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1. INTRODUCTION  

 

Rigorous Proof in Calculus 
 

Hints on how to read this section 

This is introductory material that you should read carefully and think about. 

 

 

Mathematics is a most useful tool in engineering and science.  But, it can serve this purpose only 

if you have a good command of technique, can make good judgements about appropriate procedures and 

have an understanding of how its ideas fit together.  Thus, good intuition of what is mathematically 

correct - something we gain from practice and experience - is an important part of this understanding.  

An equally important part of this understanding comes from appreciating logical proof and the logical 

connection of ideas.   Sometimes, mathematics is difficult to apply or it becomes too complex for our 

intuition to handle; in these situations you need to be able to go back to basic ideas and reason things 

through, step by step.  While intuition, formulae and procedures are very useful, you cannot rely only on 

these all the time.  Logical proof also gives you a look at the beauty and intellectual power of 

mathematics.   

 

In short, mathematicians require both a good intuitive sense of what constitutes a correct 

mathematical statement, as well as the ability to rigorously prove the correctness of the statement. 

 

While geometrical and physical intuition play a major role in understanding and using calculus 

ideas, over the past 200 years, mathematicians realized that there were severe conceptual problems and 

difficulties involving the infinite that needed to be sorted out using rigorous logic.  The key notions of 

limit and continuity needed to be defined in a way that made the subject self-contained and not 

dependent on either geometry or physics.  Part of doing this required a deep understanding of the system 

of real numbers as a continuum.  This is not easy to achieve, and one of your goals over the year will be 

to reflect on the number system and try to understand how its properties feed into the ideas of the 

calculus. 
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It was natural for mathematicians in the seventeenth and eighteenth centuries to think in terms of 

"infinitesimal," as finding tangents involved looking at secants of points infinitely close together and 

calculating areas involved adding the areas of infinitely small rectangles.  But this notion led to many 

paradoxes and caused considerable controversy and confusion.  If we want to find the slope of a tangent, 

regarded as a secant going through coincident points on a curve, we have to look at a ratio of differences 

of the form 0/0.  What can this possibly mean?  What can division by 0 signify?  We define a/b to be 

that number which when multiplied by b gives a. With this idea, there are infinitely many candidates we 

could use as the definition of 0/0 (say 17), and none for a/0 when a is nonzero.  Maybe a/0 is a new, 

“infinite number”, ∞ .  But then what value can we assign to ∞−∞  or ∞∞ / for example?  Also, 

presumably ∞ +2 = ∞ +3, but doesn’t that then mean that 2 = 3? There are many conceptual difficulties.  

So in the nineteenth century, mathematicians such as Cauchy and Weierstrass sought to formulate 

calculus in a rigorous way that avoided the use of infinitesimals.  This is essential, since no one has, 

until recently, come up with a satisfactory definition of an "infinitesimal."  Are they numbers?  Not 

really - not like other numbers. So what exactly are they?  You may think that the results of the 

rigorous approach are a bit arcane, but the process is necessary to ensure that the subject is on a firm 

footing. 

 

To get around the problem of dealing with infinities and infinitesimals, we introduce the concept 

of a limit.  This can be rigorously defined, but requires that we understand carefully what numbers are, 

along with their properties.  We can be helped in doing this by thinking of instantaneous speed in 

physics, as a limit of average speeds over smaller and smaller time intervals. 

 

Calculus is a challenging subject, because to use it well, you have to be able to think on different 

levels and to switch from one to another as appropriate.  Certainly there are techniques that you will 

learn, because the power of calculus resides in its ability to give general procedures that can be applied 

to a wide variety of problems, and to provide algorithms that can be applied without much conscious 

thought.  But if you approach the subject as a collection of formulae and processes to memorize, then 

you will find mastery of the subject to be so heavy that you will not be able to use it.  Often problems 

become simple by looking at them with the right perspective and an exercise of judgment about the 

application of a technique may lead to a simple solution rather than one that is horribly complicated.  So 
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you will need to practise, but with your eyes open and ears attuned to nuances.  You will also regularly 

need to refer to your geometrical or physical intuition about what is going on to help get an overview of 

the situation.  As with all challenging and worthwhile enterprises, practice and experience make all the 

difference.  Do not expect things to be clear right away.  Just hang in.  Thousands before you have made 

it.  You will too! 

 

 

2.  THE REAL NUMBER SYSTEM 

 

2.1 Numbers: The Terrain for Calculus 

 

The limit concept entails knowing when numbers are close together or far apart, as well as 

understanding that the number system is a continuum, that is like a geometric line or Newtonian time. 

 

We actually define, in effect, the number system by a set of axioms.  These basic properties arise 

from our intuition, but are accepted as assumptions.  All we require is that they are consistent, i.e. do not 

contradict each other.  Upon this foundation we systematically derive, i.e. logically prove, all the 

propositions – theorems  - we will need to do calculus.  If you think about it for a while, you will realize 

that numbers do not exist in the physical world.  They are ideas, 'mental invention,'  'abstractions.'  We 

simply make them up!  But they mirror the reality we want to study. 
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2.2 The Field Axioms of Numbers 
 

Hints on how to read this section 

An entire course could be devoted to the undertaking of a rigorously logical development of the familiar rules of arithmetic and algebra, starting 

from the axioms of the real numbers. That is not the intention here, so just skim through sections 2.2 and 2.3 in order to get the ‘spirit’ of how 

such an exercise in pure logic would go. For calculus, the most important point to appreciate is that while we simply make up the axioms – i.e. 

the properties of real numbers - we have good reasons not to include a/0 nor ∞ as real numbers. That simple fact has enormous 

consequences for how we can logically define the derivative and the integral – the two most important types of number in calculus. It is this 

simple fact that forces us to come up with the concept of the limit - and to rigorously define it. 

 

The number system we construct, the reals, to be denoted by R, will have two main arithmetic 

operations, addition and multiplication, along with the derived operations of subtraction and division.  

Each of these operations will act on an ordered pair (a, b) of numbers to produce a number, be it a + 

b, ab, a-b,  a ÷ b.  Thus, not only are numbers, in themselves, our mental inventions but so also are 

operations through which they can be made to relate with one another.  In this, mathematics is just a 

logical game like chess.  We do not attempt to directly define the operations, but do so indirectly by 

specifying the axioms or rules that we want them to obey.  This is all that is needed to "play the game" 

of mathematics.  First we have the field axioms:  

 

 

Axiom 1:      (Commutative law) For each pair x, y ∈  R, 

 

x + y  =  y + x    and       xy = yx. 

 

 

Axiom 2:      (Associative law) For each triple x, y, z ∈  R, 

 

x + (y + z)  =  (x + y)  +  z      and     (xy)z  =  x(yz). 

 

 

Axiom 3:      (Distributive law) For each triple x, y, z ∈  R,  

 

x(y + z)  =  xy +  xz      and       (x+ y)z  =  xz  + yz. 
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Axiom 4:     (Existence of identities) There exist two distinct real numbers, denoted by 0 and 1 for 

which  

 

x +  0  =  0 + x = x     and      x . 1  =   1  .   x  =  x  

 

for each  x ∈  R. 

 

 

Axiom 5: (Existence of inverses) For each x ∈  R, there exists a unique additive inverse, which we 

denote by -x ("minus   x"), for which 

 

x + (- x) = (-x) + x  = 0. 

 

For each x ≠  0 in R, there exists a unique multiplicative inverse, which we denote by x-1 or 1/x (the 

reciprocal of x), for which  

 

x .  (x -1)  =  (x-1) . x = 1. 

 

Note that we do not provide a reciprocal for 0. Any attempt to do so leads us to logical difficulties.  Let 

us see why.  On the basis of the axioms, we can show that a . 0 = 0 for each a∈  R.  From the axioms, we 

see that  

 

a . 0 = a . (0 + 0) = a . 0 + a . 0. 

 

Add to each side of this equation the additive inverse of a . 0 to get 0 = a . 0.   

Exercise 1: Go over this carefully and list which axioms are being used. 

Since every element of R multiplied by 0 gives 0, there is no element we can multiply 0 by to get 1. 
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Having defined addition and multiplication, it is now a minor matter to define subtraction and division 

by: 

 

a - b ≡  a + (-b)      a ÷ b ≡  a/b ≡  a . (1/b). 

 

 

______________________ 

 

 

You may think that if numbers are the basic building blocks of mathematics, we should define 

them first.  But what we really need to know are their properties and ways of dealing with them.  So, in 

effect, it is enough to do what we have done: specify the rules - axioms - that they must obey.  It's like a 

game, say chess, where each piece such as the pawn is effectively defined by the rules it has to obey.  

Any piece that obeys the same rules is a pawn and any piece that does not isn't. 

 

The use of the word "real" as applied to numbers is historical and somewhat unfortunate, since 

no numbers actually exist in the physical world.  It also seems to imply that other numbers satisfying 

other axioms which we are equally free to specify and which are useful in their own sphere, are 

somehow less real, such as the, also unfortunately named, imaginary numbers.  Real numbers and 

imaginary numbers are equally "imaginary" in that they exist only as creations of our imagination.  Each 

type of number has its own close parallels to certain aspects of the physical world, and so can be used to 

help construct our mental models of that world. Mental models are central to all science and 

engineering.  It is too bad that imaginary numbers, because of this historical naming, have ended up 

seemingly weird or unrelated to the physical world, in comparison with the reals. 

 

On the other hand, the word "real" does bring out an important point.  While we were free to 

choose the axioms defining reals, we did not choose them blindly.  We were guided by our observations 

of the physical world which often  - albeit not always - behaves in ways reminiscent of these specific 

axioms. Real numbers tend to be the most common type of number we use for constructing our mental 

models of the physical world.  When you come to study quantum theory, electrical circuits, etc., you will 
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find that you will need more sophisticated mathematical artefacts (mental inventions) to do this – such 

as imaginary numbers. 

 

 

 

2.3 The Order Properties of Real Numbers 

 

 

 If numbers are to be modelled by a line (which is a feature that we simply want reals to possess), 

then we have to have some analogue of the property of the line that provides that we can move from left 

to right along the line with each pair of points having one to the left and one to the right. We do this by 

specifying that the numbers can be ordered by a relation, < which has the following properties: 

 

 

 

Axiom 6: (Trichotomy) For each pair (a, b) of numbers, exactly one of the following holds:  

 

a < b      a = b      b < a. 

 

We define a number a to be positive if and only if 0 < a. 

 

Axiom 7:      If a and b are positive, then so are a + b   and   ab. 

 

There are some important consequences of these axioms.  If a is a positive, then -a < 0.  To see this, 

note that -a ≠ 0 (since a ≠  0).  If -a were positive, then 0 = a + (-a) would also be positive, contrary to 

the law of trichotomy.   

Exercise 2: Show that 1 is positive. 
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A number a is negative  if and only if -a positive.  The number is nonnegative if and only if it is either 0 

or positive.   We write a ≤   b  to mean that  a = b or  a < b,   a  > b  to mean  b < a  and  a ≥  b to mean 

that  a = b  or  a > b. 

 

Axiom 8:  (The archimedean property) Given any element r∈  R  and  any positive element  p,  

we can find a positive integer n for which  np >  r. 

 

The archimedean property is a little deep, but it basically says that the real numbers have no infinite 

elements, that we can reach beyond any given real number by counting up 1, 2, 3, 4, … sufficiently far. 

An important consequence of the archimedean property is the following: 

 

Proposition:  x  ≤  0  if and only if  x < 1/n for each positive integer n. 

 

Proof:  "If and only if" proofs require that we carry out the proof in both directions. First, suppose 

we are given that  x ≤   0.  Then, clearly,  x < 1/n  for each positive integer n.  So one part is done. 

