CLASSIFYING MINIMUM ENERGY STATES FOR INTERACTING PARTICLES (I) – SPHERICAL SHELLS

CAMERON DAVIES, TONGSEOK LIM AND ROBERT J. MCCANN

Abstract. Particles interacting through long-range attraction and short-range repulsion given by power-laws have been widely used to model physical and biological systems, and to predict or explain many of the patterns they display. Apart from rare values of the attractive and repulsive exponents \((\alpha, \beta)\), the energy minimizing configurations of particles are not explicitly known, although simulations and local stability considerations have led to conjectures with strong evidence over a much wider region of parameters. For a segment \(\beta = 2 < \alpha < 4\) on the mildly repulsive frontier we employ strict convexity to conclude that the energy is uniquely minimized (up to translation) by a spherical shell. In a companion work, we show that in the mildly repulsive range \(\alpha > \beta \geq 2\), a unimodal threshold \(2 < \alpha_{\Delta^\alpha}(\beta) \leq \max\{\beta, 4\}\) exists such that equidistribution of particles over a unit diameter regular \(n\)-simplex minimizes the energy if and only if \(\alpha \geq \alpha_{\Delta^\alpha}(\beta)\) (and minimizes uniquely up to rigid motions if strict inequality holds). At the point \((\alpha, \beta) = (2, 4)\) separating these regimes, we show the minimizers all lie on a sphere and are precisely characterized by sharing all first and second moments with the spherical shell. Although the minimizers need not be asymptotically stable, our approach establishes \(d_\alpha\)-Lyapunov nonlinear stability of the associated \((d_2\)-gradient) aggregation dynamics near the minimizer in both of these adjacent regimes — without reference to linearization. The \(L^\alpha\)-Kantorovich-Rubinstein distance \(d_\alpha\), which quantifies stability is chosen to match the attraction exponent.

Date: October 25, 2021.

©2021 by the authors. The authors thank Dejan Slepcev for fruitful suggestions, and Rupert Frank for pointing out prior use of Proposition 3.1 in his work [13] with Carrillo et al. CD acknowledges the support of a Natural Sciences and Engineering Research Council of Canada Undergraduate Research Grant. TL is grateful for the support of ShanghaiTech University, and in addition, to the University of Toronto and its Fields Institute for the Mathematical Sciences, where parts of this work were performed. RM acknowledges partial support of his research by the Canada Research Chairs Program and Natural Sciences and Engineering Research Council of Canada Grant 2020-04162.
Keywords: aggregation equation, spherical shell, attractive-repulsive power-law interaction, convex, unique energy minimizer, Lyapunov stability, asymptotic stability, Kantorovich-Rubinstein-Wasserstein distance, infinite-dimensional quadratic programming

MSC2020 Classification: Primary 49Q10. Secondary 31B10, 35Q70, 37L30, 70F45, 90C20

1. Introduction

The self-interaction energy of a collection of particles with mass distribution \(d\mu(x) \geq 0 \) on \(\mathbb{R}^n \) is given by

\[
E_W(\mu) = \frac{1}{2} \int_{\mathbb{R}^n \times \mathbb{R}^n} W(x - y)d\mu(x)d\mu(y),
\]

assuming the particles interact with each other through a pair potential \(W(x) \). Normalizing the distribution to have unit mass ensures that \(\mu \) belongs to the space \(P(\mathbb{R}^n) \) of Borel probability measures on \(\mathbb{R}^n \).

Our goal is to identify global energy minimizers of \(E_W(\mu) \) on \(P(\mathbb{R}^n) \), for power-law potentials \(W = W_{\alpha,\beta} \) where

\[
W_{\alpha}(x) := |x|^{\alpha}/\alpha \quad \text{and} \quad W_{\alpha,\beta}(x) := W_{\alpha}(x) - W_{\beta}(x) \quad \alpha > \beta > -n.
\]

When \(\beta \geq 2 \) the potential is called mildly repulsive [14]. In this paper, we focus on the mild repulsion threshold \(\beta = 2 \) called the centrifugal line in [38], since, at least on \(\mathbb{R}^2 \), the potential \(-W_2 \) induces the outward force which particles rotating uniformly around their common center of mass seem to experience in a corotating reference frame; see e.g. [39].

When \(\beta = 2 \) the energy also acts as a Lyapunov function of the rescaled dynamics of the purely attractive Patlak-Keller-Segel model [41] [34] in self-similar variables around the time of blow-up [45]. If \(\alpha \in (2, 4) \), we will show that the minimizer is uniquely given (up to translations) by a spherical shell, i.e. the uniform probability measure on a spherical hypersurface of the appropriate radius. For \(\alpha > 4 \) and \(\beta \geq 2 \), we build on these results to show in a companion paper that the minimizer is uniquely given (apart from rotations and translations) by equidistributing its mass over the vertices of a regular \(n \)-simplex. Together, these results resolve a question of Sun, Uminsky and Bertozzi, by showing that the linear stability of selfsimilar blow-up which they found for the aggregation dynamics in these two regimes can be improved to a nonlinear Lyapunov stability result. On the other hand, at the threshold exponent separating these two regimes, we will show that although all centered convex combinations of the configurations mentioned above remain minimizers, there are many additional minimizers...
as well: indeed for \((\alpha, \beta) = (4, 2)\) the centered minimizers consists of those measures supported on the minimizing spherical shell which share its moments up to order 2. When \(n \geq 2\), this case is distinguished from \(\alpha \neq 4\) by the fact that the Lyapunov stable set formed by global energy minimizers becomes infinite-dimensional.

To understand the literature surrounding these questions, we recall that heuristically, the aggregation equation

\[
(1.4) \quad \frac{\partial \mu}{\partial t} = \nabla \cdot \left(\mu \nabla (W^\ast \mu) \right)
\]

arises as the \(d_2\)-gradient descent of the energy \((1.1)\) with respect to the Kantorovich-Rubinstein-Wasserstein metric

\[
(1.5) \quad d_p(\mu, \nu) := \inf_{X \sim \mu, Y \sim \nu} \|X - Y\|_{L^p},
\]

defined for \(p \in [1, \infty]\) on probability measures \(\mu, \nu \in \mathcal{P}(\mathbb{R}^n)\). Here \(X \sim \mu\) denotes a random vector in \(\mathbb{R}^n\) with law \(\mu\), and the infimum is over all pairs of random vectors with fixed laws. In the mildly repulsive regime, \(W_{\alpha, \beta}\) is semiconvex and this heuristic inspired by \([48]\) can be made rigorous \([3, 18, 51]\): the evolution \((1.4)\) is well-posed in the space of probability measures having finite second moments. Under the flow which results, the energy \((1.1)\) is non-increasing; we shall show below that the family of global energy minimizers forms a \(d_\alpha\)-Lyapunov stable family of fixed points of the evolution, where the power \(p = \alpha\) quantifies this stability in terms of the attraction exponent. Steady-state examples of discrete particle rings \([8, 35]\) approximating a spherical shell show that the set of minimizers need not be asymptotically stable (i.e. need not form an attractor) in general; see Example 5.1. For \(\alpha > \beta > 2\) there are many \(d_\infty\)-local minima \([38, 43]\) — which we also expect to be asymptotically stable fixed points of the evolution. Dynamics analogous to \((1.4)\) have been proposed as models for the kinetic flocking and swarming behaviour of biological organisms \([10, 40, 46]\), condensation of granular media \([7, 47, 17]\), self-assembly of nanomaterials \([31]\), and even strategies in game theory \([9]\). For this reason, they have often been simulated and a wide variety of patterns have been observed to emerge, depending on \((\alpha, \beta)\) and initial conditions \([1, 8, 21, 35, 50]\).

