ on Iσ ∩ Z∞ and

(7.13) (Lσ − ψ∞)(w∞) ∼ σ

as σ → 0. Observe that for σ > 0 small, the lower endpoint qσ must lie
in Z∞. Indeed, ψk differs from Lk by a quantity of order σ along Ik; if I
crosses Z∞ completely then Lσ must be non-negative along I, and ψ∞ > −Cσ,
which contradicts (7.12) when σ is small, since x∞ ∈ I in this case. Since
Ik is roughly balanced, pσ remains bounded, but can be outside Z∞. Also,
(Lσ −ψ∞)((1− t)w∞ + tqσ) ≤ C(1− t)1/nσ tends to zero as t→ 1, according
to Lemma A.1.

We claim qσ → x∞ as σ ↓ 0, and pσ ∈ K for small enough σ > 0. Let q0

and p0 denote accumulation points of qσ and of pσ in this limit. Clearly the
interior of the segment [q0,p0] around w∞, where ψ∞ is affine, cannot contain
the extremal point x∞. Since Iσ = [qσ,pσ] and [x∞, z∞] are collinear and
parallel, q0 ∈ [x∞,w∞]. For η > 0 sufficiently small, rough balancing of Iσ

around w∞ = (1−η)x∞+ηz∞ then forces the upper end pσ ∈ [w∞, z∞] when
σ is small. In that case pσ ∈ K and Lσ = L∞ = ψ∞ agree at pσ. Furthermore,
qσ 6∈ [x∞, z∞], since otherwise Iσ ⊂ K would force Lσ = L∞ = ψ∞ and violate
(7.13). Therefore x∞ = q0 = limσ↓0 qσ. Since the difference Lσ − L∞ ≥ 0
dwindles to zero along the segment Iσ, as we move from qσ through x∞ and
then z∞ to pσ, we find

(Lσ − ψ∞)(x∞) = (Lσ − L∞)(x∞)

≥ (Lσ − L∞)(w∞)

= (Lσ − ψ∞)(w∞) ∼ σ.

On the other hand, x∞ = (1− t)w∞ + tqσ with t = t(σ) → 1 as σ → 0. Thus

(Lσ − ψ∞)(x∞) ≤ C(1− t(σ))1/nσ = o(σ),

a contradiction which completes the proof. QED.

Corollary 7.7. Under the hypotheses of Lemma 7.6, we find Zskε(x) ⊂
t̄k · Zε(x) for all s < s0(0, t̄), t̄ ∈ ]0, 1[, and integers k ≥ 0.
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Note that we can recover the central results of the preceding section
directly from the conclusions of these lemmas in the complete transfer case
m = ‖f‖1 = ‖g‖1, thereby avoiding the main argument of [15].

Corollary 7.8 (Complete transfer injects). Fix data (f, g, h) of
convex support Ω = int [spt f ] and Λ = int [spt g]. If ψ is a weak-∗ solution
to the obstacle problem (4.1) with Ω ⊂ Uψ := {x | ψ > h} and Λ ⊂ Uψ∗, then
ψ : Ω −→ R is strictly convex.

Proof: Let ψ̃ : Rn −→ R extend ψ from Ω to all of Rn, with ∂ψ̃(Rn) ⊂ Λ.
To produce a contradiction, suppose ψ̃ is affine along a segment containing
z0 ∈ Ω in its relative interior. The Monge-Ampère measure Mψ̃ is doubling on
Ω, with doubling neighbourhood Rn, by the conclusion of Lemma 7.5. Thus
Lemma 7.6 applies to the section Zε(z0) centered at z0 for each ε > 0. The
section Zε(z0) contains a segment [z−1, z1] around z0 = (z+1 + z−1)/2 along
which ψ̃ is affine. Choosing t̄ ∈]0, 1[ small enough, ensures z±1 6∈ t̄ · Zε(z0).
Thus s ≤ s0(0, t̄) from the preceding lemma yields z±1 6∈ Zsε(z0). But then
the affine function L : Rn −→ R defining Zsε(z0) := {x | ψ < L} must be less
than the affine restriction of ψ̃ to the entire segment [z−1, z1], contradicting
z0 ∈ Zsε(z0). We conclude strict convexity of ψ̃ on Ω. QED.

This fundamental lemma will shortly be used to show that solutions to
our Monge-Ampère obstacle problem are p-uniformly convex, up to the fixed
boundary.

Definition 7.9 (p-uniform convexity). Fix p ≥ 2 and a domain Ω ⊂
Rn. A locally Lipschitz function ψ : Ω −→ R, is p-uniformly convex on Ω if
there exists k <∞ such that all points of differentiability x,x′ ∈ Ω ∩ dom∇ψ
satisfy

(7.14) 〈∇ψ(x)−∇ψ(x′), x− x′〉 ≥ k1−p|x− x′|p.

Since p-uniform convexity quantifies injectivity of the map y = ∇ψ(x),
the following standard result provides the desired modulus of continuity for
the inverse map x = ∇ψ−1(y).

Remark 7.10 (Hölder inverse map). If a convex function ψ : Rn −→
]−∞,∞] is p-uniformly convex on the domain Ω ⊂ domψ for some p ≥ 2,
its Legendre transform ψ∗ ∈ C1,α(Ω∗) has a Hölder continuous gradient on
Ω∗ = ∂ψ(Ω), with Hölder exponent α = 1/(p− 1) and Hölder constant k given
by (7.14).

To prove our main theorem requires one more lemma, asserting that the
lowest sections converge to a point {z} = limε→0 Zε(z) in Hausdorff distance.
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Lemma 7.11 (Uniform localization). Fix data (f, g, h = k) of con-
vex support Ω := int [spt f ] and Λ := int [spt g]. Let ψ̃ ∈ C1(Rn) be the
differentiable extension from Theorem 6.3 of a weak-∗ solution ψ to the ob-
stacle problem (4.1). Define its centered affine sections Zε(z) as in (7.8).
Set Uψ := {x ∈ Rn | ψ > h}. For R > 0 taking ε0 > 0 small enough im-
plies Zε0(z) ⊂ BR(z) for all z ∈ Ω ∩ Uψ such that BR(z) contains no preim-
ages Xnt := Ω ∩ Uψ ∩∇ψ̃−1(∂ntΛ) of tangential intersections of free with fixed
boundary (7.2).