 

Next, say we are given that x < 1/n for each positive integer n.  We will now construct a proof by 

contradiction.  Let us suppose that somehow x > 0.  Then, by Axiom 8, there exists a positive integer m 

for which m > 1/x, or equivalently, x > 1/m.  This contradicts our assumption that x < 1/n for each 

positive integer n.  Hence, we must abandon the possibility that x > 0 and deduce that x ≤  0.  ♠ 

 

 

We define various types of intervals: 

 

[a, b] = {x : a ≤  x ≤  b}  (closed interval)  

(a, b) = {x : a < x < b}   (open interval)    

[a, b) = {x : a ≤  x < b} 

(a, b] = {x : a < x ≤  b} 

[a, + ∞ ) = {x : a ≤  x} 

(a, + ∞ ) = {x : a < x} 

(-∞ , b] = {x : x ≤  b} 
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(-∞ , b) = {x : x < b} 

 

Note that the symbol ∞  does not represent a number; it is used in a conventional sense to indicate the 

lack of a bound for the interval being defined.  We are free to define expressions that include the 

symbol ∞ provided we define the entire expression, as we have done here. 

 

 

 

2.4 Inequalities 

 

Hints on how to read this section 

This is useful, important material that you will use in this and other courses. You should make sure you are ‘comfortable’ with this material. 

 

An important part of doing mathematical analysis is dealing with inequalities.  This requires a 

good grasp of algebraic technique and logical argument.  It is often necessary to compare quantities or 

determine when an expression is positive or negative.  Since often a judgement call is necessary, it is 

better to work a lot of examples (and think about what you are doing) rather than to try to remember a 

lot of rules.  Here are some basic properties for you to keep in mind.  They are all theorems  that you can 

prove using the given axioms. 

 

(1) a ≤  b if and only if  b - a  ≥  0. 

 

Comment: If you have to show that a ≤  b, then it is often a good strategy to manipulate b - a into a 

form that you can easily read off as non negative. 

 

(2) a = b  if and only if a ≤  b and  b ≤  a. 

(3) If  a ≤   b  and  c  ≤  d,  then  a + c  ≤  b + d. 

Comment:  Note that (b + d) - (a + c) = (b - a) + (d - c) and use (1). 
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(4) If a ≤  b,   then  -b  ≤  -a. 

(5) If a ≤  b  and   c > 0,  then  ca ≤  cb. 

(6) If a ≤  b  and  c < 0,  then  ca >  cb. 

(7) If 0 < a ≤  b,  then   0 < 1/b ≤  1/a. 

(8) x2 > 0 for each real number x. 

 

Definition: Let x > 0. Then, x  is that nonnegative number u for which u2  = x.  (Thus, by definition, 

x  > 0  when  x  >  0). Note that the equation x2 = 4 has two solutions, x = 4± = + 2, which again 

emphasizes the point that x , e.g. 4 , is nonnegative. 

 

(9) Suppose that 0 ≤  x, y. Then, x < y if and only if  x2 < y2. Also, x < y if and only if x  < y . 

Comment:  Note that y2 - x2 = (y - x) (y + x) and that y  - x = (y - x)/( y + x ); now use  (6). 

(10) Let u and v be distinct real numbers with u < v.  Then (x - u) (x - v) is positive when x < u or when 

x >  v and negative when u < x < v. 

(11) The Arithmetic-Geometric Means Inequality: Let a, b ≥  0. Then:  

 

ab  ≤  
2

1
(a + b)  

 

with equality if and only if a = b. 

First proof. Use 
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Second proof.  Observe that the quadratic equation 

 

0 = (x - a) (x - b) = x2 -  (a+ b) x + ab 

 

has real roots.  Hence, its discriminant (a + b)2 - 4ab is nonnegative.  Thus ab ≤ ( )
2

2
1






 + ba and the 

result follows. 

 

 

Third Proof.  Let AB be the diameter of a circle, C a point on AB and D a point on the circumference, for 

which AC  = a, CB = b and DC ⊥ AB.  The right triangles ACD and DCB are similar, so that AC : CD 

= CD : CB whence 
2

CD  = AC CB  = ab.  The length of CD is thus ab , and this does not exceed 

the radius 
2

1
(a + b) of the circle. 

 

Comment on algebraic vs. geometric proofs.  Geometric proofs often have the advantage over algebraic 

proofs of being more intuitive.  They were favoured in past centuries, for example, in Newton's day. 

Purely algebraic proofs, on the other hand, can be more easily tested for the rigour of their argument, 

not least because we do not have to concern ourselves with the origins of geometric properties.  Thus, 

they have come to be more favoured.  Today, we could imagine programming a computer to be able to 

check a sequence of algebraic statements of a proof for correctness; each line of algebra would have to 

follow from previous lines according to precisely formulated rules of inference on either axioms or 

previously proven theorems stored in the computer's memory.  We will therefore, try to prove things 

algebraically wherever practical, but also use geometric reasoning if this gives us more insight.   

 

(12) The Cauchy-Schwarz Inequality: Let a, b, c; u, v, w be six real numbers.  Then 
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au + bv + cw ≤ 222 cba ++ 222 wvu ++  

 

with equality if and only if a : b : c = u : v : w. 

 

First proof. Observe that 

 

(a2 + b2 + c2) (u2 +  v2 + w2) - (au + bv + cw)2 

 

  = a2v2 + a2w2 + b2u2 + b2w2 + c2u2 + c2v2 - 2abuv - 2acuw - 2bcvw 

   

  = (av - bu)2 + (aw - cu)2 + (bw - cv)2 ≥  0, 

 

with equality if and only if av = bu, aw = cu and bw = cv. 

 

Second proof.  Consider the quadratic equation 

 

  0 = (ax - u)2 + (bx - v)2 + (cx - w)2 

 

   = (a2 + b2 + c2)x2 - 2(au + bv + cw )x + (u2 + v2 + w2).   

 

Since the right side is always nonnegative, it does not have distinct real roots. Therefore, its discriminant 

is non-positive, i.e., 

 

4(au + bv + cw)2 - 4(a2 + b2 + c2)(u2 + v2 + w2) ≤  0 

 

from which the desired inequality follows.  Equality occurs if and only if the discriminant vanishes, 

which in turn occurs if and only if the equation has coincident real roots, if and only if, for some x,u = 

ax, v = bx and w = cx. 
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Some Examples 

 

1. What values of x satisfy 3x – 7 > 5x + 8 ? i.e. what interval of x does this represent? i.e. what set of x-

values does this represent? 

 

Solution: subtract 8 from each side: 3x – 7 - 8 > 5x + 8 – 8. Thus 3x – 15 > 5x. Next, subtract 3x from 

each side: 3x – 3x – 15 > 5x – 3x. Thus –15 > 2x. Next, divide each side by 2: -15/2 > x. We have now 

answered the question: this inequality represents all values of x which are less than or equal to –15/2, i.e. 

the set ].2/15,( −−∞∈x  Geometrically this is indicated as: 

 

 

          -15/2                  0                 x  

  

where the solid dot indicates that the point x = -15/2 is included, i.e. the set is closed at this end. (If this 

point were not to have been included, the set would be open at this end, and an open circle would be 

used instead of a solid one, or the thick line simply ends without any symbol.) 

In order to further convince yourself that this is the correct answer, try inserting some sample values into 

the original inequality, say x = -8, or x = -7, etc. 

 

 

2. Solve the inequality x3 < x2, i.e. find what interval of x this represents.  

 

Solution: divide each side by x2, noting that since x2 is always positive, the order of the inequality will 

stay unchanged: x3/x2 < x2/x2, thus x < 1. We have therefore found the answer. We can also write it as 

).1,(−∞∈x  Note that the interval is open at the upper end. Geometrically:  

 

 

         0          1    x 

 

Again, try plugging sample values into the original inequality to re-assure yourself that your answer is 

correct.  
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3.  Exercise 3  Solve the inequality: 

        .
x

x

x

x

4

3

5

2

−
−>

−
−

 

Hint: If you multiply both sides of an inequality by some factor, be careful to check the sign of the 

factor, since if it is negative, this will change the sign of the inequality. 

 

4. Exercise 4  Solve the inequality:  

24 32 xxx ≥+ . 

This is a fairly tough one. Hint No. 1: try adding some number to each side which will then result in a 

common factor on each side. Hint No. 2: when you then cancel that common factor, carefully consider 

its sign and how the cancellation effects the sign of the inequality. 

 

5. Sketch the inequality: 6x - 7y 
�

 3.  

 

Note that now both x and y are involved, therefore we are no longer considering a portion of the x-axis, 

as in the foregoing examples, but a region of the (x,y) plane. 

 

Solution: add 7y to each side, etc., to finally obtain: y < -3/7 + 6x/7. In order to visualize what region of 

the plane is involved, suppose that the original expression had been an equality. In that case, what 

would be represented? the line y = -3/7 + 6x/7. Therefore the inequality involves the entire region in the 

plane lying below this line – also including the line itself (since we were given “>” not simply “>”). 

 

         y 

 

 

 

                       x 

 

   y = -3/7 + 6x/7  

   y < -3/7 + 6x/7 
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6. Exercise 5  Sketch the graphs of each of the following inequalities: 
 
(a) 02 ≥+ yx   
 
(b) (x + y - 1)(x - y + 2) 

�
  0 

 
(c) y2 + 3x �   2 
 
(d) x2 + y2 �   x + y.  Hint: think about a circle. 
 
  
 

7. Prove that: 

 1 < 
3

4)(
22

2

≤
++

+
yxyx

yx
 for any positive real numbers x and y. 

 

Solution:  The left inequality is equivalent to x2  + 2xy + y2 > x2 + xy + y2, which is true.  The right 

inequality follows from  

 

4(x2+ xy + y2) - 3(x2 + 2xy + y2) = x2 - 2xy + y2 = (x - y)2 ≥  0. 

 

 

Note that x2 + xy + y2 is positive when x and y are positive. Exercise 6: prove that. 

 

8. Prove that x3 + 2 ≥  3x whenever x ≥  0. 

 

Solution: 

 

x3 + 2 - 3x = x3 - 3x + 2 = (x - 1) (x2+ x - 2) = (x - 1)2 (x + 2) ≥  0 

 

for x ≥  0.  The result follows. 

 

9. Solve the inequality 
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Solution:  The difference of the two sides is  

 

     






−
+

−
−







+
+

− 2
1

2
1

1
1

1
1

xxxx
 

       = 
4

2

1

2
22 −

−
− x

x

x

x
  

       = 
[ ]

)4)(1(

)1()4(2
22

22

−−
−−−

xx

xxx
 

        .
)4)(1(

6
22 −−

−
xx

x
 

 

This is nonnegative if and only if 1 < x < 2, or -1 < x ≤  0 or x < -2.  Thus the inequality holds if and 

only if one of these three conditions holds. 

 

 

 

2.5 Absolute Value 

 
Hints on how to read this section 

This is useful, important material that you will use in this and other courses. You should make sure you are ‘comfortable’ with this material. 

 

We often have to deal with absolute values of numbers, and it is important for you to become 

adept at this.  Intuitively, the absolute value of a number is its size or magnitude, without regard to its 

sign.  Geometrically, we can think of the absolute value as its distance from 0 on the number line. 

 

However, these notions lack the precision necessary for rigorous analysis.  The definition we 

present may seem unnatural, but it has two advantages.  First, it involves only algebraic ideas so we do 
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not need any reference to geometry.  Secondly, it can be used in a precise way to develop other results 

that we can use in dealing with absolute values. 

 

Definition:  Let x be a real number. 

 





<−
≥

≡
.0

,0

xifx

xifx
x  

 

Here are a few basic properties: 

 

(1)   x  > 0 for each real x. 

 

Comment: This comes straight from the definition.  If  x ≥  0, then |x| = x ≥ 0; if x < 0, then |x| = -x ≥ 0. 

 

(2) - x  ≤  x ≤  x  for each real x. 

 

(3) Let c > 0.  Then x  ≤  c  if and only if - c ≤  x ≤  c. 

 

Comment. This is a very important result, as it allows us to find a formulation of an absolute value 

relation, which does not involve the absolute value sign, and so may be easier to manipulate.  The proof 

is straightforward, but should be studied closely as it illustrates some important ideas about the nature of 

proof. As the result postulates the equivalence of two statements, there are two distinct parts, in which 

we assume one statement and deduce the other from it. For each part, all we have is the definition of 

absolute value, and so we look at various cases for x. 

 

Proof.  First assume that x  ≤  c.  Then, if x ≥  0, then - c ≤  0 ≤  x = x  ≤  c.  On the other hand, if x < 

0, then - c ≤  0 < - x = x  ≤  c.  Multiplying this inequality by -1 yields that c ≥  x = - x  ≥  - c. 