Despite much attention, there are relatively few cases in which the global minimum of \((1.1)\) over \(\mathcal{P}(\mathbb{R}^n)\) is known explicitly \([38]\), and many of these either involve additional effects such as diffusion \([15, 23]\) or density bounds \([11, 29, 30]\), or fall outside the mildly repulsive regime \([12, 16, 20, 26, 27]\). Several groups of authors have investigated how properties of the minima, such as dimension of its support \([5, 14]\), vary
with the exponents \((\alpha, \beta)\). Others have addressed nonlinear stability of the steady states locally. Following work in one-dimension by Fellner and Raoul \[25\], for \(\beta > -n\), Balagué, Carrillo, Laurent and Raoul \[6\] have shown the sign of \(\beta - \beta^*\) to determine nonlinear stability \((\beta > \beta^*)\) or instability \((\beta < \beta^*)\) of the spherical shell of radius

\[
R = R_{\alpha,\beta} = \frac{1}{2} \left[\frac{\Gamma(\frac{\beta+n-1}{2})\Gamma(\frac{\beta}{2}+n-1)}{\Gamma(\frac{\beta}{2}+n-1)\Gamma(\frac{\alpha+n-1}{2})} \right]^{\frac{1}{\alpha-\beta}},
\]

at least among \(d_\infty\)-small spherically symmetric perturbations, where

\[
\beta^* := \frac{(3-n)\alpha - 10 + 7n - n^2}{\alpha + n - 3},
\]

and \(\Gamma(\cdot)\) is Euler’s Gamma function, \(3.3\). Although it lies outside the mildly repulsive regime, for \(\beta < \beta^*\), \(R_{\alpha,\beta}\) remains the unique radius \(3.6\) at which a spherical shell is a steady state. Families of convex combinations of spherical shells form an invariant family under the flow \(1.4\), on which the dynamics reduces to a system of ordinary differential equations analyzed by Balagué-Guardia, Barbaro, Carrillo and Volkin \[4\]. For perturbations which destroy spherical symmetry, the absence of a spectral gap makes local stability of steady states a much subtler issue. The asymptotic stability of steady state spherical shells in certain spaces might be bootstrapped from linear stability using the framework of von Brecht and McCalla \[49\], while for more general steady states including those supported on the discrete two dimensional rings of Example \(5.1\) asymptotic stability has also been addressed by Simione \[43\].

Simultaneously and independently of the present manuscript, global optimality for a family of radially symmetric densities has been verified in a region \(\beta < 2\) adjacent to the centrifugal line by Carrillo and Shu \[19\]. After posting our manuscript on the arXiv, we learned from Rupert Frank that our extension of Lopes’ strict convexity to measures \(3.1\) had been previously established in the course of proving uniqueness of energy minimizer up to transition for an interacting gas model satisfying a polytropic equation of state: Theorem 27 of \[13\].

2. Results

Let us preface our results by briefly reviewing the existence \(20\) and some relevant properties of energy minimizers.

Proposition 2.1 (Minimizers). For \(\alpha > \beta > 0\), minimizers of \(\mathcal{E}_{W,\alpha,\beta}\) on \(\mathcal{P}(\mathbb{R}^n)\) exist and the diameter of their supports is uniformly bounded.
by $e^{1/\beta}$. Moreover, each such minimizer μ satisfies
\begin{equation}
\mu[\arg\min_{\mathbb{R}^n}(W_{\alpha,\beta} \ast \mu)] = 1
\end{equation}

Proof. For $\alpha > \beta > 0$, [32, Lemma 1] shows the diameter of support of all (d_2-local) minimizers for $\mathcal{E}_{W_{\alpha,\beta}}$ is bounded by the positive zero, say $z_{\alpha,\beta}$, of the function $w_{\alpha,\beta}(r) = r^\alpha / \alpha - r^\beta / \beta$. It is easily seen that $z_{\alpha,\beta}$ increases as $\alpha \searrow \beta$ to the limit $e^{1/\beta}$. Now to show the existence of minimizers, consider the set $\mathcal{P}(B_{e^{1/\beta}})$ of probability measures concentrated in the centered closed ball $B_{e^{1/\beta}}$ of radius $e^{1/\beta}$. As $\mathcal{P}(B_{e^{1/\beta}})$ is weakly compact and $\mu \in \mathcal{P}(B_{e^{1/\beta}}) \mapsto \mathcal{E}_{W_{\alpha,\beta}}(\mu)$ is weakly continuous, this energy must attain a minimizer. By the a priori diameter estimate mentioned above, this minimizer on $\mathcal{P}(B_{e^{1/\beta}})$ also minimizes $\mathcal{E}_{W_{\alpha,\beta}}$ among probability measures on \mathbb{R}^n. The Euler-Lagrange equation (2.1) for minimizers is established e.g. in [5]. □

Let a (centered) spherical shell denote the uniform probability measure on a (centered) sphere of radius $R \geq 0$. Also, let
\begin{equation}
\mathcal{P}_0(\mathbb{R}^n) = \{\mu \in \mathcal{P}(\mathbb{R}^n) \mid \int |x|d\mu(x) < \infty, \int xd\mu(x) = 0\}
\end{equation}
denote the set of probability measures with center of mass at the origin. In the present manuscript, we characterize the minimizers of $\mathcal{E}_{W_{\alpha,\beta}}$ uniquely as spherical shells along a portion of the boundary of the mildly repulsive regime $\beta \geq 2$. For $n \geq 2$, this interval $(\alpha, \beta) \in \{2\} \times (2, 4)$ coincides with the range where convexity of the energy follows from work of Lopes [36].

Theorem 2.2 (Spherical shells minimize on part of the centrifugal line). (i) If $\beta = 2 < \alpha < 4$ and $n \geq 2$, then the minimizer of $\mathcal{E}_{W_{\alpha,\beta}}$ on (2.2) is unique, and given by a spherical shell of positive radius. (ii) If $(n, \beta) = (1, 2)$, then $\mathcal{P}_{\Delta^1} := \{\frac{1}{2}(\delta_a + \delta_{a+1}) \mid a \in \mathbb{R}\}$ is precisely the set of minimizers of $\mathcal{E}_{W_{\alpha,2}}$ on $\mathcal{P}(\mathbb{R}^n)$ if and only if $\alpha \geq 3$.

Note \mathcal{P}_{Δ^1} fails to minimize $\mathcal{E}_{W_{\alpha,\beta}}$ if $\beta = 2 < \alpha < 3$; see Remark 4.3.