Proof: To produce a contradiction, suppose for some R > 0 there exists
a sequence zk ∈ Ω ∩ Uψ with BR(zk) disjoint from Xnt and ε(k) → 0 such
that Zε(k)(zk) 6⊂ BR(zk). Extracting a subsequence if necessary yields a limit
zk → z∞ with the open ball BR(z∞) still disjoint from Xnt. Translating all
of the data by ∇ψ̃(z∞), it costs no generality to assume ∇ψ̃(z∞) = 0, so
that ψ̃ achieves its minimum value at z∞. Since ∇ψ̃(Rn) = Λ is bounded
in Theorem 6.3, and each section (7.8) is bounded, the slope vε(k)(zk) of the
affine function defining Zε(k)(zk) must lie in Λ. Extracting another subse-
quence ensures that these slopes converge to a limit vε(k)(zk) → v∞ ∈ Λ,
while the sections Zε(k)(zk) converge locally in Hausdorff distance to a closed
convex set Z∞ ⊂ Rn (by the Blaschke selection theorem [73]). Define Zmin =
arg min ψ̃ := {x ∈ Rn | ψ̃(x) = ψ̃(z∞)}.

Claim #1: Z∞ ⊂ Zmin, and contains a segment L of length 2R/α centered
at z∞.

Proof of claim: Setting Z0 := {x | ψ̃(x) ≤ ψ̃(z∞) + 〈v∞, x− z∞〉} and
taking the limit k →∞ in the definition (7.8) of the k-th section yields Z∞ ⊂
Z0. Since centered affine sections are convex bodies, John’s Lemma A.3 implies
z∞−x/α ∈ Z∞ if z∞+x ∈ Z∞. Now ψ̃(x) ≥ ψ̃(z∞) implies Z0 lies on one side
0 ≤ 〈v∞, x− z∞〉 of a hyperplane through z∞ unless v∞ = 0. In either case
Z∞ ⊂ Z0 — being roughly balanced around z∞ — lies in z∞ + {v∞}⊥, the
subspace orthogonal to v∞. The inequality ψ̃(x) ≥ ψ̃(z∞) becomes an equality
on Z0∩z∞+{v∞}⊥, thus Z∞ ⊂ Z0∩z∞+{v∞}⊥ ⊂ Zmin as desired. Finally,
since the convex set Z∞ 6⊂ BR(z∞), it must contain a segment of length 2R/α
centered at z∞. End of claim.

Clearly ∇ψ̃(x) = 0 throughout the set Zmin where ψ̃ is minimized. The-
orem 6.3 asserts ∇ψ̃ : Ω ∩ Uψ −→ Λ ∩ Uψ∗ is homeomorphic, so Zmin cannot
intersect the active domain except at the single point z∞. Thus z∞ must lie
on the boundary of Ω ∩ Uψ, with the rest of the segment L (and indeed all of
Zmin) outside it. We shall need to locate the exposed points of the closed con-
vex set Zmin. Recall a point p ∈ Zmin is exposed if some hyperplane touches
Zmin only at p.

Claim #2: The exposed points of Zmin lie in the support of the Monge-
Ampère measure Mψ̃.
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Proof of claim: Let p be an exposed point of Zmin. Then some affine
function A(x) = 〈 n̂, x− p〉 takes negative values on Zmin \ {p}. Given r > 0,
we claim δ > 0 sufficiently small ensures the convex section

(7.15) Sδ := {x ∈ Rn | ψ̃(x) < ψ̃(p) + δA(x) + δ2}

lies in Br(p). If not, there exists a positive sequence δ(j) → 0 with xj ∈
Sδ(j) \ Br(p). Since Sδ(j) forms a convex neighbourhood of p, it costs no
generality to take xj ∈ ∂Br(p), whence a subsequence — also denoted xj
— converges to some x∞ ∈ Br(p). Taking a limit in the equality (7.15)
which defines xj ∈ Sδ(j) shows ψ̃(x∞) ≤ ψ̃(p). Thus x∞ ∈ Zmin ∩ ∂Br(p)
and A(x∞) < 0. Taking j large enough yields A(xj) < A(x∞)/2 < 0 and
δ(j) < −A(x∞)/2. Inequality (7.15) then asserts ψ̃(xj) < ψ̃(p), contradicting
p ∈ Zmin. The only logical escape is Sδ ⊂ Br(p) for δ sufficiently small.
Corollary A.2 shows Mψ̃[Sδ] > 0. Since Br(p) can be taken arbitrarily small,
we conclude p ∈ spt Mψ̃ as desired. End of claim.

Claim #2 combines with (7.5) to show all exposed points of Zmin lie
in Ω ∩ Uψ or Λ ∩ Uψ∗ . The segment L of Claim #1 shows the sole point
z∞ ∈ Zmin ∩Ω ∩ Uψ cannot be exposed in Zmin, so all exposed points of Zmin
are contained in the compact convex set Λ. Being limits of exposed points,
the extreme points of Zmin also lie in Λ according to Straszewicz’ theorem
[68, §18.6]. Here extreme means p ∈ Zmin cannot be expressed as a convex
combination p = (1−λ)p0 +λp1 of points p0,p1 ∈ Zmin with λ ∈ ]0, 1[ unless
p0 = p1. Similarly, a direction q in the recession cone rc[Zmin] := limλ↓0 λZmin
is extreme if q = (1 − λ)q0 + λq1 with λ ∈ ]0, 1[ forces q0 to be non-negative
scalar multiple of q1 or vice versa.

