On the Monopolist’s Problem Facing Consumers with Linear and Nonlinear Price Preferences

Robert J McCann

University of Toronto

www.math.toronto.edu/mccann

with Kelvin Shuangjian Zhang (ENS Paris / Waterloo / Fudan)

CPAM ’19 + work in progress

21 October 2021
Outline

1. Monopolist’s problem
2. Examples and History
3. Hypotheses
4. Results
5. Proofs
6. A new duality certifying solutions
7. A free boundary problem hidden in Rochet-Choné’s example
8. Conclusions
Monopolist’s problem

Given compact sets $X \subset \mathbb{R}^m$, $Y \subset \mathbb{R}^n$ and $Z = [z, \infty) \subset \mathbb{R}$ and

$G(x, y, z) =$ value of product $y \in Y$ to buyer $x \in X$ at price $z \in Z$

$d\mu(x) =$ relative frequency of buyer $x \in X$ (as compared to $x' \in X$)

$\pi(x, y, z) =$ value to monopolist of selling y to x at price z

Monopolist’s problem: choose price menu $\nu : Y \rightarrow Z$ to maximize profits
Monopolist’s problem

Given compact sets $X \subset \mathbb{R}^m$, $Y \subset \mathbb{R}^n$ and $Z = [z, \infty) \subset \mathbb{R}$ and $G(x, y, z) = \text{value of product } y \in Y \text{ to buyer } x \in X \text{ at price } z \in Z$

$d\mu(x) = \text{relative frequency of buyer } x \in X \text{ (as compared to } x' \in X)$

$\pi(x, y, z) = \text{value to monopolist of selling } y \text{ to } x \text{ at price } z$

Monopolist’s problem: choose price menu $\nu: Y \rightarrow Z$ to maximize profits

$$\tilde{\Pi}(\nu) := \int_X \pi(x, y_{\nu}(x), \nu(y_{\nu}(x)))d\mu(x), \quad \text{where}$$

Agent x’s problem: choose $y_{\nu}(x)$ to maximize

$$y_{\nu}(x) \in \arg \max_{y \in Y} G(x, y, \nu(y))$$

Constraints: ν lower semicontinuous, $(0, 0) \in Y \times Z \text{ and } \nu(0) = 0.$
Examples

- airline ticket pricing

- insurance: monopolist’s profit $\pi(x, y, z)$ may depend strongly on buyer’s identity x, even if regulation/ignorance prohibits price $v(y)$ from doing so

- z-dependence of $G(x, y, z)$ reflects different buyers price sensitivity/risk non-neutrality

- educational signaling

- optimal taxation: replace profit maximization with a budget constraint for providing services
Some history: $G(x, y, z) = b(x, y) - z$

Miryles ’71, Spence ’73 ($n = 1 = m$): $\frac{\partial^2 b}{\partial x \partial y} > 0$ implies $\frac{dy_v}{dx} \geq 0$

Rochet-Choné ’98 ($n = m > 1$): $b(x, y) = x \cdot y$ bilinear implies $y_v(x) = Dv^*(x)$ convex gradient; bunching
Some history: $G(x, y, z) = b(x, y) - z$

Mirrlees ’71, Spence ’73 ($n = 1 = m$): $\frac{\partial^2 b}{\partial x \partial y} > 0$ implies $\frac{dy_v}{dx} \geq 0$

Rochet-Choné ’98 ($n = m > 1$): $b(x, y) = x \cdot y$ bilinear implies $y_v(x) = Dv^*(x)$ convex gradient; bunching for $\pi(x, y, z) = z - \frac{1}{2}|y|^2$
Carlier-Lachand-Robert ’03: $\nu^* \in C^1(\text{supp } \mu)$; Caffarelli-Lions $\nu^* \in C^{1,1}$

Carlier ’01: $b(x, y)$ general implies existence of optimizer $\nu = \nu^{b\tilde{b}}$

Chen ’13: $u \in C^1$ under Ma-Trudinger-Wang (MTW) conditions, where

$$u(x) = \nu^b(x) := \max_{y \in Y} b(x, y) - \nu(y)$$
Carlier-Lachand-Robert ’03: $v^* \in C^1(spt \mu)$; CaffARElli-Lions $v^* \in C^{1,1}$

Carlier ’01: $b(x, y)$ general implies existence of optimizer $v = v^{b\tilde{b}}$

Chen ’13: $u \in C^1$ under Ma-Trudinger-Wang (MTW) conditions, where

$$u(x) = v^b(x) := \max_{y \in Y} b(x, y) - v(y)$$

Figalli-Kim-M. ’11: convexity of principal’s problem under strengthening of (MTW) on $b(x, y)$

Noldeke-Samuelson (ECMA ’18), Zhang (ET ’19): existence of maximizing v for general $G \in C^0$

Daskalakis-Dekelbaum-Tzamos (ECMA ’17), Kleiner-Manelli (ECMA ’19): duality for multigood auctions
Hypothesis (c.f. Trudinger’s generated Jacobian equations)

(G0) $G \in C^1(X \times Y \times Z)$, $m \geq n$, and for each $x, x_0 \in X \subset \mathbb{R}^m$:

(G1) $(y, z) \in Y \times Z \mapsto (D_x G, G)(x, y, z)$ is a homeomorphism

(G2) with convex range $(Y \times Z)_x := (D_x G, G)(x, Y, Z)$ and inverse \bar{y}_G.