The results of our companion paper [22], which also extend to the interior $\alpha > \beta$ of the mildly repulsive regime $\beta \geq 2$, allow us to complete this characterization of minimizers on the boundary $\beta = 2$ as follows, at least for $n \geq 2$. A set $K \subseteq \mathbb{R}^n$ is called a unit n-simplex if it is the convex hull of $n + 1$ points $\{x_0, x_1, \ldots, x_n\}$ in \mathbb{R}^n satisfying $|x_i - x_j| = 1$ for all $0 \leq i < j \leq n$. The points $\{x_0, x_1, \ldots, x_n\}$ are called vertices of the simplex. We define
\begin{equation}
\mathcal{P}_{\Delta^n} := \{\nu \in \mathcal{P}(\mathbb{R}^n) \mid \nu \text{ is uniformly distributed over the vertices of a unit } n\text{-simplex}\}
\end{equation}
Theorem 2.3 (Simplices uniquely minimize energy over much of the mildly repulsive regime [22]). Let $n \geq 2 = \beta$.

(i) If $2 < \alpha < 4$, then the unique minimizer of $\mathcal{E}_{W,2}$ on (2.2) is given by a spherical shell of positive radius.

(ii) If $\alpha = 4$, then $\mu \in \mathcal{P}_0(\mathbb{R}^n)$ minimizes $\mathcal{E}_{W,2}$ if and only if μ is concentrated on the centered sphere of radius $\sqrt{\frac{2}{2n+2}}$ with

(2.3) $\int x \otimes x \, d\mu(x) = \left(\int x_i x_j \, d\mu(x) \right)_{1 \leq i, j \leq n} = \frac{1}{2n+2} \text{Id},$

where Id denotes the $n \times n$ identity matrix.

(iii) If $\alpha > 4$, the set of minimizers of $\mathcal{E}_{W,2}$ is precisely \mathcal{P}_{Δ^n}.

In the next two sections we extend a strict convexity result for the energy shown by Lopes [36] from densities to measures, and then use it to establish Theorem 2.2. A final section discusses nonlinear stability implications for the evolution (1.4) near minimizers such as the spherical shell.

3. Strict convex/concavity of $\mathcal{E}_{W,\alpha}$ for $\alpha \in (2,4) \cup (0,2)$

We will prove a preliminary convexity result for the functional $\mathcal{E}_{W,\alpha}$. Convexity of the quadratic form (1.1) is equivalent to non-negative definiteness of its kernel W. For the kernels $\{W_{\alpha}\}_{0 < \alpha < 4}$, Lopes [36] explored this sign definiteness using Fourier transforms. Although he was only interested in the action of such kernels on probability densities, we now show his considerations extend also to singular probability measures, while retaining strict convexity. The Fourier transform of a signed measure is defined by

(3.1) $\hat{\rho}(\xi) := \int_{\mathbb{R}^n} e^{-2\pi i \xi \cdot x} \, d\rho(x).$

For bounded densities ρ and kernels W of compact support, Plancherel’s formula

(3.2) $\langle \rho, W \ast \rho \rangle_{L^2(\mathbb{R}^n)} = \langle \hat{\rho}, \hat{W} \hat{\rho} \rangle_{L^2(\mathbb{R}^n)}$

shows the sign of \hat{W} determines the sign-definiteness of the quadratic form. For singular measures and long range, unbounded kernels, things are potentially more delicate. From Euler’s product representation

(3.3) $\Gamma(z) = \frac{1}{z} \prod_{n=1}^{\infty} \frac{(1 + \frac{1}{n})^z}{1 + \frac{z}{n}}$

recall $\Gamma(z)$ is analytic except at the negative integers, where it has simple poles (and where its restriction to the real axis therefore changes
Hence are bounded by $R \in L^\infty$. Lopes shows this result on $\mathcal{P}_c(\mathbb{R}^n)$ using approximation. We extend Lopes’ result with the following analog of (3.2):

Proposition 3.1 (Sign of kernel action on centered neutral measures). If $\rho = \mu - \nu$ is the difference of $\mu, \nu \in \mathcal{P}_0(\mathbb{R}^n) \cap \mathcal{P}_c(\mathbb{R}^n)$, then

\[
F_\alpha(\rho) := \iint_{\mathbb{R}^n \times \mathbb{R}^n} |x - y|^\alpha d\rho(x)d\rho(y) = C(\alpha) \int_{\mathbb{R}^n} |\xi|^{-\alpha-n}|\hat{\rho}(\xi)|^2 d\xi =: \tilde{F}_\alpha(\hat{\rho})
\]

for each $\alpha \in (0, 2) \cup (2, 4)$, where $C(\alpha) := 2^{\alpha+n/2}\Gamma((\alpha+n)/2)/\Gamma(-\alpha/2)$.

We shall derive this from Lopes’ results using approximation.

Proof. Lopes shows this result on $\mathcal{P}_0(\mathbb{R}^n) \cap \mathcal{P}_c(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$, for the given range of α. We shall extend it to $\mathcal{P}_0(\mathbb{R}^n) \cap \mathcal{P}_c(\mathbb{R}^n)$ let $\mu, \nu \in \mathcal{P}_0(\mathbb{R}^n) \cap \mathcal{P}_c(\mathbb{R}^n)$. Choose a smooth radial density $\varphi \in \mathcal{P}_0(\mathbb{R}^n) \cap \mathcal{P}_c(\mathbb{R}^n)$ supported in a unit ball, and consider the mollified measures $(\mu_\epsilon, \nu_\epsilon)_{\epsilon>0}$ defined by $d\mu_\epsilon(x) = (\varphi_\epsilon * \mu)(x)dx$, where $\varphi_\epsilon(x) := \frac{1}{\epsilon^n} \varphi(x/\epsilon)$ and φ is the usual smooth probability density compactly supported on the unit ball. It is then easy to check $\mu_\epsilon, \nu_\epsilon \in \mathcal{P}_0(\mathbb{R}^n) \cap C^\infty_c(\mathbb{R}^n)$, and the functions $\mu_\epsilon, \nu_\epsilon$ are uniformly supported in a ball of radius R for all $\epsilon \in (0, 1)$. Moreover, $d_\infty(\mu_\epsilon, \mu), d_\infty(\nu_\epsilon, \nu) \leq \epsilon$ hence $\mu_\epsilon \to \mu, \nu_\epsilon \to \nu$ as $\epsilon \to 0$ in ∞-Wasserstein distance (1.5) on $\mathcal{P}(\mathbb{R}^n)$. Thanks to this d_∞-convergence, we obtain $F_\alpha(\rho) = \lim_{\epsilon \to 0} F_\alpha(\rho_\epsilon)$ for any $\alpha > 0$.