A variation of Minkowksi’s theorem given by Rockafellar [68, §18.5] asserts
that any closed convex set which does not contain a full line, can be expressed
as the convex hull of its extreme points plus its extreme directions: Zmin =
conv ext [Zmin] + rc[Zmin]. Note that Zmin does not contain a full line, since
this would limit the dimension of {ψ̃∗ <∞} to n− 1, violating ∇ψ̃(Rn) = Λ.
Thus z∞ = p + q where p ∈ Λ and q ∈ rc(Zmin). Observe that q 6= 0 since
z∞ ∈ Ω lies a positive distance from Λ by hypothesis. Thus Zmin contains a
half-line in direction q; let us choose coordinates in which q parallels, say, the
negative xn-axis. Gradient monotonicity then forces ∂ψ̃/∂xn ≥ 0 throughout
Rn, so that Λ = ∇ψ̃(Rn) must lie in the upper halfspace xn ≥ 0. Thus Λ
has n̂V (0) = −en as an outer normal at ∇ψ̃(z∞) = 0 ∈ Λ ∩ Uψ∗ . Two cases
remain to consider: either (a) ∇ψ̃(z∞) = 0 lies on the free boundary Λ ∩ ∂Uψ∗ ,
(b) or not. We address the second case first.

Case (b): 0 6∈ Λ ∩ ∂Uψ∗ (not a free boundary point). In this case there is
a small ball Bδ(0) which does not intersect the free boundary Λ ∩ ∂Uψ∗ . For
any y ∈ Λ∩Bδ(0), the segment joining 0 to y will lie in the non-empty convex
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set Λ ∩Bδ(0) ⊂ Λ ∩ Uψ∗. For λ ∈ ]0, 1[, monotonicity then yields

λ〈∇ψ̃−1(λy)− p, y − 0〉 ≥ 0,

from which we recover 〈 z∞ − p, y〉 ≥ 0 in the limit λ ↓ 0. Since q = z∞ − p
parallels the negative xn-axis, this contradicts the fact that y ∈ Λ ⊂ {xn > 0}
lies in the upper halfspace.

Case (a): 0 ∈ Λ ∩ ∂Uψ∗ (at the intersection of the fixed with the free
boundary). Since z∞ 6∈ Xnt, (7.2) asserts z∞ = z∞ − ∇ψ(z∞) is not an
outward normal to Λ at 0. It follows that the intersection Λ ∩ B|z∞|(z∞) is
non-empty; it is manifestly convex, and contained in Λ ∩ Uψ∗ according to
Lemma 6.8. For a line segment joining 0 to y ∈ Λ ∩B|z∞|(z∞), the argument
of case (b) now yields the same contradiction. The conclusion must be that
for ε0 > 0 small enough, Zε0(z) ⊂ BR(z) as desired. QED.

Remark 7.12. If ∂ntΛ is empty, the constant ε0(ψ,R) of the preceding
lemma can be shown to depend on ψ only through the coarse geometrical pa-
rameters of the problem: the distance separating the convex domains Ω and
Λ and their inner and outer radii, the universal constant δ0 of (7.4), and the
minimal angle separating the free inward normal from the fixed outward nor-
mal among points of intersection ∂Λ∩Λ ∩ ∂Uψ∗ between the target’s fixed and
the free boundaries. This is established by repeating the proof given above,
for any sequence of data (fk, gk, h) and solutions ψk sharing the same coarse
parameters, thus permitting extraction of a subsequential limit.

Theorem 7.13 (p-uniform convexity along convex boudaries).

Fix data (f, g, h) of convex support Ω := int [spt f ] and Λ := int [spt g]. For a
weak-∗ solution ψ to the obstacle problem (4.1), let Uψ = {x ∈ Rn | ψ > h}.
Given R > 0 and x ∈ Ω ∩ Uψ, ψ will be p-uniformly convex (7.17) on Ω ∩
Uψ ∩ Br/2(x) if B2R(x) is disjoint from Λ ∪ Xnt and has convex intersection
with Ω ∩ Uψ, where ε0 = ε0(ψ,R), Xnt, and r = βε0

n/2/Rn−1 are from Lem-
mas 7.11 and A.5. The convexity exponent p = log s0(0, t̄)/ log t̄ from Lemma
7.6 is universal, as is the constant k times (ε0/Rp)1/(p−1).

Proof: Fix R > 0, and x ∈ Ω ∩ Uψ such that B2R(x) is disjoint from Λ ∪Xnt

and has convex intersection with Ω ∩ Uψ. Extend ψ to ψ̃ ∈ C1(Rn) as in
Theorem 6.3. According to Lemma 7.5, the Monge-Ampère measure Mψ̃ has
a doubling neighbourhood BR(z) around each z ∈ Ω ∩ Uψ ∩ BR(x), where it
doubles affinely with a universal constant. SetX = sptMψ̃ = Ω ∩ Uψ∪Λ \ Uψ∗ ,
from Lemma 7.2. Since Ω ∩ Uψ ∩ B2R(x) is hypothesized to be convex, so is
X ∩BR(z) = Ω ∩ Uψ ∩BR(z).

Choose ε0 > 0 and r = βε0
n/2/Rn−1 from Lemmas 7.11 and A.5 to ensure

Br(z) ⊂ Zε0(z) and Zsε0(z) ⊂ BR(z) for all z ∈ X∩BR(x) and s ∈ ]0, 1]. Since
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BR(z) is an affine doubling neighbourhood for Mψ̃ around z ∈ X ∩BR(x), and
the sets X ∩ Zsε0(z) are all convex, we are in a position to apply Lemma 7.6.
As in [18, Corollary 2.3], our first goal is to deduce the following expression of
strict convexity.