 

Now we prove the implication in the other direction.  Assume that -c ≤  x ≤  c, from which  
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c ≥  - x ≥  - c.  If x ≥  0, then x  = x ≤  c, while if x < 0, then x  = - x ≤  c. 

 

(4A)                 For any real numbers x and y, we have the Triangle Inequality: 

 

yxyx +≤+  

 

Comment:  To prove this, we could go back to the definition and consider the cases for the different 

signs of x and y.   But with (2) and (3) in hand, we can save some work. 

 

Proof:  Note that  

- x ≤  x ≤ x  

and 

- yyy ≤≤ . 

 

Adding these inequalities yields 

 

- ( ) yxyxyx +≤+≤+ . 

 

From (3), we find that yxyx +≤+ . 

 

(4B)          For any real numbers x and y,  

 

yxyx −≥−  

 

Hint:  Use the triangle inequality on x - y and y. 

 

  xxy =  y  for each real x and y. 
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Comment:  We can look at cases.  For example, suppose that x > 0 and  y < 0.  Then xy < 0, so that xy  

= -(xy) = x(- y) = x  y . 

 

One reason for the importance of the absolute value is that it provides us with a tool for describing when 

numbers are close together or far apart.  We can define the distance between two numbers a and b by  

 

dist (a, b) = ba − . 

 

This allows us to look at so called topological properties of the line, which we will need for describing 

such concepts as limit and continuity: 

 

 

Some Examples 

 

1. Solve the inequality 3≥x , i.e. find the set of x-values this represents. 

 

Solution: There are not very many people who are able to work directly with the absolute value 

expression, and most people have to “open it up” by going back to its definition, i.e replacing it with 

expressions that do not involve the absolute value signs. We can do this by noting that there are just 

2 possibilities: (a) x > 0, (b) x < 0. 

If (a) then  x = x > 3 and at the same time  x > 0 , if that is actually possible. Well, is that possible? 

i.e. are there any values of x which make this possible? Yes, certainly: each and every value of x > 3 

satisfies both these conditions at the same time. Think about it. Thus, it turns out that possibility (a) 

reduces to simply x > 3. 

If (b) then x  = -x > 3, i.e.  x < -3 and at the same time  x < 0, if that is actually possible. Well, is 

that possible? i.e. are there any values of x which make this possible? Yes, certainly: every single 

value of x < -3 satisfies both these conditions at the same time. Think about it. Thus, it turns out that 

possibility (a) reduces to simply x < -3. 

Thus all x satisfying either x > 3 or x < -3 are represented by x  > 3. 
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Geometrically: 

 

 

           -3                         0                            3    x 

 

In order to satisfy yourself that you have found the correct answer, try plugging some sample values 

into the original expression, such as x = 2 and x = 5, etc.  

 

Note the two important concepts involved here, and which need to be carefully distinguished – and 

not muddled or confused: 

First, there’s the concept that every single  value of x in some particular set of x-values may be 

required to satisfy two conditions at the same time  (if that’s actually possible).  

Second, a set of x-values may consist of more than one subset, which is where the either/or gets 

involved.  

Just to be clear, and to state the obvious: in the latter case it is not true that a single value of x is 

supposed to be in both subsets; for example, we are not trying to say that a single value of x would 

satisfy both x > 3 and x < -3 at the same time – which would be ridiculous. You need to think about 

these important concepts for a while to get them clear in your head. 

 

 

2. Sketch the graph of 3−= xy . 

 

Solution: Notice that now both x and y are involved. What could this possibly mean? If you think 

about it for a while, you will realize that this must represent a set of points in the xy-plane – in 

contrast with the first example, where the only variable involved was x, implying a set of points on 

the x-line. A set of points in the xy-plane might constitute a line – not necessarily straight – or a 

whole region, like the interior of a circle.  

Again we open up the absolute value expression by noting that there are just 2 possibilities: (a) x – 3 

> 0, (b) x – 3 < 0.  

If (a) then  y = x – 3 and at the same time x – 3 > 0, i.e. x > 3. Thus the points in the plane that are 

represented here are the points on the line y = x – 3 for values of x > 3. 



 23

If (b) then  y = -( x – 3) = -x + 3 and at the same time x – 3 < 0, i.e. x < 3. Thus the points in the 

plane that are represented here are the points on the line y = -x + 3 for values of x < 3. 

Thus any x which satisfies either (a) or (b) is included, i.e. is represented by 3−= xy . 

 

 

 

 

 

 

 

Geometrically:  

              y 

 

         3  

          y = x – 3 

 

        3     x 

         

                    y = -x + 3 

 

 

Again to satisfy yourself that this is the correct answer, try plugging sample values into the original 

equation, including both points that you think should be included, like (4,1), and ones that you think 

should not, such as (5,1).  

 

 

3. Solve the inequality: 42 +>− xx . 
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Solution: We want to know if there is any value of x which can satisfy this expression, and to identify 

that value. Or perhaps there’s a subset of all x-values that will satisfy it, or perhaps more than one 

subset.  

Here there are four possibilities that we have to consider. It is conceivable that for one and the same 

value of x it will be possible to simultaneously satisfy :  

(a) (x – 2) > 0 and at the same time (x + 4) > 0 and at the same time +(x – 2) > +(x + 4), if that is 

actually possible. 

(b) (x – 2) > 0 and at the same time (x + 4) < 0 and at the same time x – 2 > -(x + 4), if that is actually 

possible. 

(c) (x – 2) < 0 and at the same time (x + 4) > 0 and at the same time –(x – 2) > x + 4, if that is actually 

possible. 

(d) (x – 2) < 0 and at the same time (x + 4) < 0 and at the same time –(x – 2) > -(x + 4), if that is actually 

possible. 

 

OK, let’s start with the hypothetical possibility (a) and see if this actually “yields” any “fruit”, i.e. does 

this describe any possible x-values? The first condition gives x > 2. The second gives x > –4. The third 

gives –2 > 4. There certainly are x-values which could satisfy the first and second condition 

simultaneously, namely each and every x > 2; however, the third requirement is absolutely impossible – 

no matter what the value of x considered. Thus hypothetical possibility (a) turns out to have no x-values 

satisfying all the requirements. 

 

OK, possibility (b) next, where we are looking for any x-value that simultaneously satisfies: x > 2, x < -

4, x > -1. There are no such x-values. 

 

OK, possibility (c) next, where we are looking for any x-value that simultaneously satisfies: x < 2, x > -

4, x < -1. Score! Yes, any value of x satisfying -4 < x < -1, satisfies all three conditions simultaneously. 

Note that we have found a whole subset of x-values here. Try a few sample values within this subset in 

the original expression to convince yourself. 

 

Finally, possibility (d) next, where we are looking for any x-value that simultaneously satisfies: x < 2, x 

< -4, 2 > -4. Score! Yes, any value of x satisfying x < -4, satisfies all three conditions simultaneously. 
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Try a few sample values within this subset in the original expression to convince yourself. 

 

So, gathering all out “fruit” together, we find that each and every x satisfying x < -1 satisfies the original 

expression.  

 

4. Exercise 7 Solve the following inequalities: 

 

(a) 10 ≤< x  

(b) 2
120 <−< x  

(c) 830 ≤−< x  

(d) 4
112 <+x  

(e) 44532 >+−− xx  

 

5. Exercise 8 Sketch (approximately) the graphs of the following equations: 
 
(a) 3212 −++= xxy  

 
(b) =−++ yxyx 1 

 

(c) 22 −−+= xxy  (no calculus) 
 

(d) .xxy −= 22  

 

6. Exercise 9 Find an inequality of the form �<− cx , the solution of which is the open interval:  

 

(a) (-3,3) 

(b) (-3,7) 

(c) (-7,3) 

that is, find the appropriate values of c and � . 

 

7. Exercise 10 Determine all values of A > 0 for which the statement is true: 



 26

 

(a) If Ax <− 2 , then 342 <−x . 

(b) If 21 <+x , then Ax <+ 33 . 

(c) If 51 <−x , then Ax <− 32 . 

 

8. Exercise 11 Sketch (a rough sketch is adequate) some function f(x) to satisfy each of the following: 

 

(a) for 12 <−x , f(x) > 0. 

(b) for 2
11 <+x , f(x) is increasing. 

(c) for 310 <+< x , (f(x) + 1) > 0. 

(d) for 11 >−x , |f(x)| < 1. 

(e) for 32 <+x , | f(x) -1| < 0. 

(f) for 2
1<− cx , | f(x) – L| < 1, where c and L are given constants. 

(g) for �<− cx , | f(x) – L| < � , where c, L, � and �  are given constants. 

 

9. Exercise 12 Sketch (a rough sketch is adequate) some function f(x) which does not satisfy each of the 

constraints in the last exercise. 

 

 

 

2.6 Functions 

  

Hints on how to read this section 

This is useful, important material that you will use in this and other courses. You should make sure you are ‘comfortable’ with this material. 

 

 In mathematical discussion, the terminology and notion attached to the function notion is often 

used a bit loosely, but usually the situation is quite clear from the context and if you are alert, there 
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should be no difficulty for you.  The basic idea of a function is that some kind of input is related to a 

corresponding output.  It may be useful to think of it as a rule that assigns to each element of a set X 

(domain) exactly one element of a set Y, as long as we do not have too restricted an idea of what sort of 

"rules" are allowed.  The formal definition is that a function is any set of ordered pairs (a, b) where a 

belongs to a set A and b belongs to a set B where, given any a, there is exactly one b that corresponds to 

it. While the elements involved in functions do not have to be numbers, in this course they will be. 

 

 A little more informally, we can think of a function as a pairing f which associates to each 

element a of a domain set a uniquely determined element b = f(a) of a range set. b is called the image 

of a under f.  This pairing can be described as a list (the telephone book is an example, where each 

subscriber is mapped to his telephone number) or by a written out description (map each number to its 

square). When the elements are numbers then, of course, “f(a)” represents a number. Frequently, we 

specify the rule by writing a simple algebraic statement, such as f(x) = x3 + 5x for real x, which is 

straightforward to interpret: x is the name of an element (number) in the domain set while f(x) is the 

name (number) of the corresponding element in the range set, and the rule that spells out the 

correspondence is clear.  In practice we often say that f(x) is “the function”, which isn’t the strictly 

correct way to put it; when speaking that way, then “the function” is a number (in this course). 

 

 In some cases, we need to use less compact forms, using more than one algebraic expression; but 

this makes them no less valid as functions as long as the value of the function for each element of its 

domain is unambiguously determined.  For example,  

 





=
≠+=

1,2

1,5
)(

2

x

xxx
xh  

 

is a perfectly valid function (although it is not continuous, a concept we will discuss below). 

 

 Note that, to define a function properly, you must specify:  

1. the domain of definition,  

2. the rule  that implements the relation between elements of the domain and of the range.   
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 Note that any set can serve as a domain; the domain need not be the set of all reals.  For example, 

the domain of f(x) = x1/2 is only x > 0. Two functions are equal (the same) if and only if they have the 

same domain and map each domain element to the same element of the range. 

 

 When we write the equation defining the function f in the form y = f(x), then x is the 

independent variable and y is the dependent variable. 

 

 

2.7 Estimates on Functions 

 

Hints on how to read this section 

This is useful, important material that you will use in this and other courses. You should make sure you are ‘comfortable’ with this material. 

 

 We say that a function f(x) is bounded above on its domain D if and only if there is a number M 

for which f(x) ≤  M for every x ∈  D.  Such a number M is an upper bound.  If there is one upper bound, 

then there are many; each number larger than an upper bound M is also an upper bound.  A function f(x)  

is bounded below on its domain D if and only if there is a number m for which f(x) ≥  m for every x ∈  

D.  Such a number m is a lower bound.  The function f(x)  is bounded on D if and only if it is bounded 

above and bounded below.  Equivalently, f(x) is bounded on D if and only if there is a real number N for 

which Nxf ≤)( for each x ∈  D. 

