
SOAR Math Course Winter, 2003

Complex Numbers

The introduction of complex numbers in the 16th century made it possible to
solve the equation x2 + 1 = 0. These notes1 present one way of defining complex
numbers.

1. The Complex Plane

A complex number z is given by a pair of real numbers x and y and is written
in the form z = x + iy, where i satisfies i2 = −1. The complex numbers may be
represented as points in the plane (sometimes called the Argand diagram). The
real number 1 is represented by the point (1, 0), and the complex number i is
represented by the point (0, 1). The x-axis is called the “real axis”, and the y-axis
is called the “imaginary axis”. For example, the complex numbers 3+4i and 3−4i
are illustrated in Figure 1a.
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Complex numbers are added in a natural way: If z1 = x1 + iy1 and z2 = x2 + iy2,
then

(1) z1 + z2 = (x1 + x2) + i(y1 + y2)

Figure 1b illustrates the addition (4 + i) + (2 + 3i) = (6 + 4i). Multiplication is
given by

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1)

Note that the product behaves exactly like the product of any two algebraic ex-
pressions, keeping in mind that i2 = −1. Thus,

(2 + i)(−2 + 4i) = 2(−2) + 8i− 2i + 4i2 = −8 + 6i

1These notes are based on notes written at the University of Washington by Bob Phelps, with
modifications by Tom Duchamp. Further modifications were made by Peter Garfield.
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We call x the real part of z and y the imaginary part, and we write x = Re(z),
y = Im(z). (Remember: Im(z) is a real number.) The term “imaginary” is an
historical holdover; it took mathematicians some time to accept the fact that i
(for “imaginary”, naturally) was a perfectly good mathematical object. Electrical
engineers (who make heavy use of complex numbers) reserve the letter i to denote
electric current and they use j for

√
−1.

There is only one way we can have z1 = z2, namely, if x1 = x2 and y1 = y2.
An equivalent statement (one that is important to keep in mind) is that z = 0
if and only if Re(z) = 0 and Im(z) = 0. If a is a real number and z = x + iy
is complex, then az = ax + iay (which is exactly what we would get from the
multiplication rule above if z2 were of the form z2 = a + i0). Division is more
complicated (although we will show later that the polar representation of complex
numbers makes it easy). To find z1/z2 it suffices to find 1/z2 and then multiply by
z1. The rule for finding the reciprocal of z = x + iy is given by:

1

x + iy
=

1

x + iy
· x− iy

x− iy
=

x− iy

(x + iy)(x− iy)
=

x− iy

x2 + y2

The expression x− iy appears so often and is so useful that it is given a name. It
is called the complex conjugate of z = x + iy and a shorthand notation for it is z;
that is, if z = x + iy, then z = x− iy. For example, 3 + 4i = 3− 4i, as illustrated
in the Fig 1a . Note that z = z and z1 + z2 = z1 + z2. Exercise (3b) is to show
that z1z2 = z1z2. Another important quantity associated with a given complex
number z is its modulus

|z| = (zz)1/2 =
√

x2 + y2 =
(
(Re(z))2 + (Im(z))2

)1/2

Note that |z| is a real number. For example, |3+4i| =
√

32 + 42 =
√

25 = 5. There
are obvious connections between these two notions: zz = |z|2 (this was already
used in the denominator in equation (1) above) and |z| = |z|. We can also write
|z|2 = (Re(z))2 + (Im(z))2 This leads to the inequality

(2) Re(z) ≤ |Re(z)| =
√

(Re(z))2 ≤
√

(Re(z))2 + (Im(z))2 = |z|
Similarly, Im(z) ≤ | Im(z)| ≤ |z|.

Exercises 1.

(1) Prove that the product of z = x + iy and the expression in (1) (above)
equals 1.