Claim #1: Fix t ∈ ]0, 1[ so that t/(1− t) ≥ n3/2 =: α and the correspond-
ing s0(t, 1) from Lemma 7.6; here α denotes F. John’s (universal) balancing
constant (Lemma A.3). Every ε ∈ ]0, ε0], z0 ∈ X∩BR(x) and z1 ∈ X∩∂Zε(z0)
satisfy

(7.16) ψ(z1) ≥ ψ(z0) + 〈∇ψ(z0), z1 − z0〉+ εs0(t, 1)/t

Proof of claim: Translating the data (f, g), it costs no loss of generality to
assume ∇ψ(z0) = 0. Now zt := (1− t)z0 + tz1 ∈ t ·Zε(z0), where t/(1− t) ≥ α

is still fixed as above. Thus Zs0ε(zt) ⊂ Zε(z0) by Lemma 7.6 (and A.8),
with s0 = s0(t, 1). In particular, z1 ∈ ∂Zε(z0) cannot be an interior point
of Zs0ε(zt); nor can z0, for our choice of t would then force z1 also to be an
interior point (since the affine section Zs0ε(zt) = {ψ < L} is roughly balanced
around its center zt). If L(y) is the affine function defining this section, we
know L(z0) ≤ ψ(z0) and L(z1) ≤ ψ(z1), but L(zt) = ψ(zt)+ s0ε ≥ ψ(z0)+ s0ε

since ∇ψ(z0) = 0. Along the segment joining z0 to zt, the slope of L is at least
s0ε/|zt − z0|; by the time it reaches z1, this linear function will have attained
a value L(z1) ≥ L(zt) + |z1 − zt|s0ε/|zt − z0|. The desired estimate follows:

ψ(z1) ≥ L(z1) ≥ L(zt) + s0ε
1− t

t
≥ ψ(z0) + s0ε/t.

End of claim.
Our next claim completes the proof of the theorem:
Claim #2: Given t̄ ∈]0, 1[, take s0(0, t̄) from Lemma 7.6. Then every

z0, z1 ∈ X ∩Br/2(x) satisfy
(7.17)

〈∇ψ(z1)−∇ψ(z0), z1 − z0〉 ≥ ε0
s0((α−1 + 1)−1, 1)

(α−1 + 1)−1

(
t̄|z1 − z0|

R

) log s0(0,t̄)
log t̄

.

Proof of claim: Given z0, z1 ∈ X∩Br/2(x), we have z1 ∈ Br(z0) ⊂ Zε0(z0).
We assume z1 6= z0, since otherwise there is nothing to prove. The centered
affine sections Zε0(z0) vary continuously with ε0, and they tend to z0 in the
limit ε0 → 0, according to Lemmas 7.11 and A.8. Thus there exists some ε ≤ ε0
such that z1 ∈ ∂Zε(z0). Summing ψ(z0) ≥ ψ(z1)+ 〈∇ψ(z1), z0− z1〉 with the
conclusion (7.16) of Claim #1 yields

(7.18) 〈∇ψ(z1)−∇ψ(z0), z1 − z0〉 ≥ εs0(t, 1)/t.

with t = (α−1 + 1)−1. It remains to show ε dominates a certain power of
|z0 − z1|.
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Recall s ≤ s0(0, t̄)k implies Zsε0(z0) ⊂ t̄k · Zε0(z0) for all k ∈ N from
Corollary 7.7. Set s = ε/ε0, and let k ≥ 0 be the integer satisfying log s

log s0(0,t̄)
∈

[k, k + 1[. Then s ≤ s0(0, t̄)k, and since z1 ∈ ∂Zsε0(z0) ⊂ t̄k · Zε0(z) we find

|z1 − z0| ≤ t̄
log s

log s0(0,t̄)
−1 max

z∈∂Zε0 (z0)
|z− z0|

≤ s
log t̄

log s0(0,t̄)R/t̄.

Recalling s = ε/ε0, this combines with (7.18) to complete claim (7.17) and the
theorem. End of Claim. QED.

Hölder continuity of the map ∇ψ̃ up to the free boundary Ω∩∂Uψ follows
from Remark 7.10. By exchange symmetry f(x) ↔ g(y), it is equivalent to
show Hölder continuity of the inverse map ∇ψ∗ up to Λ ∩ ∂Uψ∗ ; in fact we
show Hölder continuity of ∇ψ∗ globally, away from the image ∇ψ̃(∂ncUψ) of
any nonconvexities on the first free boundary, and from any points ∂ntΛwhere
the second free and fixed boundaries intersect tangentially.

Corollary 7.14 (Hölder continuous map up to free boundary).

Fix data (f, g, h = k) of convex support Ω = int [spt f ] and Λ = int [spt g].
Set Uψ := {x ∈ Rn | ψ > h}, where ψ is a weak-∗ solution to the obstacle
problem (4.1). Then the Legendre transform of ψ is Hölder differentiable
ψ∗ ∈ C1,α

loc

(
Λ ∩ Uψ∗ \ F

)
away from F = ∂ψ (∂ncUψ) ∪ ∂ntΛ ⊂ Rn \ Λ, with

α = 1/(p− 1) universal from Theorem 7.13.

Proof: Let ψ̃ ∈ C1(Rn) extend ψ as in Theorem 6.3, so that ∇ψ̃ : Ω ∩ Uψ −→
Λ ∩ Uψ∗ is a homeomorphism. Any y ∈ Λ ∩ Uψ∗ \ F is the image y = ∇ψ̃(x)
of some x ∈ Ω ∩ Uψ which lies in a ball B2R(x) whose intersection with the
active domain Ω ∩ Uψ is convex. Taking R > 0 smaller if necessary ensures
B2R(x) disjoint from Xnt := Ω ∩ Uψ ∩ ∇ψ̃−1(∂ntΛ). Theorem 7.13 provides
a neighbourhood X := Br/2(x) ∩ Ω ∩ Uψ on whose interior ψ is p-uniformly
convex, with p universal. Thus the gradient of ψ∗ is Hölder continuous with
exponent α = 1/(p − 1), on the interior (hence on the closure) of the neigh-
bourhood ∇ψ̃(X) of y relatively open in Λ ∩ Uψ∗ , according to Remark 7.10.
QED.

A final corollary shows that the normal to the free boundary is Hölder
continuous in the interior of Ω — and up to those points of ∂Ω where the
fixed and free boundaries intersect transversally, and which do not map to
non-locally-convex intersection points ∂Λ ∩ ∂ncUψ∗ of the target’s fixed and
free boundaries.

Corollary 7.15 (Hölder continuity of free boundary normal).