We next show that $\tilde{F}_\alpha(\hat{\rho}_\epsilon) \to \tilde{F}_\alpha(\hat{\rho})$. We split the integral as follows:

\[
\frac{\tilde{F}_\alpha(\hat{\rho}_\epsilon)}{C(\alpha)} = \int_{B_1(0)} |\xi|^{-\alpha-n}|\hat{\rho}_\epsilon(\xi)|^2 d\xi + \int_{\mathbb{R}^n \setminus B_1(0)} |\xi|^{-\alpha-n}|\hat{\rho}_\epsilon(\xi)|^2 d\xi.
\]

We show each integral converges as $\epsilon \to 0$. By Schwartz’s Paley-Wiener theorem [42] for distributions, $\hat{\rho}_\epsilon$ is analytic for all $\epsilon \geq 0$. Since vanishing zeroth and first moments imply $\hat{\rho}_\epsilon(0) = \int d\rho_\epsilon(x) = 0$ and $\nabla \hat{\rho}_\epsilon(0) = 0$, we find $\hat{\rho}_\epsilon(\xi)/|\xi|^2$ is also analytic. Then the power series expansion at the origin implies $\hat{\rho}_\epsilon(\xi)/|\xi|^2$ is uniformly bounded in $B_1(0)$ for all $\epsilon \in [0, 1]$, since all mixed partial derivatives of order k of $\hat{\mu}_\epsilon, \hat{\nu}_\epsilon$ at 0 are bounded by R^k by the basic property of Fourier transforms (3.1). Hence
\[
\int_{B_1(0)} |\xi|^{-\alpha-n} |\hat{\rho}_\varepsilon(\xi)|^2 d\xi = \int_{B_1(0)} |\xi|^{-\alpha-n+4} \left(\frac{|\hat{\rho}_\varepsilon(\xi)|}{|\xi|^2} \right)^2 d\xi
\]

\[
\xrightarrow{\varepsilon \to 0} \int_{B_1(0)} |\xi|^{-\alpha-n} \left(\frac{|\hat{\rho}(\xi)|}{|\xi|^2} \right)^2 d\xi
\]

\[
= \int_{B_1(0)} |\xi|^{-\alpha-n} |\hat{\rho}(\xi)|^2 d\xi
\]

since \(\alpha < 4 \) and pointwise convergence of \(\hat{\rho}_\varepsilon \) to \(\hat{\rho} \), proving the convergence of the first integral by Lebesgue Dominated Convergence Theorem. Next, since \(|\hat{\rho}_\varepsilon(\xi)| \leq 2 \) for any \(\xi \) and \(|\xi|^{-\alpha-n} \in L^1(\mathbb{R}^n \setminus B_1(0))\), we similarly have

\[
\int_{\mathbb{R}^n \setminus B_1(0)} |\xi|^{-\alpha-n} |\hat{\rho}_\varepsilon(\xi)|^2 d\xi \xrightarrow{\varepsilon \to 0} \int_{\mathbb{R}^n \setminus B_1(0)} |\xi|^{-\alpha-n} |\hat{\rho}(\xi)|^2 d\xi.
\]

Summing up we deduce \(\lim_{\varepsilon \to 0} \tilde{F}_\alpha(\hat{\rho}_\varepsilon) = \tilde{F}_\alpha(\hat{\rho}) \), thereby obtain

\[
F_\alpha(\rho) = \lim_{\varepsilon \to 0} F_\alpha(\rho_\varepsilon) = \lim_{\varepsilon \to 0} \tilde{F}_\alpha(\hat{\rho}_\varepsilon) = \tilde{F}_\alpha(\hat{\rho})
\]

where the second equality is due to Lopes [36].

Corollary 3.2 (Energetic convexity for singular measures). On \(\mathcal{P}_0(\mathbb{R}^n) \cap \mathcal{P}_c(\mathbb{R}^n) \), \(\mathcal{E}_{W_\alpha} \) is strictly convex if \(2 < \alpha < 4 \), and is strictly concave if \(0 < \alpha < 2 \). In addition, \(\mathcal{E}_{W_\alpha} \) is convex if \(\alpha = 4 \), and is linear if \(\alpha = 2 \).

Proof. Let \(\mu_0, \mu_1 \in \mathcal{P}_0(\mathbb{R}^n) \cap \mathcal{P}_c(\mathbb{R}^n) \), \(\rho = \mu_1 - \mu_0 \) and let \(a(t) = \mathcal{E}_{W_\alpha}((1-t)\mu_0 + t\mu_1) \) denote the energy along the line segment between \(\mu_0 \) and \(\mu_1 \). Given that we will be interested in questions of convexity, we note that \(a''(t) = \mathcal{E}_{W_\alpha}(\rho) \), so convexity of \(\mathcal{E}_{W_\alpha} \) depends exclusively on the sign of \(F_\alpha(\rho) = 2\alpha \mathcal{E}_{W_\alpha}(\rho) \).

We first address the \(\alpha \in (0, 2) \) and the \(\alpha \in (2, 4) \) cases. In either of these cases, we apply the formula from Proposition 3.1 to see that

\[
F_\alpha(\rho) = C(\alpha) \int_{\mathbb{R}^n} |\xi|^{-\alpha-n} |\hat{\rho}(\xi)|^2 d\xi.
\]

Since \(|\xi|^{-\alpha-n} \) is strictly positive on \(\mathbb{R}^n \setminus \{0\} \), this integral vanishes if and only if \(\hat{\rho} = 0 \) on \(\mathbb{R}^n \) (recall \(\hat{\rho} \) is continuous). However, by the injectivity of the Fourier-Stieltjes transform, this only happens if \(\mu_0 = \mu_1 \), so we can conclude that, unless \(\mu_0 = \mu_1 \), \(\int |\xi|^{-\alpha-n} |\hat{\rho}(\xi)|^2 d\xi > 0 \), and hence, \(F(\rho) \) will take the sign of \(C(\alpha) \) if \(\mu_0 \neq \mu_1 \). Now \(C(\alpha) < 0 \) for \(\alpha \in (0, 2) \) and \(C(\alpha) > 0 \) for \(\alpha \in (2, 4) \) according to \(\eqref{3.3} \). This yields strict concavity in the former case and strict convexity in the latter.
If $\alpha = 2$, it is easily seen $E_{W_2}(\mu) = \frac{1}{2} \int |x|^2 d\mu(x)$ hence depends linearly on $\mu \in \mathcal{P}_0(\mathbb{R}^n)$, while $E_{W_4} = \lim_{\alpha \to 4} E_{W_\alpha}$ implies (not necessarily strict) convexity of E_{W_4}.

Corollary 3.3 (Uniqueness and symmetry of minimizers). If $(\alpha, \beta) \in [2, 4] \times (0, 2] \setminus \{(4, 2), (2, 2)\}$, then the minimizer for $E_{W_{\alpha, \beta}}$ in (1.1) is unique and spherically symmetric.

