Rules of Exponents. $\frac{1}{a^{k}}=a^{-k}$ $a^{k} a^{n}=a^{k+n}$ $\frac{a^{k}}{a^{n}}=a^{k-n}$

Rewrite each of the following expressions in the form $a \square_{b} \square_{c} \square$.

$$
\begin{array}{|l|l|}
1 & \frac{a^{7} b^{2}}{a b c} \\
\hline 2\left(\frac{a^{t} b^{5}}{c^{r}}\right)\left(\frac{a^{2} c^{3}}{b^{2}}\right) & \boxed{3} \frac{a^{2} b^{-2} \sqrt{c}}{a^{3 / 2} b^{-3} c^{5}} \\
\hline 4\left(\frac{a^{3} \sqrt{b}}{c^{7}}\right)^{5}
\end{array}
$$

Exponential and Logarithmic Functions.

A logarithm is the inverse of an exponential. That is, $\log _{a} a^{x}=x$ for any positive $a \neq 1$, and $a^{\log _{a} x}=x$. We usually use a base of e, which is natural constant (that is, a number with a letter name, just like π). The number e is approximately 2.7182818284590452354 . The logarithm we usually use is log base e, written $\log _{e}(x)$ or (more often) $\ln (x)$, and called the natural logarithm of x.

Rules of Logarithms.

- Definition: $c=\log _{b}(a) \Longleftrightarrow a=b^{c}$
- The Big One: $\ln \left(x^{y}\right)=y \cdot \ln (x)$ or $\log _{a}\left(x^{y}\right)=y \cdot \log _{a}(x)$
- Others: $\log _{a}(r \cdot s)=\log _{a}(r)+\log _{a}(s) \quad \log _{a}(r / s)=\log _{a}(r)-\log _{a}(s)$

$$
\log _{a}(b)=\frac{\log _{x}(b)}{\log _{x}(a)}, \text { for any } x
$$

Solve for t (algebraically, not numerically) in the following equations.

5	$200=5 t^{3}$	$\boxed{6} 800=4 \cdot 7^{t}$
9	$\log _{2}(t)=6$	10

$7400=200+3 \cdot 2^{t}$
$8432=100 e^{0.6 t}$

Functions of Exponential Type.
A function is said to be of exponential type if it can be written in the form

$$
y=a \cdot b^{t} \quad \text { where } a \text { and } b \text { are constants. }
$$

If we are given two data points, (two pairs of t and y values), we can determine the constants a and b by solving a system of two equations.
Example: Given that $200=a \cdot b^{2} \quad$ and $\quad 450=a \cdot b^{7}, \quad$ we divide the second equation by the first to get: $\quad \frac{450}{200}=\frac{b^{7}}{b^{2}} \quad$ and so $\quad 9 / 4=b^{5}, \quad$ giving $b=\sqrt[5]{9 / 4}$.
Substituting that into the first equation gives $\quad a=\frac{200}{(9 / 4)^{2 / 5}}=200 \cdot(9 / 4)^{-2 / 5}$.

Find a and b given that:
$1130=a \cdot b^{5}$ and $80=a \cdot b^{9}$

$$
121.5=a \cdot b^{24} \text { and } 2.3=a \cdot b^{36}
$$