(G3) Assume $t \mapsto G(x_0, y_t, z_t)$ is convex along each G-segment (x, y_t, z_t)

(G4) $\partial G/\partial z < 0$ throughout $X \times Y \times Z$ (i.e. buyers prefer lower prices)

(G5) $\inf_{z \in Z} G(x, y, z) < G(x, 0, 0)$ for all $(x, y) \in X \times Y$ (i.e. high enough prices force all buyers out of market)

(G6) $\pi \in C_0(X \times Y \times Z)$

Robert J McCann (Toronto)
Hypothesis (c.f. Trudinger’s generated Jacobian equations)

(G0) \(G \in C^1(X \times Y \times Z), \ m \geq n, \) and for each \(x, x_0 \in X \subset \mathbb{R}^m: \)

(G1) \((y, z) \in Y \times Z \mapsto (D_x G, G)(x, y, z) \) is a homeomorphism

(G2) with convex range \((Y \times Z)_x := (D_x G, G)(x, Y, Z) \) and inverse \(\bar{y}_G. \)

DEFN: \(t \in [0, 1] \mapsto (x, y_t, z_t) \in X \times Y \times Z \) is called a \(G\)-segment if

\[
(D_x G, G)(x, y_t, z_t) = (1 - t)(D_x G, G)(x, y_0, z_0) + t(D_x G, G)(x, y_1, z_1)
\]

(G3) Assume \(t \mapsto G(x_0, y_t, z_t) \) is convex along each \(G\)-segment \((x, y_t, z_t) \)
Hypothesis (c.f. Trudinger’s generated Jacobian equations)

(G0) $G \in C^1(X \times Y \times Z)$, $m \geq n$, and for each $x, x_0 \in X \subset \mathbb{R}^m$:

(G1) $(y, z) \in Y \times Z \mapsto (D_x G, G)(x, y, z)$ is a homeomorphism

(G2) with convex range $(Y \times Z)_x := (D_x G, G)(x, Y, Z)$ and inverse \tilde{y}_G.

DEFN: $t \in [0, 1] \mapsto (x, y_t, z_t) \in X \times Y \times Z$ is called a G-segment if

$$(D_x G, G)(x, y_t, z_t) = (1 - t)(D_x G, G)(x, y_0, z_0) + t(D_x G, G)(x, y_1, z_1)$$

(G3) Assume $t \mapsto G(x_0, y_t, z_t)$ is convex along each G-segment (x, y_t, z_t)

(G4) $\frac{\partial G}{\partial z} < 0$ throughout $X \times Y \times Z$ (i.e. buyers prefer lower prices)

(G5) $\inf_{z \in Z} G(x, y, z) < G(x, 0, 0)$ for all $(x, y) \in X \times Y$

(i.e. high enough prices force all buyers out of market)

(G6) $\pi \in C^0(X \times Y \times Z)$
Monopolists problem in terms of buyers’ indirect utilities \(u \)

\[
\begin{align*}
 u(x) &:= v^G(y) := \max_{y \in Y} G(x, y, v(y)) \\
 \text{implies} \\
 (Du, u)(x) &:= (D_x G, G)(x, y_v(x), v(y_v(x))) \\
 \text{so we identify} \\
 (y_v(x), v(y_v(x)))
\end{align*}
\]
Monopolists problem in terms of buyers’ indirect utilities \(u \)

\[
u(x) := v^G(y) := \max_{y \in Y} G(x, y, v(y))
\]

implies
\[
(Du, u)(x) = (D_x G, G)(x, y_v(x), v(y_v(x))
\]

so we identify
\[
(y_v(x), v(y_v(x))) = \bar{y}_G(Du(x), u(x), x)
\]

and minimize
\[
\Pi(v) = \int_X G(x, \bar{y}_G(Du(x), u(x), x))d\mu(x)
\]

among \(u \) of form (1) (i.e. among so called \(G \)-convex \(u(\cdot) \geq G(\cdot, 0, 0) \))
\[
\max_{G(\cdot,0,0) \leq u \in \mathcal{U}} \Pi(u)
\]
where
\[
\mathcal{U} := \{ u \mid u(\cdot) = \sup_{y \in Y} G(\cdot, y, \nu(y)) \text{ on } X \text{ for some } \nu : Y \to Z \}
\]

THM 0: Given (G0-G1, G4-G6) the maximum above is attained. If \(\mu \ll \mathcal{L}^m \) the map \(x \to \tilde{y}_G(Du(x), u(x), x) \) gives the consumer to (product,price) correspondence.
\[
\max_{G(\cdot,0,0) \leq u \in U} \Pi(u)
\]

where

\[U^\prime := \{u \mid u(\cdot) = \sup_{y \in Y} G(\cdot, y, v(y)) \text{ on } X \text{ for some } v : Y \rightarrow Z\}\]

THM 0: Given (G0-G1, G4-G6) the maximum above is attained. If \(\mu \ll \mathcal{L}^m\) the map \(x \rightarrow \tilde{y}_G(Du(x), u(x), x)\) gives the consumer to (product, price) correspondence.

