SOAR MATH COURSE WINTER, 2003
CoMPLEX NUMBERS

The introduction of complex numbers in the 16th century made it possible to
solve the equation 22 + 1 = 0. These notes® present one way of defining complex
numbers.

1. THE COMPLEX PLANE

A complex number z is given by a pair of real numbers z and y and is written
in the form z = z + iy, where i satisfies i2 = —1. The complex numbers may be
represented as points in the plane (sometimes called the Argand diagram). The
real number 1 is represented by the point (1,0), and the complex number i is
represented by the point (0,1). The z-axis is called the “real axis”, and the y-axis
is called the “imaginary axis”. For example, the complex numbers 3447 and 3 — 41
are illustrated in Figure 1la.
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Complex numbers are added in a natural way: If z; = 21 + iy; and 2z = 29 + 1o,
then

(1) 21+ 22 = (¥1 + ) + (Y1 + Y2)
Figure 1b illustrates the addition (4 4 i) + (2 + 3i) = (6 + 4¢). Multiplication is
given by
2129 = (1179 — Y1Y2) + i(T1Y2 + T2y1)
Note that the product behaves exactly like the product of any two algebraic ex-
pressions, keeping in mind that 2 = —1. Thus,
(24 4) (=2 + 4i) = 2(=2) + 8 — 2i + 4i* = —8 + 6i

IThese notes are based on notes written at the University of Washington by Bob Phelps, with
modifications by Tom Duchamp. Further modifications were made by Peter Garfield.



We call = the real part of z and y the imaginary part, and we write + = Re(z),
y = Im(2). (Remember: Im(z) is a real number.) The term “imaginary” is an
historical holdover; it took mathematicians some time to accept the fact that ¢
(for “imaginary”, naturally) was a perfectly good mathematical object. Electrical
engineers (who make heavy use of complex numbers) reserve the letter i to denote
electric current and they use j for v/—1.

There is only one way we can have z; = zy, namely, if 1 = z9 and y1 = yo.
An equivalent statement (one that is important to keep in mind) is that z = 0
if and only if Re(z) = 0 and Im(z) = 0. If @ is a real number and z = z + iy
is complex, then az = az + iay (which is exactly what we would get from the
multiplication rule above if zy were of the form zy = a + i0). Division is more
complicated (although we will show later that the polar representation of complex
numbers makes it easy). To find z; /29 it suffices to find 1/z; and then multiply by
z1. The rule for finding the reciprocal of z = = + 1y is given by:

1 1 T — 1y T — 1y T — 1y
a:—l—zy T a+iy T—iy (x +iy)(x —iy) a2+ y?

The expression x — iy appears so often and is so useful that it is given a name. It
is called the complex conjugate of z = x 4 1y and a shorthand notation for it is z;
that is, if z = x + 1y, then Z = x — 1y. For example, 3 + 41 = 3 — 41, as illustrated
in the F1G 1A . Note that Z = z and 2 + 25 = Z; + Z». Exercise (3b) is to show
that z123 = Z1Z2. Another important quantity associated with a given complex
number z is its modulus

2] = (22)"/2 = Va2 + 47 = ((Re(2))* + (Im(2))?) *

Note that || is a real number. For example, |3+4i| = v/32 + 42 = /25 = 5. There
are obvious connections between these two notions: 2z = |z|* (this was already
used in the denominator in equation (1) above) and |Z| = |z|. We can also write
12| = (Re(2))? + (Im(2))? This leads to the inequality

(2) Re(z) < [Re(z)] = V/(Re(2))? < V/(Re(2))? + (Im(2))? = ||

Similarly, Im(z) < |Im(z)| < |z|.

Exercises 1.

(1) Prove that the product of z = x + iy and the expression in (1) (above)
equals 1.
(2) Verify each of the following:

(a) (V2—i)—i(1-Vv2i)=-2 (b) ;tiiﬁ-i;i:_%
5 1 oo
(c) A-02-)B—9) 2 (d)  (1—a)"=—4

(3) Prove the following:



(a) 2+ z =2Re(z) and z is a real number if and only if Z = 2.
(b) m - 21 . 32.

(4) Prove that |2z125| = |21 - |22| (Hint: Use (3b).)

(5) Find all complex numbers z = z + iy such that 22 = 1 + .

2. POLAR REPRESENTATION OF COMPLEX NUMBERS

Recall that the plane has polar coordinates as well as rectangular coordinates. The
relation between the rectangular coordinates (z,y) and the polar coordinates (r, )
1s

x = rcos(0) and y = rsin(0)

r=+/2%+y? and 0 = arctan(y/z)

(If z =0, then r = 0 and € can be anything.)

Thus, for the complex number z = x + iy, we can write
z =r(cosf +isinf).

