COMMENT ON “IRONING, SWEEPING AND MULTIDIMENSIONAL SCREENING”

ROBERT J. MCCANN AND KELVIN SHUANGJIAN ZHANG

ABSTRACT. In their study of price discrimination for a monopolist selling heterogeneous products to consumers having private information about their own multidimensional types, Rochet and Choné (1998) discovered a new form of screening in which consumers with intermediate types are bunched together into isochoice groups of various dimensions incentivized to purchase the same product. They analyzed a particular example involving customer types distributed uniformly over the unit square. For this example, we prove that their proposed solution cannot be correct, and explain how it can be corrected.

Keywords. Principal-Agent problem, Rochet-Choné, asymmetric information, adverse selection, monopolist nonlinear pricing, multidimensional screening, bilevel optimization, free boundary, bunching

1. INTRODUCTION

Let potential consumers be parameterized by types \(x \in \mathbb{R}^n \) and products by types \(y \in [0, \infty)^n \), with \(y = (0, \ldots, 0) \) representing the null product or outside option. Taking \(b(x, y) = x \cdot y \) to be the direct utility of product \(y \) to agent \(x \), Rochet and Choné (1998) study the price menu \(v(y) \) a monopolist will select to maximize her profits when the price \(v(0, \ldots, 0) = 0 \) of the outside option is constrained, assuming the distribution \(d\mu(x) \) of agents and the monopolist’s cost \(c(y) \) to produce each product \(y \) are both known. They show \(v \) can be taken to be the convex dual function of the consumers’ indirect utility \(u(x) \), which in turn maximizes the profit functional

\[
\Phi[u] := \int_{\mathbb{R}^n} \left[x \cdot Du(x) - u(x) - c(Du(x)) \right] d\mu(x) \tag{1.1}
\]

among non-negative convex functions \(u : \mathbb{R}^n \to [0, \infty] \) which are coordinatewise nondecreasing. The product \(y = Du(x) \) selected by consumer type \(x \) coincides with the gradient of \(u \). They give an abstract characterization of the maximizing \(u \), and work out its implications for the particular example in which \(c(y) = |y|^2/2 \), \(n = 2 \) and \(\mu \) is distributed uniformly over the square \(\Omega := [a, a+1]^2 \) for fixed \(a > 0 \). They assert the unique maximizer \(u \in C^1(\Omega) \) and divides \(\Omega \) into three regions

\[
\Omega_0 = \{(x_1, x_2) \in \Omega : x_1 + x_2 \leq t_{0.5} \} \tag{1.2}
\]

\[
\Omega_1 = \{(x_1, x_2) \in \Omega : t_{0.5} < x_1 + x_2 \leq t_{1.5} \} \tag{1.3}
\]

\[
\Omega_2 = \{(x_1, x_2) \in \Omega : t_{1.5} < x_1 + x_2 \} \tag{1.4}
\]

* Robert McCann’s research is supported in part by the Canada Research Chairs program CRC-2020-00289, the Simons Foundation, and Natural Sciences and Engineering Research Council of Canada Discovery Grants RGPIN–2015–04383 and 2020–04162. The work of Kelvin Shuangjian Zhang is supported by the ERC project NORIA. The authors are grateful to Jean-Marie Mirebeau for permission to reproduce one of his figures, and to Ivar Ekeland and participants on our virtual presentation of these results at the Moscow Seminar on Mathematical Problems in Economics in May 2021 for useful feedback, and to Toronto’s Fields Institute for the Mathematical Sciences, where much of this work was performed. ©November 17, 2023.
of qualitatively different behaviour: a triangle Ω_0 of excluded customers on which $u(x) = 0$; a strip Ω_1 foliated by lines $x_1 + x_2 = t$ of customers each of whom chooses a product $y = (U'(t), U'(t))$ from the diagonal, where $u(x_1, x_2) = u_1(x_1, x_2) = U(x_1 + x_2)$ satisfies

$$U(t) = \frac{3}{8} t^2 - \frac{1}{2} a t - \frac{1}{2} \log |t - 2a| + C_0,$$

(1.5)