THM 1: If (G0-G2, G4-G5) hold then \(U\) is convex if and only if (G3) holds.
Results

\[
\max_{G(\cdot,0,0) \leq u \in \mathcal{U}} \Pi(u)
\]

where

\[
\mathcal{U} := \{ u \mid u(\cdot) = \sup_{y \in Y} G(\cdot, y, v(y)) \text{ on } X \text{ for some } v : Y \rightarrow Z \}
\]

THM 0: Given (G0-G1, G4-G6) the maximum above is attained. If \(\mu \ll L^m \) the map \(x \rightarrow \bar{y}_G(Du(x), u(x), x) \) gives the consumer to (product, price) correspondence.

THM 1: If (G0-G2, G4-G5) hold then \(\mathcal{U} \) is convex if and only if (G3) holds.

THM 2: If (G0-G6) hold then \(\Pi \) is concave on \(\mathcal{U} \) for all \(\mu \ll L^m \) if and only if \(t \in [0, 1] \mapsto \pi(x, y_t, z_t) \) is concave on every \(G \)-segment \((x, y_t, z_t) \).

THM 2': same statement with both concaves replaced by convex.
• π is 2-uniformly concave along all G-segments if and only if Π is 2-uniformly concave on $\mathcal{U} \subset W^{1,2}(X, d\mu)$.

• alternately, strict concavity of π implies that of Π.

• in either case above, when $\mu \ll \mathcal{L}^m$ the hypotheses of THM 2 imply the principal’s optimal strategy u is unique μ-a.e. and stable:

i.e. $(G_i, \pi_i, \mu_i) \rightarrow (G_\infty, \pi_\infty, \mu_\infty)$ in $C^2 \times C^0 \times (C^0)^*$ implies $u_i \rightarrow u_\infty$ in $L^\infty(d\mu_\infty)$
• \(\pi \) is 2-uniformly concave along all \(G \)-segments if and only if \(\Pi \) is 2-uniformly concave on \(\mathcal{U} \subset W^{1,2}(X, d\mu) \).

• alternately, strict concavity of \(\pi \) implies that of \(\Pi \).

• in either case above, when \(\mu \ll \mathcal{L}^m \) the hypotheses of THM 2 imply the principal’s optimal strategy \(u \) is unique \(\mu \)-a.e. and stable:

i.e. \((G_i, \pi_i, \mu_i) \to (G_\infty, \pi_\infty, \mu_\infty) \) in \(C^2 \times C^0 \times (C^0)^* \) implies \(u_i \to u_\infty \) in \(L^\infty(d\mu_\infty) \)

• the Rochet-Choné \(G(x, y, z) = x \cdot y - z \) lies on the boundary of the set of preferences satisfying (G3)

• if \(\|A\|_{C^1} \leq 1, \|B\|_{C^1} \leq 1 \) with \(A \) convex, \(G(x, y) = x \cdot y - z - A(x)B(y) \) satisfies (G3) if and only if \(B \) is convex
Proof of THM 1 (convexity of space \mathcal{U} of utilities on X)

Given $u_0, u_1 \in \mathcal{U}$ and $x_0 \in X$, since $u_0(\cdot) \geq \max_{y \in Y} G(\cdot, y, v_0(y))$ there exists $(y_0, z_0) \in Y \times Z$ such that

$$u_0(\cdot) \geq G(\cdot, y_0, z_0) \text{ with equality at } x_0$$
Given $u_0, u_1 \in \mathcal{U}$ and $x_0 \in X$, since $u_0(\cdot) \geq \max_{y \in Y} G(\cdot, y, v_0(y))$ there exists $(y_0, z_0) \in Y \times Z$ such that

$$u_0(\cdot) \geq G(\cdot, y_0, z_0) \quad \text{with equality at} \quad x_0$$

Similarly

$$u_1(\cdot) \geq G(\cdot, y_1, z_1) \quad \text{with equality at} \quad x_0$$

We’d like to deduce the same for $\frac{1}{2}(u_0 + u_1)$.
Adding the preceding yields

\[
\frac{1}{2}(u_0 + u_1)(\cdot) \geq \frac{1}{2}(G(\cdot, y_0, z_0) + G(\cdot, y_1, z_1)) \\
\geq G(\cdot, y_{1/2}, z_{1/2})
\]

by (G3), provided \((y_{1/2}, z_{1/2})\).
Adding the preceding yields

\[
\frac{1}{2}(u_0 + u_1)(\cdot) \geq \frac{1}{2}(G(\cdot, y_0, z_0) + G(\cdot, y_1, z_1)) \\
\geq G(\cdot, y_{1/2}, z_{1/2})
\]

by (G3), provided \((y_{1/2}, z_{1/2})\) defined (using (G1-G2)) by

\[
(D_x G, G)(x_0, y_t, z_t) := (1 - t)(D_x G, G)(x_0, y_0, z_0) + t(D_x G, G)(x_0, y_1, z_1)
\]