 

Note that nothing is said in these definitions about these bounds being the ‘tightest’ possible.  Often it is 

necessary to know whether or not a function is bounded and immaterial how close the bounds are to its 

actual values.  In this case, we can make our estimates quite coarse if it will save a lot of work. 

 

 

 

Examples 

1. Prove that: 

f(x) = 
2

3

−
+

x

x
  is bounded for x in (3, 5) 
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 Solution:  We are given that 3 < x < 5.  Adding 3 to each term gives 6 < x + 3 < 8.  Thus, replacing x + 

3 by either 6 or 8 yields 
2

8
)(

2

6

−
<<

− x
xf

x
. (Note, that x - 2 > 0, so the inequality is preserved. Think 

about why it’s important to note that point.)  Halfway there!  Similarly, 1 < x - 2 < 3 hence 

.1
2

1

3

1 <
−

<
x

 Thus, we get 18
2

8
)(

2

6

3

6 ⋅<
−

<<
−

<
x

xf
x

 i.e. 2 < f(x) < 8.  We have therefore shown 

that f(x) is bounded both below and above. 

 

 Exercise 11:  To convince yourself, show some sample values.  Do the values you find "cover" all the 

way down to 2 and up to 8?  No, they do not need to!  We were required to find only some bounds, not 

the tightest ones. 

 

 

2. Prove that the function: 

           f(x) = 
45

467
2

23

+−
++−

xx

xxx
 

is bounded on the domain D = {x : 2 ≤  x ≤  3}. 

 

Comment:  Later in the course, we will have a theorem that will tell us that this is true without any 

additional work.  Here we will appeal to basic results.  There is no set method of doing such problems, 

and the general strategy is to try to minimize the amount of work to be done.  We can deal separately 

with the numerator and denominator, finding an upper bound for the numerator and a lower bound for 

the denominator.  For example,  

 

.461467467 2323 +−−≤++−≤++− xxxxxxxxx  

 

When 2 ≤  x  ≤  3, we have x  < 3, 211 ≤−≤ x  and ,364 −≤−≤− x so that 21 ≤−x  and .46 ≤−x    

Hence, 

.284423467 23 =+⋅⋅≤++− xxx  
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As for the denominator, 41452 −−=+− xxxx . When ,32 ≤≤ x  both 11 ≥−x  and ,14 ≥−x  so 

that .141 ≥−− xx  Putting this together, we find that 

 

28
1
28

45

467
)(

2

23

=≤
+−

++−
=

xx

xxx
xf  

when 2 ≤  x ≤  3.   

Exercise 12: find another way of showing that the function is bounded. 

 

 

2.8 Completeness of the Reals Axiom 

 
Hints on how to read this section 

You should try to understand these ideas. 

 

 The final axiom we need for the real numbers is the one that guarantees that it will be a 

continuum. To understand the situation better, let us do a little classification of the numbers in R. 

 

The integers are the numbers { ,...2,1,0 ±±   }. 

 

A real number is rational if and only if it can be written in the form p/q where p and q are integers and q 

is nonzero.  Every rational number can be written in lowest terms, for which the greatest common 

divisor of the numerator (p) and denominator (q) is equal to 1.  The sum, product, difference and 

quotient of pairs of rationals are also rational.  

 

A real number is algebraic if and only if it is the solution of a polynomial equation of the form 

 

anx
n + an-1x

n-1 + …+ a1 x + a0 = 0 
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whose coefficients ai are all integers. 

 

A real number is irrational or non-rational if and only if it is not rational. 

 

The set of all rational numbers, represented as a line, looks as though it covers the line pretty thickly, as 

we can find rational numbers as close to each other as we like.  But it turns out that there are some gaps.  

Consider the question:  is there a positive number whose square is 3? Since the larger the number, the 

larger the square, we might feel that the square root of 3 should lie between 1 and 2, as the square of 1 is 

1 and that of 2 is 4.  But it turns out that no rational number will fill the bill.  (Can you prove this?  Your 

high school text probably contained a proof.)  There is a gap in the rationals where we feel the square 

root of 3 ought to be. 

 

To get around this, we impose a Completeness axiom which we simply want the real numbers to obey, 

and which the set of rationals will fail to satisfy.  To formulate this, we make some definitions about real 

sets.  (This will be fairly dry, but hang in and things will improve later on.) 

 

A set S of real numbers is bounded above if and only if there exists some number M for which  

x ≤  M for each x ∈  S.  We call M an upper bound of the set.  It is bounded below if and only if there 

exists some number m ≤  x for each  x ∈  S. We call m lower bound of the set. 

 

Definition:  The least upper bound or supremum of a nonempty set is the smallest of the upper 

bounds. The least upper bound of a set S is denoted by sup S or lub S. 

 

Definition:  The greatest lower bound or infimum of a nonempty set is the largest of the lower bounds.  

It is denoted by inf S or glb S.  

 

Axiom 9:      (Completeness)  

Any nonempty subset of the real numbers that is bounded above has a least upper bound. 
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Although it is not usually stated explicitly, the point of the Completeness Axiom is that any nonempty 

subset of the real numbers that is bounded above has a least upper bound that is also a real number. One 

could not make the equivalent statement about merely rational numbers. Think about it. 

 

An equivalent statement to Axiom 9 is that every nonempty subset of the real numbers that is bounded 

below has a greatest lower bound.  

 

 It turns out that can be quite challenging to use Axiom 9 directly to prove such important things 

as the existence of a number whose square is equal to 3. We will shortly show that there is a much easier 

way, but this requires that we first prove a general theorem – the Intermediate Value Theorem, IVT - 

using Axiom 9, see page 51 . Now you are probably thinking that Axiom 9 (or later the IVT) looks like 

an odd, clumsy and roundabout way to "force" reals to include such rationals as .3  Perhaps, you think, 

it would have been simpler and neater to simply add an axiom that says that x2 = 3 has a real solution or, 

equivalently that 31/2 is that real number with the property that 31/2 x 31/2 = 3, similarly to the way we 

“forced” the reals to include 0 or 1.  But such roots are not the only type of irrational we want to include.  

There are ma ny others and quite different ones, such as �  and the values of trigonometric functions, etc.  

We will soon show that the very powerful IVT can be easily used to show the existence of the square 

root of 3.  It also turns out that with the IVT we can readily establish the existence of many other 

irrationals as reals.  So Axiom 9 is indeed a powerful and elegant tool, even if its statement seems hardly 

useful or interesting at first sight. 

 

 

 

3. LIMITS and CONTINUITY 

 

3.1 Motivation for Developing a Rigorous Definition of Limit 

 
Hints on how to read this section 

This material contains important ideas which you should try to understand. 
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 It has to be admitted that a lot of fairly hard work is required to develop a rigorous definition of 

the limit.  Most students find the concepts involved are among the most challenging that they have 

encountered so far in their studies of mathematics and science.  Why should we be bothered with such a 

challenging task?  for some very good reasons.  Without the limit, we do not have a logically solid 

definition for the two most important quantities in calculus -- and in much of science and engineering to 

boot -- the derivative and the integral. 

 

 No matter how complicated a line of reasoning we come up with in trying to define the 

derivative, and no matter how clever we try to be, unless we define the limit first, then we cannot avoid 

being faced with the conundrum of 0/0 and hitting a dead end. 

 

 Now you may think that it should not be such a big problem to just accept 0/0 as a real, since, 

after all, we just make numbers up anyway.  That is, we just make up the axioms, which collectively 

define numbers, in effect.  So why cannot we just add another axiom - if that is what is needed - that 0/0 

is a number?  If we do this, however, it turns out that we can easily prove that 17 = 18 for example, or 

that 0 = 1, so that there is only one real number.  Exercise 13: Make such a proof.  There is nothing 

logically wrong with having a number system with just one element in it; it is just that we do not want 

this to be a property of the system.  It is boring.  Like playing poker with every card wild. And it is 

useless for any kind of physical application. 

 

 We are confronted with essentially the same problem when we try to define the integral without 

first defining the limit.  Intuitively, the integral is the sum of an infinitely large number of infinitely 

small areas, so ultimately we would not be able to avoid treating ∞⋅0  as a real, and thus ∞ as well.  The 

obvious definition of ∞  involves division by 0 and so we are back at the same logical dead end as 

before. 

 

 Unfortunately, the obvious and intuitively attractive ways of defining the derivative and integral 

are, in the end, just not strictly logical.  The derivative and integral are too important to accept this state 

of affairs.  How could we dare to proceed to construct the rest of the edifice of calculus - and thus of 
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much of all science and engineering - on such an uncertain foundation?  This constitutes the strong 

motivation we need to persevere in the daunting task of defining the limit in a rigorously logical way.  

 

 Now, the good news.  Most of the hard work is done once we have the rigorous definition of the 

limit in hand, and the further work needed to define the derivative and integral in terms of limits is 

relatively easy.  You will be rewarded for your effort in having mastered one of mankind's greatest 

intellectual achievements.  Newton, one of history's greatest geniuses, was unsatisfied with the logical 

basis of his definition of the derivative and integral.  But, he was unable to penetrate through to the final 

resolution of this major intellectual challenge (and was twitted by Bishop Berkeley for having a faith, no 

less irrational than that of religion which was under attack by the freethinkers of the time, in the so 

called "ghosts of departed quantities" - infinitesimals).  It was not until the nineteenth century that 

Cauchy and Weierstrass, standing on the shoulders of giants such as Newton, were finally able to secure 

the logical foundation of calculus.  While all people are the heirs of this monumental achievement, it is 

given to only a few in each generation to appreciate and understand it.  You are one of them. 

 

3.2 Limits 

 

Hints on how to read this section 

This material covers what is probably the single most important theoretical concept in calculus. All students find this material pretty 

challenging. You should not expect to understand the ideas involved right away. You will probably find that you have to return again and again 

to this material. Gradually, a bit of dawn will break and you will start to make sense out of some aspects. With further visits to the material, you 

will understand more aspects. Even by the time of the final exam, however, your understanding will probably only be partial. But don’t despair! 

The concept of the limit is arguably the greatest intellectual creation of the human race. Many of the greatest geniuses of the last 2500 years 

have contributed to the creation of this concept.  

 

 Suppose that a function f(x) is defined for x belonging to some open interval (a, b) except 

possibly at a single point c in the interval.  Sometimes, we want to describe the behaviour of the function 

at points near c, and one concept for doing this is that of the limit.  Consider the following statement: 

 

The limit of f (x) is L, as x approaches c. 

 

Notationally, this is written: 
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Lxf
cx

=
→

)(lim  

 

 Informally, this means that as we take values of x closer and closer to c, the corresponding values f(x) 

get closer and closer to L.  Let us focus on the number L and specify a degree of closeness to L; then the 

statement signifies that we can make f(x) achieve that degree of closeness to L if we make x sufficiently 

close to c. 

Note: since L is a number, then clearly )"(lim" xf
cx→

must be a number also. 

 

 Exercise 14: you are given that f(x) = x2, c = 15 and L = 225. Suppose that 50 has been specified as the 

degree of closeness to 225. How close do you have to make x to 15 in order to ensure that f(x) achieves 

the specified degree of closeness? Would 14 < x < 16 be one correct answer? Give some other examples 

of correct answers. How many correct answers are there? 

 

Let us formalize things. We specify the degree of closeness to L by a positive number � . Then, the 

degree of closeness that x has to get to c can be signified by another positive number �  . So we make the 

formal definition:  

 

 

                                  Lxf
cx

=
→

)(lim  

if and only if, 

given any number �   > 0, 

we can find a number �  > 0, which will depend on � , 

for which �<− Lxf )(  

whenever .�<− cx  

 

Most students find this a difficult definition to assimilate, and you will need to think about it and 

probably use it for a while before its import becomes clear.  

 

Here is one way to think about it that may be helpful: 
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1. " )(lim xf
cx→

” is a number, as already pointed out. 

 

2. What number? 

 

3. That we have to guess!  More or less.  It is usually not hard to guess the number, actually.  Don't 

worry.  That is not generally the challenging part.  Anyhow, one way or another we have to come 

up with a candidate number - call it L. 

 

4. How do we know L will do the job? 

 

5. It has to pass a test! 

 

6. What test? 

 

7. Imagine that you have an adversary (the � nemy!) who is free to impose any degree of closeness 

to the limit, any �  > 0, he wants on you (although it only gets challenging when he makes it 

small). 