Fix data (f, g, h = k) of convex support Ω = int [spt f ] and Λ = int [spt g]. Let
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ψ̃ ∈ C1(Rn) from Theorem 6.3 extend a weak-∗ solution ψ to the obstacle prob-
lem (4.1), and set Uψ = {x | ψ > h}. Then the normal nUψ(x) = x−∇ψ̃(x) to
the free boundary is Hölder continuous: n̂Uψ := nUψ/|nUψ | ∈ C

1,α
loc (Ω ∩ ∂Uψ)∩

C1,α
loc

(
Ω ∩ ∂Uψ \ E

)
where E := ∇ψ̃−1 (∂Λ ∩ ∂ncUψ∗)∪∂ntΩ is defined by (7.1)–

(7.2).

Proof: From Corollary 7.14 and the exchange symmetry f(x) ↔ g(y), we infer
the gradient of ψ̃ is Hölder continuous on compact subsets of Ω ∩ ∂Uψ disjoint
from ∂ntΩ ∪ ∇ψ̃−1 (∂ncUψ∗). According to Lemma 6.8, Ω ∩ ∂Uψ is disjoint
from ∇ψ̃−1

(
Λ ∩ ∂Uψ∗

)
; similarly Ω ∩ ∂Uψ is disjoint from ∇ψ̃−1 (Λ ∩ ∂Uψ∗).

Since ∂ncUψ∗ ⊂ Λ ∩ ∂Uψ∗ we conclude the map ∇ψ̃ is Hölder continuous on
the free boundary outside of E. The outer normal nUψ(x) = x−∇ψ̃(x) to the
free domain was identified in Remark 6.5; it is non-vanishing by the positive
separation hypothesized for Ω and Λ. Thus the corollary is established. QED.

A. Background estimates for centered sections

This appendix is devoted to recalling and refining some central aspects
of Caffarelli’s C1,α regularity theory for the Monge-Ampère equation [16]. In
particular we show that the centered affine section (7.8) of height ε above
any point (x, ψ(x)) in the graph of a convex function is uniquely defined and
depends continuously on ε provided x ∈ int [domψ] . The central estimates
concerning such sections are also recalled. We use ωn = |Sn−1| to denote the
(n− 1)-dimensional area of the unit sphere in Rn.

Lemma A.1 (Aleksandrov estimate and lower barrier). If ψ :
Rn −→ ]−∞,∞] is convex, lower semi-continuous, and x ∈ Z := {ψ < 0} ⊂
BR(0), then

(A.1) ψ(x) ≥ −
(

Mψ(Z)
n(2R)n−1

ωn−1
dist ∂Z(x)

)1/n

.

Proof: Compare ψ with a cone v with vertex at (x, ψ(x)) sharing the same
zero set ∂Z. Then

∂ψ(Z) ⊃ ∂v(x) ⊃ B−v(z)
2R

(0) ∪
{

−ψ(x)
dist ∂Z(x)

ê
}

for some unit vector ê ∈ Rn. Since the last set contains a right circular cone
of volume (Base)(height)/n we estimate

Mψ(Z) ≥ vol [∂v(x)] ≥ ωn−1

n

(
−ψ(x)

2R

)n−1 (
−ψ(x)

dist ∂Z(x)

)
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to conclude the proof. QED.

Corollary A.2 (Bounded sections have positive MA mass). Let
ψ : Rn −→ ]−∞,∞] be proper and convex, with S := {x | ψ(x) < 〈v, x〉+ ε}
bounded and non-empty for some v ∈ Rn and ε ∈ R. Then Mψ(S) > 0.

Proof: Let z ∈ S and apply the lemma to the convex function ψ̃(x) :=
ψ(x) − 〈v, x〉 − ε, so Mψ = Mψ̃ and Z = S. Since ψ̃(z) < 0 we conclude
Mψ(Z) > 0 in (A.1). QED.

The next lemma is a version of a theorem by Fritz John [47], adapted
to ellipsoids with fixed center of mass. The sharp constant α = n3/2 for this
version may be found in Gutiérrez [45], where much of this theory is described.

Lemma A.3 (Normalization of convex bodies [16, Lemma 2]). There
is a universal constant α ≥ n, such that each bounded convex domain Ω ⊂ Rn

with barycenter at the origin contains an ellipsoid E ⊂ Ω, also centered at the
origin, whose dilation by α = n3/2 encloses Ω ⊂ α·E.

Lemma A.4 (Doubling property implies upper barrier). Suppose
ψ : Rn −→ ]−∞,∞] convex, lower semi-continuous, attains its minimum
value at y. If Z := {ψ < 0} is a bounded set with positive volume and 0 as
its barycenter, then 1 ≤ ψ(y)/ψ(0) ≤ α + 1 where α = α(n) is the balanc-
ing constant of Lemma A.3. Moreover, the doubling condition (A.3) on the
Monge-Ampère measure Mψ provides δ > 0 for which

(A.2) c ≤ vol (Z)Mψ(Z)/|ψ(y)|n ≤ C/δ2

where the constants c = ωn−1ωn/(n2n−1α) and C = αn+2c depend on dimen-
sion only.

Proof: Since both conclusions are invariant under ψ 7→ ψ ◦ T , when T (x) is
an affine unit-determinant transformation, Lemma A.3 allows us to assume

Bαr(0) ⊂ Z ⊂ Bα2r(0)

for some r > 0 without loss of generality. The estimate dist (Z/α2,Rn \ Z) ≥
(α− 1)r then yields |∇ψ(x)| ≤ |ψ(y)|/(α− 1)r for all x ∈ Z/α2. Thus

Mψ

(
Z/α2

)
≤ ωn

(α− 1)n
|ψ(y)|n

rn
.

On the other hand, the preceding lemma yields

Mψ(Z) ≥ ωn−1

n2n−1

|ψ(y)|n

Rn−1dist ∂Z(y)
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with R = α2r. If for some ε > 0 we have the doubling property

(A.3)
ωnδ

2

(α− 1)n
Mψ(Z) ≤ ωn−1

n(2α2)n−1
Mψ(Z/α2)

then εr ≤ dist ∂Z(y) ≤ α2r and hence |ψ(y)| ∼ rMψ(Z)1/n as desired. In fact,
(A.2) holds with c = ωn−1ωn/(n2n−1α) and C = αn+2c. Since Z is star-shaped
around y, expressing 0 = (1 − t)x + ty as a convex combination of y and a
boundary point x ∈ ∂Z yields ψ(0) ≤ 0 + tψ(y). Now |x| ≥ αr but |y| ≤ α2r

yields (1 − t)/t ≤ α, hence t−1 ≤ α + 1. Since ψ(y) is a minimum, we have
1 ≤ ψ(y)/ψ(0) ≤ t−1 as desired. QED.