Moreover, both inequalities are saturated at \(\cdot = x_0\).
Adding the preceding yields

\[
\frac{1}{2}(u_0 + u_1)(\cdot) \geq \frac{1}{2}(G(\cdot, y_0, z_0) + G(\cdot, y_1, z_1)) \\
\geq G(\cdot, y_{1/2}, z_{1/2})
\]

by (G3), provided \((y_{1/2}, z_{1/2})\) defined (using (G1-G2)) by

\[
(D_x G, G)(x_0, y_t, z_t) := (1 - t)(D_x G, G)(x_0, y_0, z_0) + t(D_x G, G)(x_0, y_1, z_1)
\]

Moreover, both inequalities are saturated at \(\cdot = x_0\).

Thus \(\frac{1}{2}(u_0 + u_1) \in \mathcal{U}\).

Conversely…
Proof of THM 2 (concavity of $\Pi(u)$)

Proof: For $u_t := (1 - t)u_0 + tu_1 \in \mathcal{U}$, we’ve assumed concavity (in t) of

$$\pi(x, \bar{y}_G((1 - t)Du_0 + tDu_1, (1 - t)u_0 + tu_1, x))$$ \hspace{1cm} (2)

inherits this concavity. Conversely, if concavity of (2) fails for some t, x, u_0 and u_1, it also fails in (3) for μ concentrated uniformly on a small enough ball around x.

Proof of THM 2 (concavity of $\Pi(u)$)

Proof: For $u_t := (1 - t)u_0 + tu_1 \in \mathcal{U}$, we’ve assumed concavity (in t) of

$$\pi(x, \bar{y}_G((1 - t)Du_0 + tDu_1, (1 - t)u_0 + tu_1, x))$$

(2)

$$\Pi(u_t) := \int_X \pi(x, \bar{y}_G(Du_t(x), u_t(x), x))d\mu(x)$$

(3)

inherits this concavity.

Conversely,
Proof of THM 2 (concavity of $\Pi(u)$)

Proof: For $u_t := (1 - t)u_0 + tu_1 \in \mathcal{U}$, we’ve assumed concavity (in t) of

$$\pi(x, \bar{y}_G((1 - t)Du_0 + tDu_1, (1 - t)u_0 + tu_1, x))$$ \hspace{1cm} (2)

$$\Pi(u_t) := \int_{\mathcal{X}} \pi(x, \bar{y}_G(Du_t(x), u_t(x), x))d\mu(x)$$ \hspace{1cm} (3)

inherits this concavity.

Conversely, if concavity of (2) fails for some t, x, u_0 and u_1, it also fails in (3) for μ concentrated uniformly on a small enough ball around x. \qed
Differential condition for (G3)

When \(n = m \) set \(\bar{x} = (x_0, x) \), \(\bar{y} = (y, z) \) and \(\bar{G}(\bar{x}, \bar{y}) := x_0 G(x, y, z) \).

Assume

(G7) \(\det D^2_{\bar{x}i\bar{y}j} \bar{G}(\bar{x}, \bar{y}) \neq 0 \) throughout \(\{-1\} \times X \times Y \times Z \)

(G8) \(H(x, y, \cdot) = G^{-1}(x, y, \cdot) \) also satisfies hypotheses (G1-G2)

THM 3: If \(G \in C^4 \) satisfies (G0-G2) and (G4-G8), then \((G3) \) is equivalent to

\[
\frac{\partial^4}{\partial s^2 \partial t^2} \bar{G}(\bar{x}_s, \bar{y}_t) \bigg|_{(s,t)=(s_0,t_0)} \geq 0
\]

holding along all \(C^2 \) curves \(\bar{x}_s \) and \(\bar{y}_t \) for which \(t \in [0, 1] \rightarrow (x_{s_0}, y_t) \) forms a \(G \)-segment.