with matching conditions $U(t_{0.5}) = 0 = U'(t_{0.5})$ selecting the constants C_0 and $t_{0.5}$; and a third region Ω_2 on which $u = u_2$ is strictly convex (so that each agent gets a customized product) and satisfies the mixed Dirichlet / Neumann problem for the Poisson equation

$$
\begin{cases}
\Delta u_2 := \left(\frac{\partial^2 u_2}{\partial x_1^2} + \frac{\partial^2 u_2}{\partial x_2^2} \right) = 3, & \text{on } \text{Int}(\Omega_2), \\
(Du_2(x) - x) \cdot \hat{n}(x) = 0, & \text{on } \partial \Omega_2 \cap \partial \Omega, \\
u_2 - u_1 = 0, & \text{on } \partial \Omega_1 \cap \partial \Omega_2;
\end{cases}
$$

(1.6)

here $\hat{n}(x)$ denotes the outer unit normal to the interior $\text{Int}(\Omega_2)$ of the domain at $x \in \partial \Omega_2$, and the additional boundary condition

$$D(u_2 - u_1) \cdot \hat{n}(x) = 0, \text{ on } \partial \Omega_1 \cap \partial \Omega_2$$

(1.7)

is supposed to select and be satisfied by some constant $t_{1.5} \in \mathbb{R}$.

Subsequent numerics by Ekeland and Moreno-Bromberg (2010) and Mirebeau (2016) suggest this description is mostly but not entirely correct: in Figure 2, the region Ω_1 appears not to be a strip, but to have a more complicated upper boundary, parameterized by a nonsmooth curve $t_{1.5}(\cdot)$ over the anti-diagonal:

$$\Omega_1 = \{ (x_1, x_2) \in \Omega : t_{0.5} < x_1 + x_2 \leq t_{1.5}(x_1 - x_2) \}.$$

(1.8)

Below, we prove rigorously that Rochet and Choné (1998)’s ansatz $t_{1.5} \equiv \text{const}$ cannot be correct. Before doing so, we explain how to correct it and make it consistent with the theoretical and numerical evidence: assuming temporarily that we know Ω_1 (and hence Ω_2), we first augment Rochet and Choné’s description of $u = u_1$ in Ω_1; we claim that (Ω_1, u_2) solves the boundary value problem (1.6)–(1.8). In McCann and Zhang (2023+), we give a nonrigorous justification of this claim, along with the rigorous proof that only one such pair (Ω_1, u_2) solving (1.6)–(1.8) can yield u convex throughout Ω. Setting aside the degree of rigor of the justification, this gives a unique characterization of the solution. Since finding the edge $\partial \Omega_1 \cap \partial \Omega_2$ of the unknown domain is half of the challenge, this is called a free boundary problem in the mathematical literature.

Figure 2. Numerics from Mirebeau (2016). Left: level sets of $\det D^2 u$ with $u = 0$ on Ω_0 and $\det D^2 u = 0$ on $\Omega_0 \cup \Omega_1$; Right: intensity of products sold by the monopolist.
We begin with the ansatz that \(\Omega_1 = \Omega_1^0 \cup \Omega_1^+ \cap \Omega_1^- \) splits into three regions: a strip
\[
\Omega_1^0 := \{(x_1, x_2) \in \Omega_1 : x_1 + x_2 \in (i_{0.5}, t_{1.0})\},
\]
plus two regions
\[
\Omega_1^+ := \{(x_1, x_2) \in \Omega_1 \setminus \Omega_1^0 : \pm(x_1 - x_2) \geq 0\},
\]
below and above the diagonal. The region \(\Omega_1^0 \) is foliated by anti-diagonal isochoice sets, and the solution there \(u(x_1, x_2) = U(x_1 + x_2) \) is exactly as Rochet and Choné describe \((1.5)\). However, the region \(\Omega_1^- \) and its reflection \(\Omega_1^+ \) below the diagonal are foliated by isochoice segments making continuously varying angles \(\theta \) with the horizontal.