The preceding lemma asserts not only that the maximum height of a
convex function over any affine section is comparable to its height at the
barycenter, but that, as for a parabola, the section volume corresponds to
the n

2 th power of this height, provided only that the Monge-Ampère measure
of the section is comparable to its volume, and doubles affinely around its
barycenter. Since the two latter properties can be deduced when ψ satisfies a
Monge-Ampère equation with appropriate right hand side, this already hints
at a regularity theory. The next lemma refines this observation to show that
a sequence of sections at any given height cannot become arbitrarily thin, un-
less they simultaneously become arbitrarily long. At a given height, bounded
sections therefore have bounded eccentricity.

Lemma A.5 (Sections degenerate doubly or not at all). Fix ε0 >
0 and a proper convex function ψ : Rn −→ ]−∞,∞]. Suppose v ∈ Rn yields a
section Z = Zε0(z) = {x ∈ Rn | ψ(x) < ψ(z) + 〈v, x− z〉+ ε0} with barycen-
ter at z ∈ int [domψ]. If vol [Z] ≥ δ0Mψ[Z] for some δ0 > 0, then there is a
(universal) constant β := (cδ0)1/2/(ωnαn) such that Zε0(z) ⊂ BR(z) implies
Bβε0n/2R1−n(z) ⊂ Zε0(z).

Proof: Without loss of generality set z = 0 so that Z = Zε0(0) is a section of
the convex function ψ with height ε0 > 0 over its barycenter 0 ∈ int [domψ].
Since the height of the section is at least ε0, from vol [Z] ≥ δ0Mψ[Z] and (A.2)
we recover

(A.4) cε0
n < vol [Z]2/δ0;

for this lower bound we do not need the doubling condition (A.3), as evidenced
by the absence of δ. According to (John’s) Lemma A.3, there is an ellipsoid
centered at the origin with E ⊂ Z ⊂ αE. The principle axes of this ellipsoid
have lengths a1 ≤ a2 ≤ · · · ≤ an ≤ R if Z ⊂ BR(0), so the volume of Z ⊂ αE

can be estimated by
vol [Z] ≤ ωna1R

n−1αn.
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Combined with (A.4) this yields the desired bound a1 ≥
√

(cδ0ε0n)/(ωnαnRn−1) =
βε0

n/2/Rn−1. QED.

It is not hard to rule out the possibility of a sequence of centered sections
becoming doubly infinite using the following remark. Some of the work con-
cerning Hölder estimates will be devoted to ruling out limiting sections which
contain only a half-line.

Remark A.6. The subgradient image ∂ψ(Rn) of a convex function ψ has
an empty interior if and only if the graph of ψ contains a straight line, or
equivalently, if and only ψ(x1, . . . , xn) is independent of x1 in some orthogonal
basis for Rn.

Let us finally recall the basic existence result concerning centered affine
sections [16, Lemma 1] [17, Theorem 2.2]. We prove uniqueness of these sec-
tions and their continuous dependence on height afterwards.

Theorem A.7 (Centered sections of a convex function). Let ψ :
Rn −→ [0,∞] be a non-negative convex function, continuous at ψ(0) < 1

2 and
with ∂ψ(Rn) having non-empty interior. For some affine function L(x) =
1 + 〈v, x〉 the section ZL := {x ∈ Rn | ψ(x) < L(x)} is bounded, convex, and
has zero as its barycenter.

Proof: First assume ψ is smooth and strictly convex with quadratic growth
(A.5) as |x| → +∞. Then ZL is a bounded non-empty convex domain with a
first moment vector

zL :=
∫
ZL

x dvol (x)

equal to its volume times its barycenter. We claim that for a suitable choice
of v ∈ Rn, the first moment |zL| achieves its minimum value among all affine
functions L(x) = 1+ 〈v, x〉. This follows by continuity and compactness once
the following claim is established.

Claim #1: The moment |zL| grows without bound as the slope |v| → ∞
grows.

Proof of claim: It costs no generality to suppose v = (λ, 0, . . . , 0) parallels
the postive x1-axis. Decompose ZL = Z+

L ∪Z
−
L into Z±L = {(x1, . . . , xn) ∈ ZL |

±x1 > 0}. The quadratic growth assumptions assert

(A.5)
2|x|2

R2
− 1 ≤ ψ(x) ≤ 1

2
(
|x|2

r2
+ 1)

for some 0 < r < R < ∞, whence Z−L ⊂ BR(0) ∩ {x | x1 ≥ −1/λ} since ψ is
also non-negative. Thus

(A.6)
∫
Z−L

x1 dvol (z) ≥ −R
n−1

λ2
.
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On the other hand, the convex set Z+
L includes the n − 1 dimensional ball

Bn−1
r (0) in the hyperplane x1 = 0, as well as the point (2λr2, 0, . . . , 0) on

the x1-axis. Thus Z+
L contains a right circular cone along the x1-axis with a

cylinder of diameter r and height λr2 inside it. It is easy to estimate

(A.7)
∫
Z+
L

x1 dvol (z) ≥ λ2r4

2
ωn−1

(r
2

)n−1
.

Summing (A.6)–(A.7) shows that |zL| diverges with λ→∞. End of claim.
Claim #2: The lemma is true for ψ smooth and strictly convex satisfying

(A.5).
Proof of claim: A sequence vk ∈ Rn minimizing |zLk | is bounded according

to Claim #1, so a subsequence converges to a limit vk(i) → v∞ for which |zL∞ |
is a minimum. We need only show zL∞ = 0. It costs no generality to assume
zL∞ = (−λ, 0, . . . , 0) with λ ≥ 0. Consider the dependence of the first moment
zL = (z1(ε), . . . , zn(ε)) on v = v∞ + (ε, 0, . . . , 0). If the derivatives existed and
z′1(0) > 0, minimality of |zL∞ | would imply

(A.8) 0 =
d

dε

∣∣∣∣
ε=0

|zL|2

2
=

n∑
j=1

zj(0)z′j(0) = −λz′1(0)

forcing λ = 0 as desired. Below we shall argue the same conclusion without
addressing existence of the derivatives.