Remark: \((G3) \) is a curvature condition on \((-\infty, 0) \times X \times Y \times Z \).
A new duality for bilinear preferences

Following Rochet-Choné '98 choose \(G(x, y, z) = x \cdot y - z \) and \(X, Y \subset \mathbb{R}^n \) convex so

\[
\Pi(u) = \int_X [x \cdot Du - u(x) - c(Du(x))]d\mu(x)
\]

with

\[
u(x) = v^*(x) := \sup_{y \in Y} x \cdot y - v(y)
\]

\(\in \mathcal{U} := \{ u : X \rightarrow [0, \infty] \text{ convex} \mid Du(X) \subset Y \} \)

THM 3:

\[
\max_{u \in \mathcal{U}} \Pi(u) = \]
A new duality for bilinear preferences

Following Rochet-Choné '98 choose $G(x, y, z) = x \cdot y - z$ and $X, Y \subset \mathbb{R}^n$ convex so

$$
\Pi(u) = \int_X [x \cdot Du - u(x) - c(Du(x))] d\mu(x)
$$

with

$$
u(x) = v^*(x) := \sup_{y \in Y} x \cdot y - v(y)
$$

$$
\in U := \{ u : X \rightarrow [0, \infty] \text{ convex} \mid Du(X) \subset Y \}
$$

THM 3:

$$
\max_{u \in U} \Pi(u) = \min_{S \in S} \int c^*(S(x)) d\mu(x)
$$

where

$$
S := \bigcap_{u \in U} \left\{ S : X \rightarrow \mathbb{R}^n \mid \int_X [(x - S(x)) \cdot Du - u(x)] d\mu(x) \leq 0 \right\}
$$
THM 3:

\[
\max_{u \in \mathcal{U}} \Pi(u) = \min_{S \in \mathcal{S}} \int c^*(S(x)) d\mu(x)
\]

where

\[
\mathcal{S} := \bigcap_{u \in \mathcal{U}} \{ S : X \rightarrow \mathbb{R}^n | \langle x \cdot Du(x) - u(x) \rangle_\mu \leq \langle S(x) \cdot Du(x) \rangle_\mu \}
\]

In words: the monopolists maximum profit coincides with the net value of a co-op able to offer its members good \(y \in Y \) at price \(c(y) \), minimized over possible distributions \(S_\#\mu \) of co-op memberships satisfying
THM 3:
\[
\max_{u \in U} \Pi(u) = \min_{S \in S} \int c^*(S(x)) d\mu(x)
\]
where
\[
S := \bigcap_{u \in U} \{ S : X \to \mathbb{R}^n \mid \langle x \cdot Du(x) - u(x) \rangle_\mu \leq \langle S(x) \cdot Du(x) \rangle_\mu \}
\]

In words: the monopolists maximum profit coincides with the net value of a co-op able to offer its members good \(y \in Y \) at price \(c(y) \), minimized over possible distributions \(S \# \mu \) of co-op memberships satisfying the strange constraint that when members whose true type is \(S(x) \) irrationally display the behaviour of \(x \) facing each monopolist price menu, the expected gross value of the resulting assignment \(Du(x) \) to those co-op members dominates the monopolist’s expected gross revenue \(\langle x \cdot Du(x) - u(x) \rangle_\mu \).

Proof sketch (\(\leq \)): \(S \in S, \ u \in U \) and the definition of \(c^* \) imply
\[
\Pi(u) = \langle x \cdot Du(x) - u - c(Du(x)) \rangle_\mu \leq \langle c^* \circ S \rangle_\mu
\]
\[\geq: \text{Conversely, using a convex-concave saddle argument in } (S, u) \]

\[
\sup_{u \in \mathcal{U}} \langle x \cdot Dv(x) - u(x) - c(Du(x)) \rangle_{\mu} \\
= \sup_{u \in \mathcal{U}} \inf_{T: Y \to \mathbb{R}^m} \langle x \cdot Du(x) - u(x) - T(Du(x)) \cdot Du(x) + c^*(T(Du(x))) \rangle_{\mu} \\
\geq \sup_{u \in \mathcal{U}} \inf_{S: X \to \mathbb{R}^m} \langle x \cdot Du(x) - u(x) - S(x) \cdot Du(x) + c^*(S(x)) \rangle_{\mu}
\]
\geq: Conversely, using a convex-concave saddle argument in (S, u)

$$\sup_{u \in U} \langle x \cdot Du(x) - u(x) - c(Du(x)) \rangle_\mu$$

$$= \sup_{u \in U} \inf_{T: Y \to \mathbb{R}^m} \langle x \cdot Du(x) - u(x) - T(Du(x)) \cdot Du(x) + c^*(T(Du(x))) \rangle_\mu$$

$$\geq \sup_{u \in U} \inf_{S: X \to \mathbb{R}^m} \langle x \cdot Du(x) - u(x) - S(x) \cdot Du(x) + c^*(S(x)) \rangle_\mu$$

$$= \inf_{S: X \to \mathbb{R}^m} \langle c^*(S(x)) \rangle_\mu + \sup_{u \in U} \langle x \cdot Du(x) - u(x) - S(x) \cdot Du(x) \rangle_\mu$$

$$= \inf_{S \in S} \langle c^* \circ S \rangle_\mu.$$

(To justify this argument rigorously requires approximating both problems before applying Fenchel-Rockafellar duality to obtain an infinite-dimensional version of the von Neumann min-max theorem.)
\[\bar{X} = [a, a+1]^2 \quad d\mu(x) = 1_\bar{X}(x) d^2x \]

\[\text{Rank } D^2 u = k \text{ on } S_k \]

\[(D^3 u)_+ \mu = 1_{(0,1,2)} + V_1 + V_2 \]

\[V_k \leq 9k^4 \text{ on } Y_k, k \geq 1, 2, 3 \]
Variational calculus gives

\[u = u_i \text{ on } \Omega_i \text{ where} \]