We describe the solution \(u = u_1^- \) in this region using an Euler-Lagrange equation derived in McCann and Zhang \((2023+)\). Index each isochoice segment in \(\Omega_1^- \) by its angle \(\theta \in (-\frac{\pi}{4}, \frac{\pi}{2}] \). Let \((a, h(\theta)) \) denote its left-hand endpoint and parameterize the segment by distance \(r \in [0, R(\theta)] \) to this boundary point \((a, h(\theta)) \). Along the hypothesized length \(R(\theta) \) of this segment assume \(u \) increases linearly with slope \(m(\theta) \) and offset \(b(\theta) \):
\[
u_1^-((a, h(\theta)) + r(\cos \theta, \sin \theta)) = m(\theta)r + b(\theta).
\]

Given a constant \(t_{1.0} \in [2a, 2a + 1] \) and \(R : [-\frac{\pi}{4}, \frac{\pi}{2}] \rightarrow [0, \sqrt{2}] \) locally Lipschitz (where positive) with \(R(-\frac{\pi}{4}) = (t_{1.0} - 2a)/\sqrt{2} \), solve
\[
m(-\frac{\pi}{4}) = 0, \quad m'(-\frac{\pi}{4}) = \sqrt{2}U'(t_{1.0}) \quad \text{such that}
\]
\[
(m''(\theta) + m(\theta) - 2R(\theta))(m'(\theta)\sin \theta - m(\theta)\cos \theta + a) = \frac{3}{2}R^2(\theta)\cos \theta.
\]

Then set
\[
h(\theta) = (t_{1.0} - a) + \frac{1}{3}\int_{-\pi/4}^{\theta} (m''(\vartheta) + m(\vartheta) - 2R(\vartheta)) \frac{\dd \vartheta}{\cos \vartheta},
\]
\[
b(\theta) = U(t_{1.0}) + \int_{-\pi/4}^{\theta} (m'(\vartheta)\cos \vartheta + m(\vartheta)\sin \vartheta)h'(\vartheta)\dd \vartheta.
\]

Given \(t_{1.0} \) and \(R(\cdot) \), the triple \((m, b, h)\) satisfying \((1.13)-(1.15)\) exists and is unique provided \(0 \neq m'(\theta)\sin \theta - m(\theta)\cos \theta + a \). Subject to these conditions, the shape of \(\Omega_1^- \) — or equivalently \(t_{1.5}(\cdot) \) from \((1.8)\) — and the value of \(u_1^- \) on it will be uniquely determined by any \(t_{1.0} \in [2a, 2a + 1] \) and \(R : [-\frac{\pi}{4}, \frac{\pi}{2}] \rightarrow [0, \sqrt{2}] \). We henceforth restrict our attention to choices of \(t_{1.0} \) and \(R(\cdot) \) for which the
resulting set Ω_1^- lies above the diagonal and in the square Ω. In this case Ω_1^+ and the value of $u = u_1^+$ on Ω_1^+ are determined by reflection symmetry $x_1 \leftrightarrow x_2$ across the diagonal. Together, u_1^+ and (1.5) define $u = u_1$ on Ω_1 and provide the boundary data on $\partial \Omega_1 \cap \partial \Omega_2$ needed for the boundary value problem (1.6) which determines u_2. Finally, as claimed above, for only one choice of $t_{1,0}$ and $R(\cdot)$ can u (pieced together from u_0, u_1 and u_2) be convex and satisfy the extra boundary condition (1.7); when it exists (and we argue conditionally in McCann and Zhang (2023+) that it does) this choice uniquely solves Rochet and Choné (1998)’s square model.

The solution we propose also appears consistent with phenomena observed numerically and discussed in an investment-to-match taxation model proposed by Boerma, Tsyvinski, and Zimin (2022+) simultaneously and independently of the present work. In their terminology Ω_1 decomposes into a blunt bunching region Ω_1^+ in which the optimal product selected does not differentiate between buyers according to the sign $x_1 - x_2$ distinguishing their dominant trait, as opposed to the targeted bunching regions Ω_1^\pm in which the product selected sorts along the dimension of their dominant trait and bunches in the other dimension. In our case, the two regions can also be distinguished by the fact that the indirect utility $u(x)$ is constant on each bunch in the blunt bunching region Ω_1^+, whereas it varies along generic bunches in the targeted bunching regions Ω_1^\pm.