Set Z±(ε) = {(x1, . . . , xn) ∈ ZL | ±x1 > 0}. Now Z±(ε) is a monotone se-
quence of bounded convex sets, whose union ZL = {(x1, . . . , xn) | ψ̃(x) < εx1}
is conveniently expressed in terms of ψ̃(x) := ψ(x) − L∞(x). By smoothness
and strict convexity, ∇ψ̃(x) is bounded away from zero and infinity in a neig-
bourhood of the compact set ∂ZL∞ . Thus vol [ZL∆ZL∞ ] ≤ K|ε| for some large
constant K and ε small enough. This shows |zj(ε)|2 = O(ε2) for j 6= 1. On
the other hand, it is clear that z1(ε) ≥ −λ for ε > 0, since Z+(0) ⊂ Z+(ε) and
Z−(ε) ⊂ Z−(0). To quantify this inequality, observe that any maximal interval
{(x1,X) | a(X) < x1 < b(X)} in Z+(0) for fixed X ∈ Rn−1 lies in an interval
{(x1,X) | a(X) < x1 < b(X) + εk(X)} ⊂ Z+(ε) which is strictly longer since
∇ψ̃(x) is non-vanishing on ∂Z+(0). Thus z1(ε) ≥ −λ + εk for some k > 0,
whence |z(ε)|2 = λ2−2λkε+O(ε2). Minimality of |z(0)|2 establishes the claim
λ = 0. End of claim.

A series of approximations will show a general convex function ψ : Rn −→
[0,∞] can be approximated by one which is smooth, strictly convex, and
has quadratic growth (A.5). Indeed, let Ω0 denote the interior of domψ :=
{x ∈| u(x) <∞} and define

ψ1
ε (x) := max {ψ(x),

ε1/2

dist Rn\Ω0
(x)

}

as a maximum of two convex functions [58, Lemma 4.2], so that its rate of diver-
gence is known at ∂Ω0. Fix a subdomain Ωε := {x ∈ B1/ε(0) | dist Rn\Ω0

(x) > ε}
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bounded and convex, and define ψ2
ε (x) as a supremum of supporting hyper-

planes
ψ2
ε (x) = sup {〈v, x− z〉+ ψ1

ε (z) | z ∈ Ωε,v ∈ ∂ψ1
ε (z)}

to be the smallest convex extension of ψ1
ε (x) from Ωε to Rn. Then ψ2

ε is globally
Lipschitz and converges uniformly to ψ on compact subsets of Ω0. Strict
convexity, smoothness, and quadratic growth are ensured by adding a parabola
ψ3
ε = ψ2

ε (x) + ε|x|2, and convolving with a standard mollifier ψε = ψ3
ε ∗ ηε,

neither of which spoils the uniform convergence to ψ on compact subsets of
Ω0. Divergence outside Ω0 is addressed by the next statement.

Claim #3: For ε > 0 small, if |x| < 3
4ε
−1 but x 6∈ Ω0 then ψε(x) ≥ 1

2ε
−1/2.

Proof of claim: We shall rather prove ψ2
ε (x0) ≥ ε−1/2 on the part of

B1/ε(0) lying outside the convex set Ω0. The claim then follows since ψ2
ε is

non-negative in Ω0 and our mollifier ηε is spherically symmetric.
Take 0 < ε < 1/2 small enough that ψ2

ε (0) < 1/2 and Ωε contains the
origin. Then some zε ∈ ∂Ωε lies on the segment joining 0 to x0 ∈ B1/ε(0) \Ω0.
Since dist Rn\Ω0

(zε) = ε one finds yε ∈ ∂ψ2
ε (zε) satisfies

ψ2
ε (x)≥〈yε, x− zε〉+ ψ2

ε (zε)

≥〈yε, x− zε〉+
1
ε1/2

(A.9)

for all x ∈ Rn. Taking x = 0 in (A.9) shows 〈yε, zε〉 > 0. Since zε is a positive
fraction of x0, the desired inequality ψ2

ε (x0) ≥ ε−1/2 follows by setting x = x0

in (A.9). End of claim.
Now ψε → ψ uniformly on compact subsets of Rn \ ∂Ω0. Claim #2

provides a convex section Zε := {x | ψε ≤ Lε} with barycenter at the origin.
F. John’s Lemma, A.3, yields a centered ellipsoid Eε ⊂ Zε ⊂ α·Eε.

Claim #4: ∂Eε remains bounded away from the origin and ∞ as ε → 0,
and the slope of Lε remains bounded.

Proof of claim: Since ψ(x) is continuous at ψ(0) < 1/2, for some small
fixed r > 0, taking ε small enough ensures ψε(x) < 1/2 for all |x| < αr. Now
Lε(x) = 1+〈vε, x〉, so at least half of the ball Bαr(0) is contained in Zε ⊂ α·Eε.
This shows ∂Eε remains outside Br(0) to prove the first half of the claim. Now
Br(0) ⊂ Zε, which incidentally implies |vε| ≤ 1/r since ψε ≥ 0.

On the other hand, if the longest axis of Eε grows without bound we
derive a contradiction as follows. For some subsequence ε(k) → 0 we have a
convergent sequence of unit vectors ûk → ê1 without loss of generality, such
that ±2kûk ∈ Eε(k) while 〈 ûk, ê1〉 ≥ 1− (r/k)2. Since Br(0) ⊂ Eε(k) it follows
that ±kê1 ∈ Eε(k) ⊂ Zε(k). This means

0 ≤ ψε(k)(±kê1) ≤ 1± k〈vε(k), ê1〉.