 

8. Your job is to defeat the � nemy by finding a set of x-values sufficiently close to c, i.e. find a 

value of  �  > 0 such that when c - �  < x < c + � , ...... 

 

9. ……then the corresponding  f-values will satisfy L -  �  < f (x) < L + � , i.e. the f-values will not 

be further than the imposed �  away from candidate L. 

 

10. For some specific and given f (x) and c (say, f (x) = x3 and c = 2), and for your candidate number 

L (in this case, L = 8; now you would not have a hard time guessing this value, would you?) and 

for a particular value of imposed �  (say �  = 0.1), let us say that you do manage to find a value 

of �   > 0 (say �  = 0.001) that will do the job.  (Obviously, your choice for �  will be guided by 
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the particular values of f (x), c, L and �  - which as far as you are concerned at this point are all 

given, and so you really found your value of �  in terms of them).  Success! 

 

11. But not so quick!  Your � nemy is free to impose any �  > 0 upon you.  So, it is not enough for 

you to find a �   that will do the job for only one particular value of � .  It is tougher than that.  

You will have to find �   that expressed in terms of � , e.g. by an algebraic relation between �  and 

� , so that the job gets done once and for all, and you have totally and permanently defeated your 

� nemy. 

 

12. When you have achieved that, then your candidate number L is declared to have passed the test 

and we now know the value of the number )(lim xf  
cx→

. 

 

 

Limit Examples 

 

1. Prove that: 

     0lim 3

0
=

→
x

x
 

 

Comment:  It was not hard to guess the limit, was it?   

 

It is useful to take the following steps. 

 

(1) Note that some �  > 0 has been imposed on us.  We treat �  as given 

 

(2) It is required that ,)( �<− Lxf  or �<x3 …. 

. 

(3)      …when x satisfies �<− cx  or �<x . We need to come up with a prescription that makes (2) 

hold. 
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(4) Take the left side of (2) and using (3) manipulate the left side of (2) to put it "under � -control" 

i.e. less than some expression that involves only � and perhaps some specific constant number, 

like 12.  The left side is 
3

x and so it will be less then � 3. 

 

(5) Now we have to choose our � ; it's pretty obvious �  = � 1/3 will do the job because then the left 

side of 2 will be less than � . 

 

We can reduce this to just the bare-bones logic:  

Given �  > 0, let �  = � 1/3.  Then �<− 0x implies |x3 – 0| < �  as required. 

 

 

2. Prove that: 

      8lim 3

2
=

→
x

x
 

 

Comment:  Again it was not hard to guess the limit, was it?   

 

It is useful to take the following steps. 

 

(1) Note that some �  > 0 has been imposed on us.  We treat �  as given 

 

(2) It is required that ,)( �<− Lxf  or �<− 83x …. 

. 

(3)      …when x satisfies �<− cx  or �<− 2x . We need to come up with a prescription that makes 

(2) hold. 

 

(6) Take the left side of (2) and using (3) manipulate the left side of (2) to get it "under � -control" 

i.e. less than some expression that involves only � and perhaps some specific constant number, 

like 12.   
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It can often be a useful thing to try to factor the expression on the LHS(2) in terms of a factor 

cx − , i.e. here 2−x , i.e. getting LHS(2) = factor) anotherx (2 ⋅−   If one can achieve this, 

then one will have an excellent start to getting the LHS (2) "under � -control", since then by 

using (3) one gets  LHS(2) < factor) another(⋅� . We can often expect to be able to achieve this, 

since after all, we are expecting that LHS(2) will get small as x approaches 2, which implies that 

LHS(2) probably contains a factor 2−x . So we divide the LHS(2) by (x –c), here (x –2), to 

obtain LHS(2) = |42||2|8 23 ++−=− xxxx . Thus, using (3) we have LHS(2) < 

|42|8 23 ++=− xxx � .  

Next, we need to get this additional factor “under control”. Usually this is not a very 

“interesting” factor. That is, it doesn’t do anything “exciting” like approach infinity. That’s all 

we need for our purposes. We’ll be quite happy if we can bracket it between two specific 

positive numbers, such as 5 and 31. Note the important observation that since we are calculating 

the limit of the function as x tends to 2, we are (i) not interested in the value of the function at x 

= 2, and (ii) not interested in the value of the function when x is a long way from 2, but only 

when it is in arbitrarily small intervals about 2.  So in bounding the second factor, we can decide 

in advance that we are going to restrict the domain of the function to a convenient interval that 

contains 2, say (1, 3).  After all, we are in the driver’s seat here – it is we who have to come up 

with the specification of what the � -band is to be. OK, well then we are saying that whatever 

else we will specify about � , in addition it is not ever to be bigger than some specific size – here 

1, i.e we will insist that � < 1.  Thus .31222 <<⇒+<<−⇒<− xxx ���  

Now if 1 < x < 3, then 0 < 7 < x2 + 2x + 4 < 19, and so 19|42| 2 <++ xx  (note the importance 

of having shown that x2 + 2x + 4 is positive.) Therefore LHS(2) = �19 . Success! We have got 

LHS(2) "under � -control". 

 

7. Note that we are still free to specify � in terms of � , provided we carry along this over-riding 

condition that � < 1. OK, then let’s specify 19/�� = . How can we then state our specification 

for �  so as to include both these features? As follows: we specify:  

     

    �  = min(1, 19/� ) 
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which simply means that � is equal to whichever is the smaller, 1 or 19/� . Therefore two things 

are true at the same time: 19/2 �<−x and 12 <−x . We find it useful to use the first result to 

get the first factor of the LHS(2) "under � -control", i.e. the factor |2| −x , while it is useful to 

use the second result to get the second factor of the LHS(2) "under � -control", i.e. the factor 

|42| 2 ++ xx . 

 

Finally, we reduce all this to just the bare-bones logic:  

Given �  > 0, let �  = min(1, 19/� ). Then �<− 2x gives 19/2 �<−x and 12 <−x which 

implies �� =⋅<++−=− 19)19/(|42||2|8 23 xxxx , as required. 

 

 You are probably wondering if this idea of �  = min(1, 19/� ) is perhaps a kind of ‘cheat’, or 

that perhaps it’s not strictly logical. In order to satisfy yourself that this is a perfectly legitimate, 

unambiguous and complete way to specify �  in terms of � , let’s go through all the values of � that 

could possibly have been imposed upon you by the � nemy. There are only three possibilities:  

(a) 0 < � < 19, (b) � > 19, (c) � = 19. So: 

(a) if 0 < � < 19 then 19/�  < 1 so � = 19/� . Then �<− 2x gives 19/2 �<−x and 12 <−x which 

implies �� =⋅<++−=− 19)19/(|42||2|8 23 xxxx , as required. 

(b) if � > 19 then 19/�  > 1 so � = 1. Then…. Exercise 15 : complete this as an exercise. 

(c)Exercise 16: do this as an exercise. 

 

 

Isn’t there a simpler way to do this? 

 

At this point, many students ask: “Isn’t there a simpler way to do this?” Why don’t we simply solve for 

the values of x – let’s call them �  and �  - setting f( � ) = �−L  and f( � ) = �+L ? Then no matter how 

small a value of �  is imposed, we have found an interval (� , � ) containing c such that for all x in 

( � , � ) the values of f(x) satisfy |f(x) – L| < � . This approach, in fact, is perfectly logical – for the simple 
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cases where it can be made to work algebraically – but often it can’t. Consider, for example, 0lim 2

0
=

→
x

x
 

where there simply is no value of �  that will make f( � ) = �−L  = �−0  = �− . Or consider 

0sinlim =
→

x
x �

, where there are no values of �  that satisfy f( � ) = �−L  = �−0  = �−  when �  > 1, and 

infinitely many when �  < 1. Therefore we need a more general and powerful method – such as the one 

we used in the last example. Although it is harder to understand it at first, it’s worth perservering. 

 

 

3.  Ok, now for a tougher one: 

      ?
8

32
lim 3

5

2
=

−
−

→ x

x
x

 

Exercise 17: Experiment with a pocket calculator, taking values of x close to 2 to show that it seems as 

though the limit might be 20/3.   

 

To test this, let us look at the difference between this value and the function for values of x unequal to 2: 

 

)42)(2(3

)1616123()2(

)8(3

64203

3

20

8

32
2

232

3

35

3

5

++−
+++−=

−
+−=−

−
−

xxx

xxxx

x

xx

x

x
 

 

        = .
)42(3

1616123
)2(

2

23









++

+++−
xx

xxx
x    

 

 Before we proceed, let us consider why we might have anticipated the appearance of the factor   

x - 2.  When we put the difference over a common denominator 3(x3 - 8), we get a rational function 

whose numerator and denominators are both polynomials.  We expect that this function is small when x 

is close to 2 and would thus vanish when x = 2.  By the Factor Theorem, a polynomial that vanishes 

when x = 2 has x - 2 as a factor.  Because x - 2 is a factor of the denominator, we would expect x - 2 to 

divide the numerator to a higher power (i.e., at least to (x - 2) 2). The end result is that the difference is a 

product of x - 2 and some other function of x. 
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 The difference will be close to zero when x is close to 2, as long as the other factor does not 

"blow up" near 2.  So we need to be sure that the second factor, the one in square brackets is bounded. 

The situation is therefore essentially the same as in the 2nd example, above. As before, we note the 

important observation that as we calculate the limit of the function as x tends to 2, we are (i) not 

interested in the value of the function at x = 2, and (ii) not interested in the value of the function when x 

is a long way from 2, but only when it is in arbitrarily small intervals about 2.  So in bounding the 

second factor, we can decide in advance that we are going to restrict the domain of the function to a 

convenient interval that contains 2, say (1, 3).   

 

 You can think of the description of �  in terms of �  as a prescription for a program for a 

subroutine that will spit out a numerical value for the closeness that x should be to 2 once you enter in 

the degree of closeness that you want the function to have to its limit. 

 

When 1 ≤  x ≤  3 (but x ≠ 2), we have x2 + 2x + 4 ≥  4 and 0 < 3x3 + 12x2 + 16x + 16 ≤  253, so that  

 

22
12

253

)42(3

1616123
0

2

23

≤≤
++

+++≤
xx

xxx
 

and so 

 

.222
3
20

8
32

3

5

−≤−
−
−

x
x

x
 

 

Now we want to show that the difference on the left side does not exceed a given positive �  when x is 

sufficiently close to 2.  This can be achieved by making 22 .22/22 �� <−<− xor x  Now that we 

have cased the situation, let us put the whole business together. 

 

 Let �  > 0 be given.  (Think of this as being imposed on you; your task is to find the value of 

� that will “deliver the goods”.)  We first select � so that �<− 2x implies 1 < x < 3, so that we have 

access to the bound that we have just established for the term in square brackets.  So whatever � we pick 

should not exceed 1.  Next, we want to ensure that �<− 2x implies 22 2−x < � .  So define 



 43

 

�  = min (1, � /22) 

 

which is just  a useful symbol we define that means that �  is the smaller of 1 and �  /22. 

 

 For example, if �  = 0.12 is imposed, we select � = 0.12/22  ~ 0.0052. Exercise 18: check on a 

pocket calculator that taking x between 1.9948 and 2.0052 puts (x5 - 32) / (x3 - 8) within 0.12 of 20/3.)  

As another example, suppose that �  = 30 is imposed.  Then select �  = 1. Exercise 19: check, for 

values of x satisfying 1 < x < 3, that (x5 - 32) / (x3 - 8) is within 30 of 20/3. 