As shown in Figure 1, Rochet and Choné (1998) hypothesized that the regions (1.2)–(1.4) are separated by two segments parallel to the anti-diagonal, so $\Omega_1 = \{(x_1, x_2) \in \Omega : t_{0,5} < x_1 + x_2 \leq t_{1,5}\}$ with $t_{0,5} = \frac{4a + \sqrt{4a^2 + 6}}{3}$ and $t_{1,5} = 2a + \sqrt{\frac{6}{3}} = t_{1,0}$. Thus, they do not consider the possibility of a non-empty subset $\Omega_1^\pm \subset \Omega_1$ where $u(x)$ does not just depend on $x_1 + x_2$ (nor do they consider any system of equations comparable to (1.11)–(1.15)). Apart from that, their proposed solution is identical to ours, except that they fail to take into account that enforcing both the Dirichlet and Neumann conditions (1.6)–(1.7) on a line separating Ω_1 from Ω_2 overdetermines the problem and prevents the free interface from being a line segment. As a result, we now show their proposed solution to be inconsistent with the continuous differentiability $u \in C^1(\Omega)$ up to the boundary claimed by Rochet and Choné (1998), and also by Carlier and Lachand-Robert (2001).

Lemma 1.1. If $u : \Omega \to [0, \infty)$ convex nondecreasing satisfies (1.2)–(1.7) (so that Ω_1^\pm are empty), then $u \not\in C^1(\Omega)$ hence cannot maximize (1.1) for $c(y) = |y|^2 / 2$ and $d\mu(x) = 1_{\Omega(x)} dx$.

Proof. Rochet and Choné (1998) showed that if u convex and (coordinatewise) nondecreasing satisfies (1.2)–(1.7) (so Ω_1^\pm are empty), then

$$\Omega_1 = \{(x_1, x_2) \in \Omega | t_{0,5} \leq x_1 + x_2 \leq t_{1,5}\}$$

is bounded by $t_{0,5} = \frac{4a + \sqrt{4a^2 + 6}}{3}$ and $t_{1,5} = 2a + \sqrt{\frac{6}{3}} = t_{1,0}$.

Differentiating (1.5) at $x_1 + x_2 = t_{1,5}$ implies their solution to (1.6) also satisfies

$$Du(x) = (a, a) \text{ on } \partial \Omega_1 \cap \partial \Omega_2. \quad (1.16)$$

Assume that Rochet and Choné’s solution $u \in C^1(\Omega)$ exists and is convex. This convexity implies $u_{x_1 x_2} \geq 0$ on the interior $\text{Int}(\Omega_2)$ of Ω_2, hence the Poisson equation implies $u_{x_2 x_2} \leq 3$ there.

Set $x' = (a, a + \sqrt{\frac{6}{3}}) \subset \partial \Omega \cap \partial \Omega_1 \cap \partial \Omega_2$. From (1.16), $u_{x_2}(x') = a$. Since $u \in C^1(\Omega)$, there exists a point $x'' \in \text{Int}(\Omega_2)$ with the same x_2 coordinate as x' such that $u_{x_2}(x'') \leq a + \frac{1}{3}$.

Denote by $x''' = (x''_1, a + 1) \in \partial \Omega$ the point on the top edge of the square having the same x_1 coordinate as x''. Then the Neumann condition (1.6) implies $u_{x_2}(x''') = a + 1$.

But

$$u_{x_2}(x''') - u_{x_2}(x'') = \int_{a + \sqrt{2}/3}^{a + 1} u_{x_2 x_2}(x'', x_2) dx_2 \leq 3[1 - \sqrt{2}/3]< \frac{3}{5},$$

contradicting $u_{x_2}(x''') - u_{x_2}(x'') \geq (a + 1) - (a + \frac{1}{3}) = \frac{9}{15}$.

This contradiction shows the C^1 differentiability of the maximizer up to the boundary is inconsistent with the convexity of Rochet and Choné (1998)’s alleged solution, in which Ω_1^\pm are empty. \qed
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, ONTARIO, CANADA, M5S 2E4 mccann@math.toronto.edu

SCHOOL OF MATHEMATICAL SCIENCES, FUDAN UNIVERSITY, SHANGHAI, CHINA 200433 ksjzhang@fudan.edu.cn