- on \(\Omega_0 \) exclusion: \(u_0 = 0 \)
- on \(\Omega_1 \), Euler-Lagrange ODE: if \(u_1(x_1, x_2) = \frac{1}{2} k(x_1 + x_2) \) then
 \[k(s) = \frac{3}{4} s^2 - as - \log |s - 2a| + \text{const} \]
subject to boundary conditions \(u_1 = u_0 \) and \(Du_1 = Du_0 \) at lower boundary.

\[\text{OVERDETERMINED!} \]
Variational calculus gives

\[u = u_i \text{ on } \Omega_i \text{ where} \]

- on \(\Omega_0 \) exclusion: \(u_0 = 0 \)
- on \(\Omega_1 \), Euler-Lagrange ODE: if \(u_1(x_1, x_2) = \frac{1}{2} k(x_1 + x_2) \) then \(k(s) = \frac{3}{4} s^2 - as - \log |s - 2a| + \text{const} \)

subject to boundary conditions \(u_1 = u_0 \) and \(Du_1 = Du_0 \) at lower boundary.

- on \(\Omega_2 \) Euler-Lagrange PDE: \(\Delta u_2 = 3 \) subject to boundary conditions

\[
(Du_2(x) - x) \cdot \hat{n}_{\Omega_2}(x) = 0 \quad \text{on} \quad \partial X \cap \bar{\Omega}_2
\]
\[
(Du_2 - Du_1) \cdot \hat{n}_{\Omega_2}(x) = 0 \quad \text{on} \quad \partial \Omega_2 \cap \partial \Omega_1 \quad \text{(Neumann)}
\]
Variational calculus gives

\[u = u_i \text{ on } \Omega_i \text{ where} \]

- on \(\Omega_0 \) exclusion: \(u_0 = 0 \)
- on \(\Omega_1 \), Euler-Lagrange ODE: if \(u_1(x_1, x_2) = \frac{1}{2}k(x_1 + x_2) \) then
 \[k(s) = \frac{3}{4}s^2 - as - \log |s - 2a| + \text{const} \]
subject to boundary conditions \(u_1 = u_0 \) and \(Du_1 = Du_0 \) at lower boundary.
- on \(\Omega_2 \) Euler-Lagrange PDE: \(\Delta u_2 = 3 \) subject to boundary conditions
 \[
 (Du_2(x) - x) \cdot \hat{n}_{\Omega_2}(x) = 0 \quad \text{on} \quad \partial X \cap \tilde{\Omega}_2 \\
 (Du_2 - Du_1) \cdot \hat{n}_{\Omega_2}(x) = 0 \quad \text{on} \quad \partial \Omega_2 \cap \partial \Omega_1 \quad \text{(Neumann)} \\
 u_2 = u_1 \quad \text{on} \quad \partial \Omega_2 \cap \partial \Omega_1 \quad \text{(Dirichlet)}
 \]

OVERDETERMINED!
Fig. 1 Numerical approximation U of the solution of the classical Monopolist’s problem (1), computed on a 50×50 grid. **Left** level sets of U, with $U = 0$ in white. **Center left** level sets of $\det(\nabla^2 U)$ (with again $U = 0$ in white); note the degenerate region Ω_1 where $\det(\nabla^2 U) = 0$. **Center right** distribution of products sold by the monopolist. **Right** profit margin of the monopolist for each type of product (margins are low on the one dimensional part of the product line, at the bottom left). **Color scales** on Fig. 10 (color figure online)

\[\text{ Springer } \]

\[\text{J.-M. Mirebeau (2016)} \]
Free boundary problem

\[u = u_i \text{ on } \Omega_i \text{ where} \]

- on \(\Omega_0 \) exclusion: \(u_0 = 0 \)

- on \(\Omega_1^0 \), Rochet-Choné’s ODE: \(u_1(x_1, x_2) = \frac{1}{2} k(x_1 + x_2) \) where
 \[
 k(s) = \frac{3}{4} s^2 - as - \log |s - 2a| + \text{const}
 \]
 subject to boundary conditions \(k = 0 \) and \(k' = 0 \) at lower boundary.