Proof. Corollary [3.2] shows $E_{W_{\alpha, \beta}}$ is strictly convex, so a standard convexity argument shows that, if $\mu, \nu \in \mathcal{P}_0(\mathbb{R}^n) \cap \mathcal{P}_c(\mathbb{R}^n)$ are distinct candidate minimizers, then $\frac{\mu + \nu}{2}$ will have strictly lower interaction energy than either. Hence, we get uniqueness. Next if μ is a minimizer, each of its rotations $\nu := R\mu$ must also minimize; the uniqueness asserted above shows $R\mu = \mu$, hence μ is spherically symmetric. □

4. **Spherical shells minimize for $\beta = 2 < \alpha < 4$**

Denote by $\sigma_R \in \mathcal{P}_0(\mathbb{R}^n)$ the uniform measure on a sphere of $R \geq 0$ — called a spherical shell — and let $\sigma := \sigma_1$ denote the unit spherical shell. For $y \in \mathbb{R}^n$, denote $y_i = e_i \cdot y$ for $i = 1, ..., n$, where $\{e_i\}_{1 \leq i \leq n}$ is the standard basis of \mathbb{R}^n. In this section we shall establish Theorem 2.2 whose proof uses the following elementary lemma to establish positivity of the radial third derivative of the potential $W_{\alpha, 2} \ast \mu$ induced by any spherically symmetric measure $\mu \in \mathcal{P}_c(\mathbb{R}^n)$; c.f. [24] [6] [4, Lemma 4.4] for related computations. Positivity of this third derivative shows that as $|x|$ increases, the radial profile of $W_{\alpha, 2} \ast \mu$ can transition from concave to convex but not from convex to concave. Thus it is minimized by a unique positive radius. The Euler-Lagrange equation (2.1) satisfied by a minimizer then forces μ to be a spherical shell (or a convex combination of such a shell with a Dirac measure at the origin, which requires an additional argument to rule out).

Lemma 4.1 (Positivity of certain spherical integrals). Let $n \geq 2$. Then for all $\alpha > 2$ and $r > 0$,

\[g_\alpha(r) := \int (r - y_1)|re_1 - y|^{\alpha - 4}d\sigma(y) > 0 \quad \text{and} \]

\[G_\alpha(r) := \int |re_1 - y|^{\alpha - 6}(r - y_1)(1 - y_1^2)d\sigma(y) > 0. \]

Remark 4.2 (Non-negativity of the limiting integrals). If instead $\alpha = 2$, the same proof shows $g_\alpha(r) \geq 0$ and $G_\alpha(r) \geq 0$ unless $r = 1 = n - 1$ (in which case the integrals (4.1) and (4.2) no longer converge absolutely). Equality holds in either (hence both) inequalities if and only if $n = \alpha = 2$ and $|r| < 1$. This endpoint case is reminiscent of Newton’s shell theorem.
Proof. When \(r = 1 \), both integrands have exponent \(\alpha - 3 > -1 \) so \(g_\alpha \) and \(G_\alpha \) are well-defined and continuous in \(\mathbb{R} \), and odd. Moreover it is clear that both integrals are positive for all \(r \geq 1 \). So let us fix \(r \in (0, 1) \). For (4.1) we claim that it is sufficient to show \(g_2(r) \geq 0 \). To see this, let us rewrite \(g_\alpha \) by scaling. Let \(s = s(r) > 1 \) be defined by

\[
s^2 - s^2 r^2 = 1.
\]

Then

\[
g_\alpha = \int |r e_1 - y|^{\alpha-4}(r - y_1) d\sigma(y)
\]

\[
= s^{3-\alpha} \int |s e_1 - y|^{\alpha-4}(sr - y_1) d\sigma_s(y).
\]

Hence

\[
\frac{\partial g_\alpha}{\partial \alpha} = - s^{3-\alpha} (\log s) \int |s e_1 - y|^{\alpha-4}(sr - y_1) d\sigma_s(y)
\]

\[
+ s^{3-\alpha} \int |s e_1 - y|^{\alpha-4}(\log |s e_1 - y|)(sr - y_1) d\sigma_s(y).
\]

Observe the second integral is positive because our choice of \(s = s(r) \) makes the sign of \(sr - y_1 \) and \(\log |s e_1 - y| \) coincide. Since the first integral vanishes precisely when \(g_\alpha = 0 \), we see that

\[
g_\alpha \leq 0 \implies \frac{\partial g_\alpha}{\partial \alpha} > 0
\]

which in turn shows

\[
g_{\alpha_0} \geq 0 \implies g_\alpha > 0 \text{ for all } \alpha > \alpha_0
\]

to prove the claim. It remains to show \(g_2(r) \geq 0 \). Let \(\mathcal{H}^{n-1} \) denote the area measure on the unit sphere in \(\mathbb{R}^n \), so that \(\omega_n d\sigma = d\mathcal{H}^{n-1}|_{S^{n-1}} \) where

\[
\omega_n := \mathcal{H}^{n-1}[S^{n-1}](= \frac{2\pi^{n/2}}{\Gamma(n/2)}).
\]

Expressing the Euclidean volume element \(d^n x = r^{n-1} dr \prod_{i=1}^{n-1} (\sin \theta_i)^{i-1} d\theta_i \) in polar coordinates yields

\[
g_\alpha(r) = \frac{1}{\omega_n} \int_{S^{n-1}} |r e_1 - y|^{\alpha-4}(r - y_1) d\mathcal{H}^{n-1}(y)
\]

\[
= \frac{\omega_{n-1}}{\omega_n} \int_0^\pi \int_0^r \frac{r - \cos \theta}{(r^2 - 2r \cos \theta + 1)^{(4-\alpha)/2}} (\sin \theta)^{n-2} d\theta.
\]

In the special case \(n = 2 = \alpha \) we claim the integral (4.6) vanishes. Indeed, exchanging the order of the integrals yields

\[
\frac{\omega_2}{\omega_1} \int_0^r g_2(s) ds = \int_0^\pi \log |r^2 - 2r \cos \theta + 1| d\theta.
\]
The last integral is known to vanish, e.g. [44, p 104]. Thus \(g_2(r) = 0 \) for \(|r| < 1 \) when \(n = 2 \).

The fact that \(g_2(r) > 0 \) when \(n > 2 \) can be argued as follows. Taking \(\alpha = 2 \), the symmetry \(\cos(\pi - \theta) = -\cos \theta \) reduces (4.6) to

\[
(4.7) \quad \frac{\omega_n}{\omega_{n-1}} g_2(r) = 2r \int_0^{\pi/2} \frac{r^2 + 1 - 2 \cos^2 \theta}{(r^2 + 1)^2 - 4r^2 \cos^2 \theta (\sin \theta)^{n-2}} d\theta.
\]

The integrand in (4.7) changes sign only once, at \(\theta_r := \arccos \sqrt{\frac{r^2 + 1}{2}} \).

Since the weight \(\sin^{n-2} \theta \) (uniform when \(n = 2 \)) becomes an increasing function of \(\theta \in [0, \frac{\pi}{2}] \) for \(n > 2 \), it suppresses the contributions from the negative region \((0, \theta_r)\) and enhances the contributions from the positive region \((\theta_r, \frac{\pi}{2})\) relative to the unweighted case. Thus positivity \(g_2(r) > 0 \) of the weighted integral for \(n > 2 \) follows from the fact that the unweighted integral vanishes when \(n = 2 \).