 

Thus, given �  > 0, we choose �  = min (1, �  /22).  Let us prove that this delivers the goods, writing out 

the argument systematically in the proper logical order: 

 

31122 <<⇒<−⇒<− xxx � .22
42(3

1616323
0

2

3 2

≤












++
+++<⇒

xx

xxx
 

 

But                      ��� <−⇒<−⇒<− 22222/22 xxx  .222
8
32

3

5

�<−≤
−

−⇒ x
x

x
 ♠ 

 

 

4.  Sometimes it can be illuminating to prove a statement is not true. Let’s see if we can prove that: 

      10lim 3

2
≠

→
x

x
 

Let us try a proof by contradiction. Let us assume that 10lim 3

2
=

→
x

x
and show that this results in a 

contradiction. If 10 is the limit, then it must be possible for us to impose any �  that we want, let’s say �  

= 1, and it is supposed to be guaranteed that some �  > 0 will exist such that for all x in (2 - � , 2 + � ), 

the f-values will lie somewhere within (10 - � , 10 + � ), i.e. within (9, 11). We immediately have a 

contradiction since for all x in (2 - � , 2), no matter what the value of � , f(x) = x3 < 8, which does not 

lie in  (9, 11). 

Exercise 20 Prove that: 
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      1003

2
108lim −

→
+≠x

x
 

____________________________________________________________________________________ 

  

There are a number of basic structural properties of limits that we will need; Exercise 21 you should try 

to prove them without recourse to a text. 

 

(1) Suppose that Lxf
cx

=
→

)(lim  and that f (x) M≤ for all x not equal to c in some open interval that 

contains c.  Then L .M≤  (An analogous result is true for ≥ .) 

 

(2) Let h (x) = k for all values of x, so that h (x) is a constant function.  Then kkxh 
cxcx

==
→→

lim)(lim . 

 

(3) cx
cx

=
→

lim . 

 

(4) If uxf
cx

=
→

)(lim  and vxg
cx

=
→

)(lim , then vuxgf
cx

±=±
→

))((lim  and uvxfg
cx

=
→

))((lim . 

 

(5) If k is any real number and uxf
cx

=
→

)(lim , then kuxkf
cx

=
→

))((lim . 

 

 Now you are in a position to prove the following fact.  Recall that a polynomial is a function of 

the form   

p(x) = anx
n + an-1x

n-1 + …+  a1 x +  a0 

 

 where n is a nonnegative integer and each coefficient ai is a real number. 

 

(6) Let p(x) be a polynomial.  Then )()(lim cpxp
cx

=
→

. 
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 We can also define one-sided limits: Lxf
cx

=
+→

)(lim  ⇔ given ,0>�  there exists 0>� for which 

�<− Lxf )( whenever c < x < c + � .  Also, Lxf
cx

=
−→

)(lim  ⇔ given ,0>�  there exists 

0>� for which �<− Lxf )( whenever c - � < x < c. 

 

______________________________________________________________________________ 

 

 

 

A comment on the definition of the limit.  

Intuitively we have no difficulty with the concept of “x approaching c”, etc. – i.e. with the idea of “a 

number increasing” i.e. of “one number turning into another one”. We employ such concepts all the time 

in physics, chemistry etc, and it is an indispensable idea. But from the viewpoint of strict mathematical 

logic this raises conceptual difficulties. Logically, we would prefer to consider numbers as “static 

things”, each having their own specific value – and not as “dynamic things” which can change from one 

value into another. If numbers can change their value, then -  if x starts at 2 and approaches 3, say  -  we 

may ask what the “next number” is after 2? Etc. There are a number of conceptual difficulties. When 

proceeding in a strictly logical way we would prefer to think in terms of sets of “static” numbers. Note 

that this is precisely how we proceed when we use the � � definition of the limit. There is no talk about 

numbers moving around or changing values. We simply speak of sets of x-values in (c - � , c + � )  and 

sets of f-values in (L - � , L + � ). Nevertheless – and rather amazingly – this method perfectly 

encompasses our intuitive sense of “f approaches L as x approaches c.” This is one of the reasons why 

this concept is considered to be so brilliant. 

 

 

3.3 Continuity 

 
Hints on how to read this section 

This is useful, important material. 
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 In many physical situations, we are looking at relationships between variables in which one 

depends on the other in a continuous or smooth way.  Small changes of input lead to small changes of 

output.  For example, the position of a projectile will be a continuous function of time; the projectile will 

not simply vanish from one point and appear simultaneously at some distant point (at least if we are 

living in a Newtonian world).  This means that as the independent variable x gets closer and closer to 

some number c, the corresponding function values f (x) get closer and closer to f (c).  We formalize this 

into a definition. 

 

Definition:  Let f (x) be a function defined on some interval containing a number c.   

Then f (x) is continuous at c if and only if both:  

     1.  f (x) is defined at c  

     2. )()(lim cfxf
cx

=
→

. 

 

 We can reformulate this definition-using �� − notation.  Condition (2) can be rewritten as:  

given any 0>� , there exists a 0>�  such that, whenever ,cx �<− then .)()( �<− cfxf   

 

 Note that continuity is initially defined at individual points; we will say that a function is 

continuous on a set if and only if it is continuous at each point of the set. 

 

Here are some basic properties of continuous functions: 

 

(1) Suppose f and g are functions defined on an interval containing a point c and continuous at c.  

Then  ,gf ±  and f g are continuous at c.  If g (c) ≠ 0, then f /g is also continuous at c. 

 

(2) Suppose that f is a function with domain A and range B, and g is a function whose domain 

contains the image f(A) ≡  {f (x):x ∈  A} of  f.  Suppose also that f is continuous at a, and g is 

continuous at f(a).  Then the composite function fg o  (defined by ( fg o )  (x) = g(f (x)) is 

continuous at a. 
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(3) All polynomials are continuous at every value in their domains.  (This includes constant 

functions and the function  x itself.) 

 

(4) Every rational function (i.e., one of the form p(x)/q(x) where p and q are polynomials) is 

continuous at every value for which q does not vanish. 

 

(5) Every power function xr for real exponent r is a continuous function of x on its domain of 

definition. 

 

 

 

3.4 Calculating Limits Using Continuity 

 

Hints on how to read this section 

This is useful, important material. 

 

 We have seen that, as a matter of definition, a function is continuous at c if and only if 

)()(lim cfxf
cx

=
→

.  Suppose that we know in advance, for some reason, that the function f is continuous 

at c.  Then we can use the continuity to find the limit of f at c simply by evaluating it there.  Thus 

)()(lim cfxf
cx

=
→

 provided that f is continuous. This observation may not be such a big deal, but in a 

moment we will look at an example where it has some weight. 

 

 Another important tool is the Squeezing or Pinching Principle : If for cx ≠  in an open interval 

that contains c, we have )()()( xhxfxg ≤≤ for functions defined on the interval for which 

Lxhxg
cxcx

==
→→

)(lim)(lim , then the limit )(lim xf
cx→

 exists and is equal to L. 

 

 

Examples 
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1.  Evaluate: 

         .
2
8

lim
3

2 −
−

→ x

x
x

 

 

 The function whose limit we are being asked to compute is a rational function, and thus 

continuous at all points of its domain.  However, because the denominator vanishes when x = 2, the 

function is not defined at this point, i.e. 2 is not in its domain, and so there is no question of computing 

its limit by evaluating the function. 

 

 We make an important observation about limits: when we calculate the limit, we are considering 

the values of the function not at the point in question, but only at points near the limiting point.  As a 

result, if we replace the function by a second function equal to the given function except at the limit 

point, then we do not change the value of the limit.  Note that, when 2≠x , 

 

.42
2

8 2
3

++=
−
−

xx
x

x
 

 

The left and right sides of this equation represent two functions which happen to agree as long as 2≠x .  

Because of this 

).42(lim
2
8

lim
2

2

3

2
++=

−
−

→→
xx

x

x
xx

 

 

 

Have we made some progress?  While the left side is not defined at x = 2, the right side is.  Moreover, x2 

+ 2x + 4 is a polynomial, and we know that all polynomials are continuous everywhere.  Therefore, we 

can find the limit of the polynomial by evaluating it at x = 2: 

 

.12)4)2(22()42(lim 22

2
=++=++

→
xx

x
 

 

This is the answer to the exercise. 
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2. Evaluate: 

       
8

lim
−→x

.
8

23/1

+
+

x

x
 

 

 Again, substitution is out, since the numerator and denominator vanish and we get a 0/0 form.  So we try 

to isolate a factor x+8 to cancel.  Using the formula a3 - b3 = (a - b) (a2 + ab + b2), we get x + 8 = (x1/3 + 

2) (x2/3 - 2x1/3 + 4).  So as long as ,8−≠x  we have that  

.
42

1

8

2
3/13/2

3/1

+−
=

+
+

xxx

x
 

 

The right side is continuous for all x, so we can calculate its limit as x �  -8 by evaluation.  The answer is 

1/12. 

 

 

3.5 Examples from Trigonometric Functions 

 

Hints on how to read this section 

This is useful, important material. 

 

  As noted earlier, we prefer purely algebraic proofs to geometric ones.  However, in getting 

started with the trigonometric functions, it is not really practical to proceed in a purely algebraic way.  

For a start, this requires a purely algebraic definition of the functions.  Later, we can do this based on 

series, and then, if we wish, re-derive all the previous results we are now obtaining geometrically.  Then, 

we could define �  purely algebraically, for example, as the smallest positive solution of sinx = 0.  

Historically, of course, the trigonometric functions arose from geometry, and we do not want to neglect 

this important and powerful connection. So we proceed, for now, geometrically. 

 

  We will make considerable use of trigonometric functions in this course. If you are not familiar 

with the basic (non-calculus) properties of these functions, you should carefully work through Appendix 
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D of the Textbook. Some of the problems from the Exercises, page A32-A33, will be used on the 

Quizzes. 

 

  We begin with the basic property: xx <sin  for each nonzero value of x.  You can see why this 

is true by drawing a diagram showing the arc x of a unit circle and the semi-chord, which represents sin x 

for example; see figure on page 170 of the Textbook.  Note that -1 1cos11sin ≤≤−≤≤ xandx  for all x.   

(1) For all real x and a, 






 +






 −=−

2
cos

2
sin2sinsin

axax
ax  

so that, using the fact that ,1
2

cos ≤+ ax
 

.
2

sin2sinsin ax
ax

ax −≤−≤−  

It follows from this that sin is continuous everywhere. 

 

(2) For all real x and a, 






 +






 −=−

2
sin

2
sin2coscos

axax
ax  

Exercise 22: Complete the argument to show that it follows from this that cos is continuous everywhere. 
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4. THREE KEY THEOREMS OF  

DIFFERENTIAL CALCULUS 

 
Hints on how to read this section 

These are 3 very important calculus theorems. You should, at a minimum, know the statement of each of these theorems – i.e. you should be 

quite clear about what they say is true. You should also make some effort to understand the proofs. These proofs may not be as challenging 

as the material in Sec. 3.2, on the basic concept and definition of the limit, but you will probably still find the proofs are not trivial. As with the 

material in Sec. 3.2, don’t expect everything to become clear right away. If, after having taken a few shots at these proofs, you find that you 

don’t seem to be making much headway, then ‘cut your losses’ and just focus on being sure you understand (a) what each theorem says is 

true, (b) how to apply these theorems – which are the most important things. 

 

 

4.1 The Intermediate Value Theorem 

 

 Intuitively, or by sketching its graph, we can see that a function continuous on a closed interval 

[a,b] must assume every value in between the values f(a) and f(b) that it assumes at its endpoints.  We 

give a rigorous proof of this, beginning with a special case. 

 

Lemma.  Given:  f is a real-valued function continuous on a closed interval [a,b] and  f(a) < 0 < f(b).  

          f(x) 

 

        a               b          x   

 

Prove:  There exists a number c between a and b for which f(c) = 0. 

 

Comment:  To motivate the proof, think of a fisherman landing a fish, where the function represents the 

position of the fish above the surface of the water.  At the beginning, the fish is submerged, while at the 

end (assuming success) the fish is resting on the dock.  At some point, it must break the surface.  When?  

At the point when it ceases to be underwater. 
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Proof:  Let S be the set of all numbers x that lie in the interval [a,b] for which f(x) < 0.  Think about this 

for a moment: S is a set of x-numbers in the domain of f, but an element is included in S only if its 

associated f-number f(x) is negative.   

Exercise 23: although, our algebraic proof does not use any geometric argument, you will find it helpful 

to draw a diagram to keep things clear. Draw this figure for the specific example of f(x) = x2 – 100, [a,b] 

= [-9,11]. What is S for this example? 