- on \(\Omega_1^+ \), \(u_1 = u_1^+ \) given by a NEW system of ODE (for height \(h(\cdot) \) and length \(R(\cdot) \) of isochoice segments together with profile of \(u_1^+(\cdot) \) along them), with boundary conditions \(u_1^+(x_1, x_2) = k(x_1 + x_2) \) and
 \[
 Du_1^+ = (k', k') \text{ on } \partial\Omega_1^0 \cap \partial\Omega_1^+
 \]
Free boundary problem

\[u = u_i \text{ on } \Omega_i \text{ where} \]

- on \(\Omega_0 \) exclusion: \(u_0 = 0 \)
- on \(\Omega_0^0 \), Rochet-Choné's ODE: \(u_1(x_1, x_2) = \frac{1}{2} k(x_1 + x_2) \) where
 \[k(s) = \frac{3}{4} s^2 - as - \log |s - 2a| + \text{const} \]
 subject to boundary conditions \(k = 0 \) and \(k' = 0 \) at lower boundary.
- on \(\Omega_1^+ \), \(u_1 = u_1^+ \) given by a NEW system of ODE (for height \(h(\cdot) \) and length \(R(\cdot) \) of isochoice segments together with profile of \(u_1^+(\cdot) \) along them), with boundary conditions \(u_1^+(x_1, x_2) = k(x_1 + x_2) \) and \(Du_1^+ = (k', k') \) on \(\partial \Omega_0^0 \cap \partial \Omega_1^+ \)
- on \(\Omega_2 \), PDE: \(\Delta u_2 = 3 \) with Rochet-Choné's overdetermined conditions
 \[(Du_2(x) - x) \cdot \hat{n}_{\Omega_2}(x) = 0 \text{ on } \partial X \cap \tilde{\Omega}_2 \text{ and on } \{x_1 = x_2\} \]
 \[(Du_2 - Du_1^+) \cdot \hat{n}_{\Omega_2}(x) = 0 \text{ on } \partial \Omega_2 \cap \partial \Omega_1^+ \text{ (Neumann)} \]
 \[u_2 = u_1^+ \text{ on } \partial \Omega_2 \cap \partial \Omega_1^+ \text{ (Dirichlet)} \]
Precise Euler-Lagrange equation in the ‘missing’ region Ω_1^+

Index each isochoice segment in Ω_1^+ by its angle $\theta \geq -\frac{\pi}{4}$ to horizontal. Let $(a, h(\theta))$ denote its left-hand endpoint and parameterize the segment by distance $r \in [0, R(\theta)]$ to $(a, h(\theta))$. Along this segment of length $R(\theta)$,

$$u_1^+ \left((a, h(\theta)) + r (\cos \theta, \sin \theta) \right) = m(\theta) r + b(\theta).$$
Precise Euler-Lagrange equation in the ‘missing’ region Ω_1^+

Index each isochoice segment in Ω_1^+ by its angle $\theta \geq -\frac{\pi}{4}$ to horizontal. Let $(a, h(\theta))$ denote its left-hand endpoint and parameterize the segment by distance $r \in [0, R(\theta)]$ to $(a, h(\theta))$. Along this segment of length $R(\theta)$,

$$u_1^+((a, h(\theta)) + r (\cos \theta, \sin \theta)) = m(\theta) r + b(\theta).$$

For $h \in [a, a+1]$, $R : [-\frac{\pi}{4}, \frac{\pi}{2}] \to [0, a\sqrt{2})$ with $R(-\frac{\pi}{4}) = \frac{1}{\sqrt{2}}(h - a)$, solve

$$(m''(\theta) + m(\theta) - 2R(\theta))(m'(\theta) \sin \theta - m(\theta) \cos \theta + a) = \frac{3}{2} R^2(\theta) \cos \theta \quad (4)$$

$$m(-\frac{\pi}{4}) = 0, \quad m'(-\frac{\pi}{4}) = \frac{1}{\sqrt{2}}k'(a + h).$$
Precise Euler-Lagrange equation in the ‘missing’ region Ω_1^+

Index each isochoice segment in Ω_1^+ by its angle $\theta \geq -\frac{\pi}{4}$ to horizontal. Let $(a, h(\theta))$ denote its left-hand endpoint and parameterize the segment by distance $r \in [0, R(\theta)]$ to $(a, h(\theta))$. Along this segment of length $R(\theta)$,

$$u_1^+ \left((a, h(\theta)) + r (\cos \theta, \sin \theta) \right) = m(\theta) r + b(\theta).$$

For $h \in [a, a+1]$, $R : [-\frac{\pi}{4}, \frac{\pi}{2}] \to [0, a\sqrt{2})$ with $R(-\frac{\pi}{4}) = \frac{1}{\sqrt{2}}(h - a)$, solve

$$(m''(\theta) + m(\theta) - 2R(\theta))(m'(\theta) \sin \theta - m(\theta) \cos \theta + a) = \frac{3}{2} R^2(\theta) \cos \theta \quad (4)$$

$$m(-\frac{\pi}{4}) = 0, \quad m'(-\frac{\pi}{4}) = \frac{1}{\sqrt{2}} k'(a + h) \quad \text{Then set} \quad (5)$$

$$h(t) = h + \frac{1}{3} \int_{-\pi/4}^{t} (m''(\theta) + m(\theta) - 2R(\theta)) \frac{d\theta}{\cos \theta}, \quad (6)$$

$$b(t) = \frac{1}{2} k(a + h) + \int_{-\pi/4}^{t} (m'(\theta) \cos \theta + m(\theta) \sin \theta) h'(\theta) d\theta. \quad (7)$$
• for $h \in [a, a + 1]$, $R : [-\frac{\pi}{4}, \frac{\pi}{2}] \to [0, a\sqrt{2})$ Lipschitz (say) and $R(-\frac{\pi}{4}) = \frac{1}{\sqrt{2}}(h - a)$ we can solve (4)–(7) to find Ω_1^+ and u_1^+.