Having established (4.1) we turn now to (4.2). As before, it is clear that \(G_{\alpha}(r) > 0 \) for all \(r \geq 1 \). So let us fix \(r \in (0, 1) \). By a similar scaling argument to (4.3), (4.4), (4.5), we deduce

\[
(4.8) \quad G_{\alpha_0}(r) \geq 0 \text{ implies } G_{\alpha}(r) > 0 \text{ for all } \alpha > \alpha_0.
\]

Thus we only need to show \(G_2(r) \geq 0 \) (with equality when \(n = 2 \)).

Re-expressing (4.2) in spherical polar coordinates analogously to (4.6) and using the symmetry \(\cos(\pi - \theta) = -\cos \theta \) yields that, for \(\alpha = 2 \),

\[
(4.9) \quad \frac{\omega_n}{\omega_{n-1}} G_2(r) = \int_0^\pi \frac{r - \cos \theta}{(1 + r^2 - 2r \cos \theta)^2} \sin^n \theta \, d\theta
\]

\[
(4.10) \quad = 2r \int_0^{\pi/2} \frac{((1 + r^2)^2 - (2 \cos \theta)^2)^2 \sin^2 \theta}{(1 + r^2)^2 - (2r \cos \theta)^2} \sin^{n-2} \theta \, d\theta.
\]

The integrand in (4.10) vanishes only once, at \(\Theta_r := \arccos \frac{1+r^2}{2} \). Again the weight \(\sin^{n-2} \theta \) is an increasing function of \(\theta \in [0, \frac{\pi}{2}] \) for \(n > 2 \), and suppresses the contributions from the negative region \((0, \Theta_r)\) and enhances the contributions from the positive region \((\Theta_r, \frac{\pi}{2})\) relative to the case \(n = 2 \). Thus \(G_2(r) > 0 \) for \(n > 2 \) will follow once we have established \(G_2(r) = 0 \) for \(n = 2 \). For this, taking \(n = 2 \) in (4.9) yields

\[
(4.11) \quad \frac{2\omega_2}{\omega_1} \int_0^r G_2(s) ds = -\int_0^\pi \left[\frac{1}{1 + s^2 - 2s \cos \theta} \right]_s=0^r \sin^2 \theta \, d\theta
\]

\[
= \frac{\pi}{2} - \int_0^{\pi/2} \frac{\sin^2 \theta \, d\theta}{1 + r^2 - 2r \cos \theta}.
\]

Now we change variables from \(\theta \) to the angle \(\phi \) between the horizontal axis and the vector from \(r e_1 \) to \(y = (\cos \theta, \sin \theta) \). Notice then \(\phi > \theta \).
and the last integrand above becomes \(\sin^2 \phi \). By considering the triangle with vertices \(\{0, y, re_1\} \), we find
\[
\frac{\sin(\phi - \theta)}{r} = \frac{\sin \theta}{\sqrt{1 + r^2 - 2r \cos \theta}} = \sin \phi, \quad \text{thus}
\]
\[
\theta = \phi - \sin^{-1}(r \sin \phi), \quad \text{and}
\]
\[
\frac{d \theta}{d \phi} = 1 - \frac{r \cos \phi}{\sqrt{1 - r^2 \sin^2 \phi}}.
\]
This yields
\[
\int_0^\pi \sin^2 \theta \left(\frac{r - \cos \theta}{(r - \cos \theta)^2 + \sin^2 \theta} \right) d\theta = \int_0^\pi \sin^2 \phi \left(1 - \frac{r \cos \phi}{\sqrt{1 - r^2 \sin^2 \phi}} \right) d\phi
\]
\[
= \frac{\pi}{2}
\]
using antisymmetry of the ratio around \(\phi = \frac{\pi}{2} \) again. Combining (4.11) with (4.12) gives the desired identity \(G_2(r) = 0 \) when \(n = 2 \) and \(|r| < 1 \) to complete the proof of the lemma. \(\square \)

Proof of Theorem 2.2. For \(\mu \in \mathcal{P}_0(\mathbb{R}^n) \), define \(V_\mu(x) := \int W_{\alpha,2}(x - y) d\mu(y) \). Then
\[
V_\mu(x) = \frac{1}{\alpha} \int |x - y|^\alpha d\mu(y) - \frac{1}{2} |x|^2 - \frac{1}{2} \text{Var}(\mu), \quad \text{thus}
\]
\[
\nabla V_\mu(x) = \int |x - y|^\alpha - 2 (x - y) d\mu(y) - x.
\]
For \(\alpha \in (\max\{4 - n, 2\}, 4) \), if \(\mu \) is spherically symmetric and compactly supported, we claim \(f_\mu \in C^3_{\text{loc}}((0, \infty)) \) (the space of three times continuously differentiable functions) and \(f_\mu'''(r) > 0 \) for all \(r > 0 \), where
\[
f_\mu(r) := V_\mu(re_1),
\]
\[
f_\mu'(r) = \nabla V_\mu(re_1) \cdot e_1 = \int |re_1 - y|^\alpha - 2 (r - y_1) d\mu(y) - r,
\]
\[
f_\mu''(r) = \int [(\alpha - 2)|re_1 - y|^\alpha - 4 (r - y_1)^2 + |re_1 - y|^\alpha - 2] d\mu(y) - 1,
\]
\[
f_\mu'''(r) = \frac{1}{\alpha - 2} \int (r - y_1)|re_1 - y|^\alpha - 6 [3 |re_1 - y|^2 + (\alpha - 4)(r - y_1)^2] d\mu(y).
\]
Once this claim has been proved, the theorem can be established as follows: the convexity of the energy shown in Corollary 3.2 implies the minimizer \(\mu \) is unique and spherically symmetric. It has compact support and satisfies the Euler-Lagrange equation (2.1) by Proposition 2.1. Thus \(f_\mu'''(r) > 0 \) for \(r > 0 \). The Euler-Lagrange equation (2.1)
asserts μ is supported only where $V_\mu(x) = f_\mu(|x|)$ attains its minimum. This rules out $\mu = \delta_0$ and ensures f'_μ vanishes at some $r > 0$. Since $f'_\mu(0) = 0$, the strict convexity of f'_μ on $r > 0$ ensures that it has a single positive zero and f_μ is uniquely minimized there. The Euler-Lagrange equation combines with the spherical symmetry already established to assert that μ is a spherical shell with this radius. In the remaining case $(n, \alpha) = (1,3)$, at least one minimizer is a spherical shell by continuity as $\alpha \searrow 3$, and a priori uniqueness of the minimizer completes the proof.