There is another way to rewrite this expression for z, called the FEuler Formula.
Later in life, you will see that e* can be expressed as the following power series
(that is, as an infinite sum of powers of x):

2 1'3 "
e :1+l‘+§+§+...+m+...
For any complex number z, we define e* by the power series:
s q 22 28 2"
e” = +Z+§+§+...+H+...
In particular,
, , i0)?  (i0)3 )"
619:1+29+Q+u+...+g+...
2! 3! n!
R /A o
:1+29—§—§+I+...
The functions cos(#) and sin(f) can also be written as power series:
92 94 (96 (_1)n02n
H=1——+———+ ... +—F——+...
cos(f) TR I O TR
63 95 97 (_1)n92n+1

TR T T T )
Thus

(the power series for ) = (the power series for cos())-i-(the power series for sin(f))

This is the Euler Formula:

" = cos(0) + isin(f)



(If you wish, you may simply choose to accept this formula and ignore the above
diversion into infinite series.) For example,

em/? =, e =—1 and ™ =41

Given z = x + iy, then z can be written in the form z = re?, where

3) r=Va+y?=|z| and  6=tan"(y/2)

For example the complex number z = 8 + 6i may also be written as 10, where
0 = arctan(.75) ~ .64 radians. This is illustrated in Figure 2.

8 + 6i = 100

0~ .64

Figure 2

If 2 = —4 + 4i, then r = /42 + 42 = 4y/2 and 0 = 37 /4, therefore z = 48/2e%4,
Any angle which differs from 37 /4 by an integer multiple of 27 will give us the same
complex number. Thus, —4+4i can also be written as 4v/2¢"™/4 or as 4v/2¢~°7/4,
In general, if z = re®, then we also have z = re'@+?™) L =0, +1,+2,.... More-
over, there is ambiguity in equation (3) about the inverse tangent which can (and
must) be resolved by looking at the signs of x and y, respectively, in order to de-
termine the quadrant in which 6 lies. If x = 0, then the formula for § makes no
sense, but z = 0 simply means that z lies on the imaginary axis and so § must be
7/2 or 3w/2 (depending on whether y is positive or negative).

The conditions for equality of two complex numbers using polar coordinates are
not quite as simple as they were for rectangular coordinates. If z; = 7€' and
2y = 1r9e'® then z; = 2 ifand only if 1y = ro and 6 = 0,421k, k= 0,+£1,£2,....
Despite this, the polar representation is very useful when it comes to multiplication:

02 i(@l —‘,—92)
)

(4) if 21 =™ and 2y = roc’ then 229 = rirse

To see why this is true, write 2125 = re?, so that r = |2125| = |21]|22] = ri7ro (the
next-to-last equality uses Exercise (4a)). It remains to show that 6 = 6, + 65, that
is, that e¥1e?2 = ¢(%1762) ' (this is Exercise (7a)). For example, let

21 =2+1i=be?, 0, ~ 0.464
4



29 = —2 4 4i = /20e'%, 0, ~ 2.034
Then z3 = 2129, where:

23 = —8 + 6i = V100" 05 ~ 2.498
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Figure 3
Applying (4) to z1 = 20 = —4 + 4i = 4\/2e1™ (our earlier example), we get

(—4 4 4i)% = (4V/2e3™)? = 32¢7™ = —32;.

By an easy induction argument, the formula in (4) can be used to prove that for
any positive integer n

If z=re?, then 2" = et

This makes it easy to solve equations like 2® = 1. Indeed, writing the unknown
number z as re?, we have r3¢®% = 1 = €%, hence r* = 1 (so r = 1) and 36 = 2k,
k=0,£1,42,.... It follows that § = 2kw/3, k = 0,£1,4+2,.... There are only
three distinct complex numbers of the form e?7™/3 namely e® = 1, e*™/3 and e*™"/3.
The following figure illustrates z = 8i = 8¢"/2 and its three cube roots 2 = 2¢/6,
29 = 265i7r/6’ 23 = 2€9i7r/6
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Figure 4

From the fact that (e??)" = €™ we obtain De Moivre’s formula:
(cos(f) +isin(f))" = cos(n) + i sin(nd)

By expanding on the left and equating real and imaginary parts, this leads to
trigonometric identities which can be used to express cos(nf) and sin(nf) as a
sum of terms of the form (cos®)’(sinf)*. For example, taking n = 2 one gets
cos(260) = cos?(f) —sin?(f). For n = 3 one gets cos(30) = cos®() — 3 cos() sin?(h).

Exercises 2.

(6) Let 2z = 3i and 2z =2 — 24

(a) Plot the points z; + 29, 21 — 2 and Z3.

(b) Compute |21 + 22| and |2 — 23]

(c¢) Express z; and z3 in polar form.
(7) Prove the following:

(a) eifreifz = (i01+02)

(b) Use (a) to show that (e??)~! = e~ that is, e "e? = 1.
(8) Let z; = 6e™/3 and 2o = 2e7"/%. Plot, 21, 23, 2120 and 21 /2.
(9) Find all complex numbers z which satisfy 23 = —1.
10) Find all complex numbers z = e such that 22 = \/2¢7/4.
11) Find expressions for each of the following in terms of sin(#) and cos(f),

using the technique outlined above.

(a) sin(360)

(b) cos(40)
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