Since, f(a) < 0,  S  is nonempty and contains a.  In fact, it actually contains x’s in some interval 

[ ]�+a,a .  How do we know that? well, since f is continuous from the right at a, there exists a positive 

number � such that, for all x in a ,ax �+<≤  it must be true that: 

 

   ).()(|)()(| afafafxf −=<−                                             …(4.1)   

  

Why? note that )(af plays the role of �  in the definition of continuity being applied here and that a �  

is guaranteed to exist for any positive �  that might be specified, and  )(af  is certainly a positive 

number. Thus:  )()()()()( afafxfafaf +<<−      

and so:     0)()(2 << xfaf    

Therefore, since )(xf  < 0 then these  x ∈  S.   

Exercise 24: For the same example as in Ex. 23 give a few examples of [ ]�+a,a  that satisfy eqn. (4.1). 

Exercise 25: similarly, show that S is bounded above by all the numbers in an interval ( ]b,b �− for 

some .0>�  

 

 Since S is nonempty and bounded above, it has a least upper bound c, by the Completeness of the 

Reals Axiom.  Since, a < c < b, the function f is defined at c.  By process of elimination, we will show 

that f (c) = 0.    

 First, suppose, if possible, that f(c) > 0. Then, f should be positive some way to the left of c; 

why? Since, f is continuous at c, there exists a number 0>�  for which )()()( cfcfxf <−  for all 

values of x in the interval .�<− cx  (Notice how we are taking �  to be  f(c) here). In particular, when 
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,cxc ≤<− �  we have that f(c) -  f(c) <  f(x) i.e. 0 <  f(x).  Hence, no number in the interval ]cc ,( �−  is 

a member of S.  Now c is an upper bound for S, so it follows that each number in the interval ]cc ,( �−  

is also an upper bound.  But, then this contradicts the fact that c is the least upper bound.  So f(c) > 0 is 

not possible. 

 

Exercise 26: suppose, if possible, that f(c) < 0.  Then (and here you are on your own!), there exists a 

positive number �  such that f(x) < 0 whenever c .cx �+<≤  But then the interval [ Scc ⊆+ ), �  and this 

contradicts c being an upper bound of S. Write out the proof to the same level of detail as for f(c) > 0. 

 

The only possibility remaining is that f(c) = 0. 

 

Intermediate Value Theorem: Given:  f is a continuous real-valued function defined 

on the closed interval [ ]b,a  and C is a number for which f(a) < C <  f(b). 
 

Conclusion:  There exists a number c in (a, b) for which f(c) = C. 

 

Comment:  You can apply the lemma to g(x) ≡   f(x) – C. 

Exercise 27: show that g(x) satisfies the hypothesis of the lemma.   

Exercise 28: formulate a theorem and proof for the case that f(a)  > f(b). 

 

 Now you may think that the IVT is trivial.  But, it depends for its validity on the completeness of 

the reals.  It fails to hold on the rationals: we could, if we wanted to, use exactly the same definition of 

continuity on the rationals as on the reals, just adapting the definition so that the only numbers we refer 

to are rationals, and according to this definition the function is x2 is continuous.  This function assumes 

the value 1 at x = 1 and the value 4 at x = 2, but it never assumes the intermediate value 3.  But, it is a 

different story on the reals.  Note how extremely powerful the Intermediate Value Theorem is.  

Although, it comes almost directly from Axiom 9, it is enormously easier to use it to show that there is a 

real square root of 3. 

Exercise 29: prove this. 
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4.2 The Extreme Value Theorem 

 

 Another existence theorem of paramount importance in calculus is the Extreme Value Theorem, 

which tells us under what conditions a function f(x) is guaranteed to have a maximum or minimum 

value on some interval [a,b]. Finding a maximum or minimum is one of the most important practical 

applications of calculus.  It sometimes also takes some effort. How valuable to establish first that what 

we are looking for actually exists!  

 

 Recall that a function is bounded on a closed interval [ ]b,a if there are some numbers k and K for 

which k < f(x) < K  for each [ ].b,ax ∈   We say that a function f(x) has a maximum value M on [a,b] if 

there exists some number d in [a,b] such that f(d) = M ≥  f(x) for all [ ].b,ax ∈   Exercise 30: draw a 

diagram to illustrate this. 

 

Do "being bounded" and "having a maximum" sound about the same?  Well, they are not! 

 

Example:  Let    .0
sin

)( ≠≡ xfor
x

x
xf  

 

Is this function bounded?  We have already noted that xxx ≤≤− sin  for each nonzero value of x, so 

the answer is yes: 1)(1 <<− xf  for all .0≠x  Does it have a maximum?  Since 1
sin

lim
0

=
→ x

x
x

, we see 

that f(x) takes values arbitrary close to 1.  But, it never takes the value 1 itself.  You might be tempted to 

say that f(0) is the maximum; but the function is not defined at 0.  And don’t say "the maximum is 1" 

because f has to take on this value somewhere in order for 1 to be the maximum.  That's just part of our 

definition of the maximum. 

 

On the other hand                




=
≠

≡
0,3

0,/sin
)(

x

xxx
xf  
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is both bounded and has a maximum.  Similarly for 




=
≠

≡
0,1

0,/sin
)(

x

xxx
xf   

 

but not for                 






=

≠
≡

0,
2
1

0,/sin
)(

x

xxx
xf  

 

Exercise 31: If a function is continuous on [a, b] then it is necessarily defined for all x in [a, b] since, 

otherwise, it would be meaningless to state that )()(lim cfxf
cx

=
→

for all c in [a, b]. Merely being defined 

for all points in a closed interval, however, is not enough to guarantee boundedness. Provide an example 

of a function which is defined, but not continuous, for all points in a closed interval and which is not 

bounded on that interval. 

 

 

Lemma 1. Given:  f  is a function defined and continuous on the closed interval [a,b], and let a < c < b. 

 

Prove:  There exists an open interval ),( �� +− cc with 0>� contained in [a,b] upon which f is 

bounded. 

 

Proof:  Taking 1=�  in the � � definition of continuity, we know that we can always find some 

0>� such that �<− cx implies that 1)()( <− cfxf . This implies that -1 < f(x) - f(c) < 1.  Hence, 

when 1)()(1)(, +<<−+<<− cfxfcfcxc �� , and the result follows.  ♠  

 

Lemma 2. Given:  f is a function defined and continuous on the closed interval [a,b]  

 

Prove:  f is bounded on [a,b]. 

 

Proof: Let u be in [a, b]. Consider the interval [a, u] (“u” for upper end of the interval). If f(x) is bounded 

for all x in [a, b] then we will include u in a set, S. We have thus defined the set S by this ‘test’ of the u-

values. We will then carry out the following steps: 
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1. We will prove that the set S is itself bounded above and so has a least upper bound, lub, call it c. 

You will want to keep clear the distinction between f(x) being bounded and the set S being 

bounded – two different things. Geometrically, the boundedness of f(x) has to do with the y-axis, 

while the boundedness of S has to do with the x-axis. 

 

2. We will then prove that c = b. 

 

3. This will almost complete our task of proving that f(x) is bounded on [a, b], but not quite since 

we will only have proven that f(x) is bounded on [a, c), i.e. on [a, b). Why is b not yet included? 

Answer: the lub of a set is not necessarily a member of the set; simple example: let Q be the set 

of all x < 7; then lub S = 7 but 7 is not in Q. Therefore, our last step will be to prove that f(x) is 

bounded on [a, b], i.e. including the end point b. 

 

OK, then: 

1. By adapting Lemma 1 to the endpoint a, we see that f is bounded on some interval of the form [a,u] 

with u > a, so the set S is nonempty. The set S is bounded above by b. Hence set S has a least upper 

bound, c, by the completeness of the real numbers axiom. 

 

   So: c = lub{u: f is bounded on [a,u]} 

 

2. We now prove that c = b. Note that it must be true that c < b. Suppose, if possible, that c < b. By 

Lemma 1, there exists a number δ > 0 such that f is bounded on (c - δ , c + δ ). Being bounded on [a, c - 

� ] and on (c - δ , c + δ ) then by Lemma 1, f is bounded on [a, c + � ]. Contradiction! c is the least 

upper bound of S. Therefore c = b. 

 

3. Next we consider the continuity if f at x = b, from which we know – again by adapting Lemma 1 to an 

end point - that f is bounded on some interval of the form [b - δ , b]. Since b - δ  < b we know from 

what we just proved that f is bounded on [a, b - δ ]. f is therefore bounded on [a, b]. ♠ 

 

The Extreme Value Theorem: Given:  f  is defined and continuous on [a,b]. 
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Prove:  g assumes a maximum and a minimum value on [a,b]. 

  

Proof:  By Lemma 3, f is bounded on [a,b].  Let M be the least upper bound of the set f([a,b]) 

{ }:)( bxaxf ≤≤≡ (M exists by the least upper bound axiom).  We now show that there exists some 

number c in [a,b] for which f(c) = M. 

 

Suppose if possible, that f never assumes the value M.  Although it may not be immediately obvious why 

we do so, let us define a new function g(x) )).((/1 xfM −≡  The function  g(x) is nonnegative and 

continuous on [a,b], and so by Lemma 3, g(x) is bounded on [a,b].  Hence, there is some number K for 

which  

Kxg ≤< )(0  

for all x in [a,b]. Thus, for all x, 

 

,
1

)()(
1

)(

1

K
MxfxfM

K
K

xfM
−≤⇒−≤⇒≤

−
 

 

This makes M - (1/K) an upper bound of the set of values of f(x), contradicting the selection of M as the 

least upper bound. 

 

Therefore, f must assume the value of M somewhere.   

 

Exercise 32: in a similar way show that f attains its minimum value. ♠ 

 

 

 

4.3 The Mean Value Theorem 

 

4.3.1 Introduction 
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 We now show some additional results for the case of functions that are not only continuous, but 

actually possess a derivative.  In physical terms, differentiability means that a moving particle has an 

instantaneous speed at each point.  In physical terms, the results that we are about to prove amount to the 

following intuitively reasonable statements: 

 

(a) If I throw a body into the air and gravity brings it down again, then at some stage the 

instantaneous speed of the body is 0. 

 

(b) If I travel between two points and work out the average speed over the time taken, then at some 

point on my journey, my instantaneous speed will be equal to the average speed. 

 

We can also look at things geometrically.  Differentiability of real functions means that we can 

construct a tangent at each point of its graph.  The results can be interpreted as follows: 

 

(c) If a smooth curve is drawn between two points in the plane that have the same distance from the 

x-axis, then at some point on the curve, its tangent will be horizontal.  Exercise 33: draw some 

examples. 

 

(d) If a smooth curve is drawn between two points in the plane, along with the segment joining these 

two points, then at some point on the curve, its tangent will be parallel to the segment joining its 

endpoints. 

 

Lemma.  Given:  f  is a function which is defined, continuous and differentiable on an open interval (u, 

v) and f assumes its maximum value at some point w in the interval. 

 

Prove:  f '(w) = 0. 

 

Comment:  The same conclusion holds at minima as well as maxima. 

 

Proof:  Consider the quotient 
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.
)()(

h

wfhwf −+
 

 

For small positive values of h, this quotient is non-positive, and so the limit f'(w) as h �  0+ must be non-

positive.  For small negative values of h, this quotient is non-negative, and so the limit f‘(w) as h �  0 - 

must be non-negative.  The only way f'(w) can be both non-positive and non-negative is for it to vanish.  

♠ 

 

4.3.2 Rolle's Theorem 

 

 Given:  f is a real-valued function defined on the closed interval, [a,b] such that:  

(i) f is continuous on [a,b]  

(ii) f  has a derivative at each point of (a, b) and  

(iii) f(a) = f(b).   

 

Prove:  There exists a point c in the open interval (a, b) for which f '(c) = 0. 

 

Comment:  This theorem is non-constructive in the sense that it does not specify how one is supposed 

to actually find out which c does the job.   It just tells you that it exists somewhere in the open interval 

(a, b). 

 

Proof:  Since f is continuous on [a,b], it assumes both its maximum value M and its minimum value m.  