It remains to establish the claims $f_\mu \in C^3_{\text{loc}}((0,\infty))$ and $f'''_\mu(r) > 0$ for all $r > 0$. By homogeneity, it is enough to verify these claims when $\mu = \sigma$ is the spherical shell of unit radius: if instead $\mu = \sigma_R$ is the spherical shell of radius R, then $f'''_\mu(r) = R^{\alpha - 3} f'''_\sigma(r/R)$; more generally any spherically symmetric distribution can be expressed as a weighted average of such spherical shells together possibly with their limit δ_0. In the 1D case where $\sigma = \frac{1}{2}(\delta_{-1} + \delta_1)$, the claims can be directly checked and we omit the proof. So let us assume $n \geq 2$. When $\alpha > 3$ the fact that $f_\sigma \in C^3_{\text{loc}}((0,\infty))$ follows directly from $W_{\alpha,2} \in C^3_{\text{loc}}(\mathbb{R}^n)$. For $2 < \alpha \leq 3$ a more delicate argument is needed. Note that both summands occurring in the integrand of $f'''_\mu(r)$ are dominated in absolute value by constant multiples of

$$|re_1 - y|^{\alpha - 3} \leq |1 - y^2|^{(\alpha - 3)/2} \in L^1(\mathbb{R}, d\sigma).$$

This allows f'''_μ to be obtained by differentiating under the integral defining f'''_μ in the usual way: approximating the derivatives by difference quotients and combining the mean value theorem with Lebesgue’s dominated convergence theorem, noting $\alpha > 2$; c.f. [28, Theorem 2.27]. Thus $f_\mu \in C^3_{\text{loc}}((0,\infty))$ and its derivatives coincide with the integrals given above. Now the claimed positivity $f'''_\sigma > 0$ is equivalent to

$$\int (r - y_1) |re_1 - y|^{\alpha - 4} d\sigma(y) > \frac{4 - \alpha}{3} \int (r - y_1)^3 |re_1 - y|^{\alpha - 6} d\sigma(y).$$

Lemma 4.1 shows the left hand expression is positive. If the right hand side is negative there is nothing to prove. If it is positive, then since $\frac{4 - \alpha}{3} > 1$, the desired positivity then follows from the stronger statement

$$(4.13) \quad \int |re_1 - y|^{\alpha - 6} [|re_1 - y|^2 (r - y_1)^3 - (r - y_1)^3] d\sigma(y) \geq 0$$

in which $\frac{4 - \alpha}{3}$ has been replaced by 1. Now since $|re_1 - y|^2 = (r - y_1)^2 + 1 - y^2_1$, Lemma 4.1 yields (4.13) as desired. \hfill \Box

Remark 4.3 (Optimizers on the real line). (i) Kang, Kim, Lim and Seo [32, Theorem 2 (2),(6)] showed for $(n, \beta) = (1,2)$ and $\alpha \geq 3$ that $\mu_* := \frac{1}{2}(\delta_{-1} + \delta_1)$ is a strict local minimizer with respect to the
d_∞ metric on $\mathcal{P}(\mathbb{R})$. Our Theorem 2.2 improves this by showing that μ_\ast is a unique global minimizer for all $\alpha \geq 3$. (ii) [32, Theorem 2 (4)] showed in the range $(n, \beta) = (1, 2)$ and $2 < \alpha < 3$ excluded by Theorem 2.2, that μ_\ast is not a d_∞-local minimizer, hence not a global minimizer. (iii) [32, Example 1, Theorem 2 (1)] jointly show that e.g. if $(\alpha, \beta, n) = (2.4, 2.1, 1)$, μ_\ast is a d_∞-strict local minimizer but not a global minimizer.

5. Asymptotic vs. Lyapunov stability of spherical shells

Finally, let us clarify the sense in which these energy minimizers represent stable solutions to the aggregation equation (1.4). Near a fixed point of a dynamical system, there are several possible notions of nonlinear stability. Asymptotic stability, requires the fixed point to attract all solutions in its neighbourhood, i.e. to form what is called an attractor. Lyapunov stability is a weaker notion, which merely requires that no point starting sufficiently close to the fixed point strays too far away: for any ϵ-ball around the fixed point x there should be an open ball $B_\delta(x)$ of initial conditions whose future trajectories remain in $B_\epsilon(x)$. Both notions admit obvious extensions to families of fixed points. Moreover, both notions are sensitive to the metric (or topology) in which closeness is measured, and to the class of initial conditions permitted.

For the Kantorovich-Rubinstein-Wasserstein family of distances (1.5), energy minimizers need not form an asymptotically stable family: in two-dimensions our next example shows that the discrete ring solutions whose stability was investigated linearly by Bertozzi, Kolokolnikov, Sun, Uminsky and von Brecht [35] and nonlinearly by Simione [43] provide non-minimizing steady states arbitrarily close to the energy minimizing spherical shell.

Example 5.1 (Steady state periodic rings of many point masses). Let $\alpha > \beta > 1$ and $n = 2$. Assume for some $R > 0$ that the spherical shell σ_R is a steady-state for (1.4), so that $V_{\sigma_R}(x) = W_{\alpha, \beta} * \sigma_R(x)$ satisfies $\nabla V_{\sigma_R} = 0$ on spt(σ_R). Then for any $\epsilon > 0$, there exists steady-states ω in the form of discrete rings of identical point masses uniformly spaced (5.1) satisfying $d_\infty(\omega, \sigma_R) < \epsilon$.
Proof. Let \(g(r) = \nabla V_{\alpha}(re_1) \cdot e_1 \). We claim \(g'(r) > 0 \) whenever \(g(r) = 0 \) and \(r > 0 \). To see this, denote \(y_1 = e_1 \cdot y \) and compute

\[
g(r) = \int [|re_1 - y|^{\alpha-2}(r - y_1) - |re_1 - y|^{\beta-2}(r - y_1)]d\sigma_r(y)
\]

\[
= \int [|re_1 - ry|^{\alpha-2}(r - ry_1) - |re_1 - ry|^{\beta-2}(r - ry_1)]d\sigma_r(y)
\]

\[
= r^{\alpha-1} \int |e_1 - y|^{\alpha-2}(1 - y_1)d\sigma_1(y) - r^{\beta-1} \int |e_1 - y|^{\beta-2}(1 - y_1)d\sigma_1(y)
\]

\[
= c_\alpha r^{\alpha-1} - c_\beta r^{\beta-1}
\]

where \(c_\alpha = \int |e_1 - y|^{\alpha-2}(1 - y_1)d\sigma_1(y) \) and \(c_\beta \) similarly. Now \(g(R) = 0 \) gives \(c_\beta R^{\beta-2} = c_\alpha R^{\alpha-2} \), thus \(g'(R) = c_\alpha R^{\alpha-2}(\alpha - \beta) > 0 \), as claimed. Let

\[
(5.1) \quad \omega_{k,r} = \frac{1}{k} \sum_{m=1}^{k} \delta_{re^{2\pi im/k}}
\]

denote the discrete ring supported on \(k \) points spaced uniformly around the circle of radius \(r \). We assume \(re_1 \in \text{spt}(\omega_{k,r}) \). Now \(g(R) = 0 \) by assumption, thus given \(\eta > 0 \), the claim allows us to find \(R^+ \in (R, R + \eta) \), \(R^- \in (R - \eta, R) \) such that \(g(R^+) > 0 \), \(g(R^-) < 0 \). Hence by approximation, for all large enough \(k \) we have

\[
\nabla V_{\omega_{k,R^+}}(R^+e_1) \cdot e_1 > 0, \quad \nabla V_{\omega_{k,R^-}}(R^-e_1) \cdot e_1 < 0.
\]