• we can then solve the resulting Neumann problem for $\Delta u_2 = 3$ on Ω_2

• while it is not yet rigorously proved is that some choice of h and $R(\cdot)$ also yields $u_1 - u_2 = \text{const}$ on $\partial\Omega_2 \setminus \partial X$,
• for \(h \in [a, a + 1] \), \(R : \left[-\frac{\pi}{4}, \frac{\pi}{2} \right] \to [0, a\sqrt{2}) \) Lipschitz (say) and \(R(-\frac{\pi}{4}) = \frac{1}{\sqrt{2}}(h - a) \) we can solve (4)–(7) to find \(\Omega_1^+ \) and \(u_1^+ \).

• we can then solve the resulting Neumann problem for \(\Delta u_2 = 3 \) on \(\Omega_2 \)

• while it is not yet rigorously proved is that some choice of \(h \) and \(R(\cdot) \) also yields \(u_1 - u_2 = \text{const} \) on \(\partial\Omega_2 \setminus \partial X \), we hope to do this in the future

• if such a choice exists such that, absorbing the constant into \(u_2 \), the resulting \(u \) given by \(u_i^{(\pm)} \) on \(\Omega_i^{(\pm)} \) for \(i \in \{0, 1, 2\} \) is in \(\mathcal{U} \), our new duality can be used to certify that \(u \) is the desired optimizer

WHY CAN WE NOT YET PROVE SUCH A CHOICE EXISTS?
• for \(h \in [a, a+1] \), \(R : [-\frac{\pi}{4}, \frac{\pi}{2}] \rightarrow [0, a\sqrt{2}) \) Lipschitz (say) and \(R(-\frac{\pi}{4}) = \frac{1}{\sqrt{2}}(h - a) \) we can solve (4)–(7) to find \(\Omega_1^+ \) and \(u_1^+ \).

• we can then solve the resulting Neumann problem for \(\Delta u_2 = 3 \) on \(\Omega_2 \)

• while it is not yet rigorously proved is that some choice of \(h \) and \(R(\cdot) \) also yields \(u_1 - u_2 = \text{const} \) on \(\partial\Omega_2 \setminus \partial X \), we hope to do this in the future

• if such a choice exists such that, absorbing the constant into \(u_2 \), the resulting \(u \) given by \(u_i^{(\pm)} \) on \(\Omega_i^{(\pm)} \) for \(i \in \{0, 1, 2\} \) is in \(\mathcal{U} \), our new duality can be used to certify that \(u \) is the desired optimizer

WHY CAN WE NOT YET PROVE SUCH A CHOICE EXISTS?

• a unique optimizer \(\bar{u} \in \mathcal{U} \) is known to exist (Rochet-Choné) and \(\bar{u} \in C^{1,1}_{loc}(X^0) \) (Caffarelli-Lions); if the sets \(\Omega_i \) where its Hessian is rank \(i \) are smooth enough, and \(\Omega_1 \) has the expected 3 components, then (4)–(7) and the overdetermined Poisson problem \(\Delta u_3 = 0 \) must be satisfied

• but maybe \(\Omega_i \) are not smooth enough, or \(\Omega_1 \) is not simply connected and/or has more than three components (some too small for the numerics to resolve); we seriously doubt this, but can’t yet rule it out rigorously...
CONCLUSIONS

• **Convexity**, when present, is a powerful tool for optimization

• for numerics, uniqueness, stability, and characterization of optimum

• **Duality** of price menu $v(y)$ with buyers’ indirect utilities $u(x) = v^G(x)$

• Necessary and sufficient conditions for **convexity** of monopolist’s problem (as a function of u)

• Related to **curvature conditions** governing regularity in generated Jacobian equations (à la Ma, Trudinger and Wang) but

• adapted to payoffs $G(x, y, z)$ which may depend **nonlinearly** on price z

• **new duality** certifying solutions for $G(x, y, z) = x \cdot y - z$

• square example requires solving an unexpected **free boundary** problem
CONCLUSIONS

• Convexity, when present, is a powerful tool for optimization

• for numerics, uniqueness, stability, and characterization of optimum

• Duality of price menu $v(y)$ with buyers’ indirect utilities $u(x) = v^G(x)$

• Necessary and sufficient conditions for convexity of monopolist’s problem (as a function of u)

• Related to curvature conditions governing regularity in generated Jacobian equations (à la Ma, Trudinger and Wang) but

• adapted to payoffs $G(x, y, z)$ which may depend nonlinearly on price z

• new duality certifying solutions for $G(x, y, z) = x \cdot y - z$

• square example requires solving an unexpected free boundary problem

THANK YOU!