Thus |〈vε(k), ê1〉| ≤ 1/k which in turn implies 0 ≤ ψε(k)(±kê1) ≤ 2. Since
ψε → ψ in Ω0 and grows large outside Ω0, convexity implies 0 ≤ ψ(x) ≤ 2
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along the entire x1-axis. But the only bounded convex function is a constant:
the graph of ψ would contain a line, contradicting Remark A.6 to establish the
claim. End of claim.

Using the preceding claim, the Blaschke selection theorem yields a subse-
quence ε(k) → 0 and a bounded convex domain Z0 ⊂ Rn such that Zε(k) →
Z0 in Hausdorff distance while Lε(k) → L0 converges to an affine function
L0(x) = 1 + 〈v, x〉. Clearly Z0, like Zε(k), has barycenter at the origin since
convergence takes place in a bounded set and vol [Zε(k)∆Z0] → 0. Setting
Z = {x ∈ Ω0 | ψ < L0} and Z ′ = {x ∈ Rn | ψ ≤ L0}, one verifies Z ⊂ Z0 ⊂ Z ′

from the convergence ψε → ψ and Z ′ ⊂ Z because ψ(0) < L0(0). Since the
distinction Z0 \ Z ⊂ ∂Z is negligible, the proof is complete. QED.

Lemma A.8 (Centered sections are unique). Fix a convex function
ψ : Rn −→ ]−∞,∞] for which ∂ψ(Rn) has non-empty interior. If 0 ∈
int [domψ], then the section Zε(0) := {x ∈ Rn | ψ(x) < ψ(0) + 〈vε, x〉+ ε}
with center of mass at the origin has an interior uniquely determined by ε > 0.
Metrized by Hausdorff distance, the section Zε(0) varies continuously with
ε > 0. The slope vε is also continuous and uniquely determined by ε > 0,
except when vol [domψ \ Zε(0)] = 0.

Proof: Let p ∈ ∂ψ(0). Replacing ψ by ψ̃(x) = ψ(x)−ψ(0)− 〈p, x〉 shows it
costs no generality to assume ψ(x) ≥ ψ(0) = 0 is non-negative. Theorem A.7
then implies the existence of at least one vε for which Zε = Zε(0) is bounded
and has zero as its barycenter. To derive a contradiction, suppose for some ε >
0 there are two distinct solutions, vε 6= ṽ, corresponding to bounded sections
Zε and Z̃ both having height ε over their common center of mass. In some
coordinate system ṽ−vε = λen with λ > 0, so that L̃(x) = ε+ 〈 ṽ, x〉 satisfies
xn(L̃(x) − Lε(x)) > 0. Thus the parts Z̃± := Z̃ ∩ H± of Z̃ := {x | ψ < L̃}
which lie in the upper and lower halfspacesH± := {x | ±xn > 0} satisfy reverse
inclusions Z̃− ⊂ Z−ε and Z+

ε ⊂ Z̃+ with respect to the corresponding parts
of Z±ε := Zε ∩ H±. Moreover, the inclusions are generally strict: both Zε
and Z̃ contain a neighbourhood of the origin, and any boundary point x ∈
H+ ∩ ∂Zε ∩ int [domψ] will have a neighbourhood contained in Z̃. Then it
follows that at least one of the inequalities∫

Z±ε

xndvol (x) ≤
∫
Z̃±

xndvol (x)

is strict, violating the hypothesis that both Zε and Z̃ share the same center
of mass. This contradiction implies ṽ = vε. The only other possibility is that
both (H+ ∩ domψ) \ Z+

ε and (H− ∩ domψ) \ Z̃− have zero volume, in which
case the inclusions above imply the interiors of the convex sets Zε ⊂ domψ

and Z̃ ⊂ domψ coincide.
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Let us now show continuous dependence of the section Zε on ε > 0; again
by replacing ψ by ε−1ψ it suffices to show continuity near ε = 1. Choose any
sequence limk→∞ εk = 1. We claim the corresponding sections Zk = Zεk(0)
are bounded independently of k. Otherwise there is an unbounded sequence of
points αxk ∈ Zk whose reflections −xk also lie in Zk, since centered sections
are roughly balanced. This implies

0 ≤ ψ(±xk) ≤ εk ± 〈vk, xk〉 ≤ 2εk

where vk := vεk . A subsequential limit forces ψ(λx̂∞) ≤ 2 for all λ ∈ R along
the line x̂∞ = limk→∞ xk/|xk|. In this case the graph of ψ must contain a full
line, contradicting the hypothesis that ∂ψ(Rn) has non-empty interior.

Having shown Zk ⊂ BR(0) for some R < ∞, let us also observe that
the section boundaries also remain bounded away from the origin. Indeed,
taking r > 0 small enough implies ψ(x) < 1/2 on the ball of radius αr around
zero. Extracting a further subsequence ensures 1/2 < εk < 2 for all k, so
the half of Bαr(0) on the positive side of the hyperplane 〈vk, x〉 = 0 will
be contained in Zk. Since Zk is roughly balanced, this implies Br(0) ⊂ Zk
for all k. From this fact we conclude that |vk| ≤ 2/r, so a subsequential
limit vk → v∞ exists. We claim the corresponding sections Zk converge to
Z∞ := {x | ψ(x) ≤ 1 + 〈v∞, x〉} in Hausdorff distance or — what is equivalent
for convex bodies — the sense that the volume of the symmetric difference
vol [Z∞∆Zk] → 0. This is a consequence of Lesbegue’s dominated convegence
theorem applied on the ball BR(0): since the equality defining Z∞ is strict
both inside Z∞ and outside the closure of its complement, it is not hard to
show χZ∞ = limk→∞ χZk(x) pointwise for all x 6∈ ∂Z∞. Lebesgue’s dominated
convergence theorem also shows the center of mass of Z∞ must vanish, so
the uniqueness established above implies ∂Z∞ = ∂Z1 as desired. This forces
v∞ = v1 unless vol [domψ \ Zε(0)] = 0. QED.
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66. S.T. Rachev and L. Rüschendorf. Mass Transportation Problems. Probab. Appl. Springer-
Verlag, New York, 1998.
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