By continuity, there exists \(R^* \in (R^-, R^+) \) so that \(\nabla V_{\omega_{k,R^*}}(R^*e_1) \cdot e_1 = 0 \). By symmetry \(\nabla V_{\omega_{k,R^*}}(R^*e_1) \) is parallel to \(e_1 \), hence \(\nabla V_{\omega_{k,R^*}}(R^*e_1) = 0 \). By symmetry again \(\nabla V_{\omega_{k,R^*}} \) vanishes on \(\text{spt}(\omega_{k,R^*}) \), that is \(\omega_{k,R^*} \) is a steady-state. Since \(d_{\text{in}}(\sigma_{R}, \omega_{k,r}) \rightarrow 0 \) as \(k \rightarrow \infty \), choosing \(\eta \) small, \(k \) large enough and \(R^* \) as above ensures \(d_{\text{in}}(\sigma_R, \omega_{k,R^*}) < \epsilon \) as desired. \(\square \)

Remark 5.2 (Minimizers need not be asymptotically stable). By the Euler-Lagrange equation \((2.1)\), this example implies there exists a steady-state discrete ring which is \(d_\alpha \)-arbitrarily close to the spherical shell minimizer given in Theorem 2.2, for each \(p \in [1, \infty] \). This nearby accumulation of non-minimizing steady-states shows that even though the energy \((1.1)\) is a Lyapunov function for the aggregation dynamics \((1.4)\), the spherical shells which minimize it are not asymptotically stable.

Instead, the minimizing family is \(d_\alpha \)-Lyapunov stable, in the sense that the evolution stays as \(d_\alpha \)-close as we please to the minimizing family if it starts \(d_\alpha \)-close enough to it. Recall the following variant of a well-known lemma:
Lemma 5.3 (Lyapunov stability). If $E : X \to \mathbb{R}$ is a continuous coercive function on a metric space (X,d) and $Y \subseteq X$, then for each $\epsilon > 0$ there exist $\delta > 0$ and $h \in \mathbb{R}$ such that

\[
(\operatorname{argmin}_X E)^d \subseteq E^{-1}((-\infty, h)) \subseteq (\operatorname{argmin}_X E)^\epsilon,
\]

where

\[
Y^\epsilon := \{ x \in X \mid d(x,Y) := \inf_{y \in Y} d(x,y) < \epsilon \}.
\]

Proof. Continuity and coercivity imply E attains its minimum on X. Let $A = \operatorname{argmin}_X E$ denote the set of minimizers and $e' = \min_X E$. Given $\epsilon > 0$, to derive a contradiction suppose no $h > e'$ satisfies the second inclusion (5.2). Then for each $k \in \mathbb{N}$ there exists $x_k \in X \setminus A^\epsilon$ with $E(x_k) < e' + 1/k$. Coercivity yields an accumulation point x_∞ of $\{x_k\}_{k \in \mathbb{N}}$, which must lie in the closed set $X \setminus A^\epsilon$. Continuity of E yields $E(x_\infty) = e'$, hence $x \in A$ — the desired contradiction. We now provide δ satisfying the first inclusion: since continuity of E yields an open set $E^{-1}((-\infty, h))$ containing the compact set A, the distance of A to the closed set $E^{-1}([h, \infty))$ is positive; taking δ to be this positive distance establishes the lemma. \square

To apply the lemma, we take X to consist of the centered measures with finite α-th moments:

\[
\mathcal{P}_{\alpha,0}(\mathbb{R}^n) := \{ \mu \in \mathcal{P}_0(\mathbb{R}^n) \mid \int_{\mathbb{R}^n} |x|^{\alpha} d\mu(x) < \infty \}.
\]

Corollary 5.4 (d_α-Lyapunov stability). For $\alpha > \beta > 0$ and $\alpha \geq 1$, taking $E = \mathcal{E}_{W_{\alpha,\beta}}$ and $(X,d) = (\mathcal{P}_{\alpha,0}(\mathbb{R}^n),d_\alpha)$, the preceding lemma ensures that any curve $(\mu(t))_{t \geq 0} \in X$ starting within distance $\delta > 0$ of an energy minimizer remains within distance $\epsilon > 0$ of an energy minimizer as long as $E(\mu(t)) \leq E(\mu(0))$ for all $t \geq 0$.

Proof. Let $d(x,y) = |x-y|$. Jensen’s inequality, $||d||_{L^\beta(\mu \otimes \mu)} \leq ||d||_{L^\alpha(\mu \otimes \mu)}$, converts the energy bound

\[
h \geq \mathcal{E}_{W_{\alpha,\beta}}(\mu) = \frac{1}{\alpha} ||d||^{\alpha}_{L^\alpha(\mu \otimes \mu)} - \frac{1}{\beta} ||d||^{\beta}_{L^\beta(\mu \otimes \mu)} \geq \frac{1}{\alpha} ||d||^{\alpha}_{L^\alpha(\mu \otimes \mu)} - \frac{1}{\beta} ||d||^{\beta}_{L^\beta(\mu \otimes \mu)}
\]
into a bound on $\|d\|_{L^\alpha(\mu \otimes \mu)}$. For $\mu \in \mathcal{P}_0(\mathbb{R}^n)$, a second application of Jensen’s inequality
\[
\|d\|_{L^\alpha(\mu \otimes \mu)}^\alpha = \int \int_{\mathbb{R}^n \times \mathbb{R}^n} |x-y|^\alpha d\mu(x)d\mu(y)
\geq \int_{\mathbb{R}^n} |x|^\alpha d\mu(x)
= d_\alpha(\mu, \delta_0)\alpha
\]
then shows $E^{-1}((-\infty, h])$ is d_α-bounded. Now [51, Theorem 7.12] shows d_α-continuity of $E_{W_{\alpha,\beta}}$ on (5.3), so $E^{-1}((-\infty, h])$ is also d_α-closed. Finally, [2, Theorem 2.7] asserts closed and bounded subsets of $\mathcal{P}_2(\mathbb{R}^n)$ are d_2-compact, but for $\alpha \in [1, \infty)$ the same proof yields d_α-compactness of closed bounded subsets of $\mathcal{P}_\alpha(\mathbb{R}^n)$ with respect to the distance (1.5). This establishes the desired coercivity of E on (X, d). \qed

Remark 5.5 (Lyapunov stability of aggregation near energy minima). Since the aggregation equation (1.4) preserves center of mass without increasing the energy (1.1), the last corollary asserts the desired Lyapunov stability result. To obtain this stability, our distance d_α is adapted to match the largest exponent in the interaction potential $W = W_{\alpha,\beta}$. Note that we need not specify a solution concept for the dynamics, so long as it preserves (sign, mass, center of mass) and dissipates energy.

References

José A. Carrillo and Ruiwen Shu. From radial symmetry to fractal behavior of aggregation equilibria for repulsive-attractive potentials. Preprint at arXiv:2107.05079

CAMERON DAVIES: DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TORONTO, TORONTO ON CANADA
Email address: cameron.davies@mail.utoronto.ca

TONGSEOK LIM: KRANNERT SCHOOL OF MANAGEMENT
PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907, USA
Email address: lim336@purdue.edu

ROBERT J. MCCANN: DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TORONTO, TORONTO ON CANADA
Email address: mccann@math.toronto.edu