If the function is constant, then its derivative vanishes everywhere and any c will do.  If the function is 

not constant, its maximum and minimum values must be different.  Since the function has the same 

value at the endpoints, it cannot assume both its extreme values there, and so either its maximum or its 

minimum must be assumed inside the open interval (a, b) at some point c.  From the lemma f '(c) = 0.  ♠ 

 

4.3.3 Proof of Mean Value Theorem 
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Given:  f is a real-valued function, defined and continuous on and having a derivative at every point of 

the open interval (a, b). 

 

Prove:  There exists some point ),( bac ∈  for which 

 

.
)()(

)('
ab

afbf
cf

−
−=  

 

Exercise 34: draw a picture of the situation, and also draw the secant joining the points (a, f(a)) and    

(b, f(b)).   

This secant has the equation 

 

).(
)()(

)( ax
ab

afbf
afy −





−
−+=  

 

The function g(x) that we will next define in the proof measures the vertical distance between a point on 

the curve y = f(x) and a point on the secant. This distance is 0 at a and b, and so suggests that we can use 

Rolle's Theorem.   

 

Proof:  It is not immediately apparent that it will be helpful to define the following new function, but 

let’s see what happens if we do:  

)(
)()(

)()()( ax
ab

afbf
afxfxg −





−
−−−≡  

 

for .bxa ≤≤  The function g is defined and continuous on [a,b] and has a derivative at each point in 

).,( ba  Since, also g(a) = g(b) = 0, Rolle's theorem provides that there exists a point ),( bac ∈ for which 

g'(c) = 0.  Exercise 35: now reformulate this conclusion in terms of f and get the desired result.  ♠ 

 

This theorem has a very important corollary.  It provides that if a function has a derivative that vanishes 

everywhere, then the function must be a constant. 
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4.3.4 Corollary to MVT 

 

Given: f is a function defined and continuous on the closed interval [a,b] and whose derivative f'(x) 

exists and takes the value 0 at each point ).,( bax ∈   

 

Prove:  f is constant on the interval [a,b]. 

 

Proof:  It is enough to show that f assumes exactly the same value at any two given points u and v in the 

interval.   Exercise 36: apply the Mean Value Theorem on the interval [u,v] to obtain the result. ♠ 

 

 

4.3.5 The Extended Mean Value Theorem 

(Cauchy’s Mean Value Theorem) 

 

Given:  f and g are two functions defined and continuous on [a,b] and each possessing a derivative at 

every point of (a, b).  Suppose further that ).()( bgag ≠  

 

Prove:  There exists a point ),( bac ∈ for which  

 

.
)('
)('

)()(
)()(

cg

cf

agbg

afbf =
−
−

 

 

 

Proof:  Again, it is not immediately obvious that it will be helpful to define the following function, but 

let’s see what happens when we do and then apply Rolle's Theorem to the function: 

 

)).()(()())()(()()( afbfxgagbgxfxh −−−≡  

 



 62

Exercise 37: do so. ♠ 

 

One of the important uses of Cauchy’s Mean Value Theorem is to prove l’Hospital’s Rule , see page 

500 of the Text. 

 

 

5. COMPLEX NUMBERS 
 
Hints on how to read this section 

The Text contains a good, brief review of the basic aspects of complex numbers in Appendix G. Since you will use all of this material at some 

point, in this and other courses, you should make sure you are familiar with all of this material. The following material here is aimed at making 

you feel more comfortable with the concept of imaginary and complex numbers – which can often ‘spook’ students. 

 
 
 Most of us have probably had the thought: “I don’t know what a complex number actually 

means.” Yes, we may know all the rules of how to manipulate them – all the formal mathematical rules -  

but that can still leave us unsatisfied, as if there’s something more, something that is still eluding us. 

After a course in chemistry we may also be inclined to say: “I don’t know what entropy actually means.” 

These two problems seem similar. But surely that can’t be true: entropy relates to the behaviour of the 

physical world, while mathematics is 100% a human creation. It should not be surprising that some 

aspects of the physical world are difficult to understand and may, to some degree, always elude us. But 

we human beings have created mathematics – all of it – so how can it possibly elude human 

understanding? Surely we must be just tripping ourselves up psychologically in some way when we say 

we don’t know what complex numbers mean. We need to take a fresh look at this. 

 

 It can be helpful to go over the historical origins of an idea. If we can see the path by which 

human thinking reached its present view of something, then that can help us move along our own 

personal path to understanding of the thing. We know that long ago the only numbers that people 

accepted as ‘real’ or legitimate were the positive integers. In a world where almost no one had any use 

for numbers beyond the counting of sheep and such, it is not surprising that people would reject the 

concept of, say, negative integers as being unreal – even ridiculous. (Never mind fractions. Or 

irrationals.) If someone insisted on including negative numbers in the collection of ‘real numbers’  - 
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pointing out that one could manipulate them in a formal way, following strict logical rules, and all 

would work out ok – most everybody else would say: “Well, yes, it does all hang together as a pure 

exercise in logic  – but what do negative integers actually mean?” 

 

 From our advantage of historical perspective we can perhaps see what their problem was. It has 

to do with what we mean by ‘mean’! What was causing difficulties for those people long ago was that 

they had a specific application for numbers in their minds – e.g. counting sheep – and negative numbers 

have no place in such applications of numbers. We can see that what they meant by ‘mean’ is that there 

be an application of the numbers. 

 

 This is the key to resolving this whole business. We need to distinguish between mathematics in 

itself and its applications. Mathematics in itself is a logic game, like chess, and there it makes no sense 

to ask what something ‘means’. What does a pawn mean? What does it mean that the bishop can move 

diagonally across the board? We know it’s pointless to ask such questions. The word ‘mean’ is 

inappropriate in such logic games as mathematics. When we ask what a negative (or irrational or 

imaginary or complex) number ‘means’ we are not really using that word properly. What we actually 

have in mind is: “What application is there for such a number?” Well, it’s perfectly possible there is no 

application. So what? There’s no application for chess either. Mathematics doesn’t require any 

application at all to make it a perfectly worthwhile human pursuit. It may happen, however, that within 

some particular context there may be some applications for some of the numbers we have invented. If 

the context is counting (live) sheep then we can’t use very many of the types of numbers we have 

invented. But if we are keeping books on credits and debts then there is an application for negative 

numbers (to indicate debt) and also for zero, fractions and decimals (although not for irrationals, 

imaginaries or complex numbers). For keeping books it isn’t actually necessary to use negative numbers 

since we could keep separate books for credits and debts, using only positive numbers in each – but it’s 

more convenient to use one book and therefore to use negative numbers also. The expansion of the 

original, limited idea of what constituted a number was expanded time and again over the centuries – 

because we found it to be both possible and convenient.  

 

 A different kind of ‘application’ is entirely internal to mathematics – ‘applying’, or we might 

better say, ‘relating’ – algebra to geometry. Numbers are algebraic quantities. They are pure inventions 
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of the human mind – as also are the concepts of geometry. (So far as we know, there are no (perfectly) 

straight lines in the physical world, for example.) Nevertheless, most people seem to find algebraic 

quantities more abstract than geometric ones – and they tend to consider the relating of algebra to 

geometry as a kind of application. They also feel this gives ‘meaning’ to the algebraic quantity – e.g. 

numbers. Unquestionably the fact that the collection of all integers, rationals and irrationals (which for 

historical, but otherwise no very good, reasons we call ‘reals’) can be related to the points of a line is 

psychologically reassuring to most people and makes them feel that they “know what real numbers 

mean”. This, however, is really just psychological, not logical. It also, unfortunately, has the bad 

consequence of setting ourselves up for a problem with complex numbers. Because the latter cannot be 

related to the points on a line, then by contrast with ‘real’ numbers, we are bound to feel they are 

somehow not legitimate numbers and that we don’t know what they ‘mean’. We need to remind 

ourselves that we don’t actually know what any number ‘means’! 

 

 Another aspect of this psychological trick we play on ourselves has to do with the fact that we 

are more comfortable with things that are more common in our experience. We feel that we ‘know 

them’, that we ‘know what they mean’. There are more applications of positive integers than of 

irrationals, say – and certainly more than for complex numbers. So we end up confusing ‘meaning’ and 

legitimacy with whether something is common or not – a different thing. As to applications, complex 

numbers come into their own when one is trying to keep track of two quantities, rather than just one. 

This is not all that common a situation – but not utterly exotic either. One of the most natural 

‘applications’ of complex numbers is to consider them to be an ordered pair of ordinary numbers and 

to associate each complex number with a point in the plane. An important application to the physical 

world is to analyze electrical circuits containing capacitors and inductances. One wants to know what 

the circuit current is for a given applied, sinusoidal voltage, Vapplied(t) = Vocos( ω t), where Vo and ω are 

specified constants and t is time. As you know, it turns out that one needs to find two quantities 

describing the current – its amplitude Io and its phase relative to the voltage, φ : I(t) = Iocos( ωt + φ ). 

Because of this aspect it is more convenient and tidy to analyze such circuits using complex numbers. Of 

course most of us have far more occasion to count things like money than to analyze electrical circuits 

so most of us never get to feel all that familiar with complex numbers and can tend therefore to feel that 

we don’t know what they ‘mean’. It’s a mistake to make much out of this lack of a familiar and 

reassuring psychological feeling. It’s irrelevant. We should remind ourselves that it’s pointless to ask 
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about the ’meaning’ of any number – regardless of how familiar. We just need to be sure we know how 

to reliably manipulate numbers, following all the rules of logic. In the end that’s all there really is. 

That’s all that really counts. 

 

 No doubt another aspect of complex numbers that tends too make us feel uncomfortable is the 

common practice of denoting them in the form a + bi, e.g. 3 + 5i. We are bound to feel somewhat 

puzzled and uneasy about the use of “+” in this context. Clearly the use of “+” here means something 

quite different than in an expression like 3 + 5. In the latter case, an operation is indicated, which causes 

the two numbers (3 and 5) to “disappear” while creating a new one (8) in their place. We can also 

consider “3 + 5” as, itself, constituting a single number. By contrast, the 3 and 5 most definitely do not 

disappear in the case of 3 + 5i. And no operation is involved here. When all the dust has settled, 3 + 5 

just contains one piece of information – namely, 8. By contrast, 3 + 5i contains two pieces of 

information. In that case, it is logically preferable to denote complex numbers directly as an ordered 

pair (a,b), for example, (3,5). This avoids any confusion about an operation being involved. It also treats 

the 3 and the 5 in a symmetrical way – rather than implying there is something fundamentally more 

‘legitimate’ about the first member of the pair compared with the second. This also avoids the rather 

lurid – if not downright ‘spooky’ – symbol i. It also leads directly to the obvious geometrical 

application, where complex numbers are associated with points in the plane. 

 

 Using the ordered pair approach, we entirely avoid the ‘spooky’ i. For example, consider the 

problem of finding a solution to the equation x2 + 1 = 0,  i.e. of x2 = -1. Let us show that the number 

(0,1) is a solution: 

 

  )0,1()0110,1100()1,0)(1,0()1,0( 2 −=⋅+⋅⋅−⋅==   

 

Of course (0,1) represents i and (-1,0) represents -1. You will notice that we have to use a different 

definition of the operation of multiplication for complex numbers than we used for reals, namely: 

(a,b)(c,d) = (ac – bd, ad + bc). If you want to see more about how the ordered pair approach works, you 

can look at the book ‘Calculus. Vol. 1. by T.M. Apostol, Wiley, 1967, page 358. 
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Answers for Some of the Problems 

 
Ex 3. x > 5 or 7/2 < x < 4. 

Ex 4. x < -2 or x > 0. 

Ex 7(a). -1 < x < 0 or 0 < x < 1. 

Ex 7(b). 1.5 < x < 2 or 2 < x < 2.5. 

Ex 7(c). -5 < x < 3 or 3 < x < 11. 

Ex 7(d). -5/8 < x < -3/8. 

Ex 7(e). x < -10 or -22/3 < x < -18/7 or x > -10/7. 

Ex 9(a). |x| < 3. 

Ex 9(b). |x – 2| < 5. 

Ex 9(c). |x + 2| < 5. 

Ex 10(a). A > 3/2. 

Ex 10(b). A > 6. 

Ex 10(c). A > 11. 

 

 