(2) Verify each of the following:

(a) (
√

2− i)− i(1−
√

2i) = −2i

(c)
5

(1− i)(2− i)(3− i)
=

1

2
i

(b)
1 + 2i

3− 4i
+

2− i

5i
= −2

5

(d) (1− i)4 = −4

(3) Prove the following:
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(a) z + z = 2 Re(z) and z is a real number if and only if z = z.
(b) z1z2 = z1 · z2.

(4) Prove that |z1z2| = |z1| · |z2| (Hint: Use (3b).)
(5) Find all complex numbers z = x + iy such that z2 = 1 + i.

2. Polar Representation of Complex Numbers

Recall that the plane has polar coordinates as well as rectangular coordinates. The
relation between the rectangular coordinates (x, y) and the polar coordinates (r, θ)
is

x = r cos(θ) and y = r sin(θ)

r =
√

x2 + y2 and θ = arctan(y/x)

(If z = 0, then r = 0 and θ can be anything.)

Thus, for the complex number z = x + iy, we can write

z = r(cos θ + i sin θ).

There is another way to rewrite this expression for z, called the Euler Formula.
Later in life, you will see that ex can be expressed as the following power series
(that is, as an infinite sum of powers of x):

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . +

xn

n!
+ . . .

For any complex number z, we define ez by the power series:

ez = 1 + z +
z2

2!
+

z3

3!
+ . . . +

zn

n!
+ . . .

In particular,

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+ . . . +

(iθ)n

n!
+ . . .

= 1 + iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+ . . .

The functions cos(θ) and sin(θ) can also be written as power series:

cos(θ) = 1− θ2

2
+

θ4

4!
− θ6

6!
+ . . . +

(−1)nθ2n

(2n)!
+ . . .

sin(θ) = θ − θ3

3!
+

θ5

5!
− θ7

7!
+ . . . +

(−1)nθ2n+1

(2n + 1)!
± . . .

Thus

(the power series for eiθ) = (the power series for cos(θ))+i·(the power series for sin(θ))

This is the Euler Formula:

eiθ = cos(θ) + i sin(θ)
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(If you wish, you may simply choose to accept this formula and ignore the above
diversion into infinite series.) For example,

eiπ/2 = i, eπi = −1 and e2πi = +1

Given z = x + iy, then z can be written in the form z = reiθ, where

(3) r =
√

x2 + y2 = |z| and θ = tan−1(y/x)

For example the complex number z = 8 + 6i may also be written as 10eiθ, where
θ = arctan(.75) ≈ .64 radians. This is illustrated in Figure 2.
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Figure 2

If z = −4 + 4i, then r =
√

42 + 42 = 4
√

2 and θ = 3π/4, therefore z = 4
√

2e3πi/4.
Any angle which differs from 3π/4 by an integer multiple of 2π will give us the same

complex number. Thus, −4+4i can also be written as 4
√

2e11πi/4 or as 4
√

2e−5πi/4.
In general, if z = reiθ, then we also have z = rei(θ+2πk), k = 0,±1,±2, . . . . More-
over, there is ambiguity in equation (3) about the inverse tangent which can (and
must) be resolved by looking at the signs of x and y, respectively, in order to de-
termine the quadrant in which θ lies. If x = 0, then the formula for θ makes no
sense, but x = 0 simply means that z lies on the imaginary axis and so θ must be
π/2 or 3π/2 (depending on whether y is positive or negative).

The conditions for equality of two complex numbers using polar coordinates are
not quite as simple as they were for rectangular coordinates. If z1 = r1e

iθ1 and
z2 = r2e

iθ2 , then z1 = z2 if and only if r1 = r2 and θ1 = θ2+2πk, k = 0,±1,±2, . . . .
Despite this, the polar representation is very useful when it comes to multiplication:

(4) if z1 = r1e
iθ1 and z2 = r2e

iθ2 , then z1z2 = r1r2e
i(θ1+θ2)

To see why this is true, write z1z2 = reiθ, so that r = |z1z2| = |z1||z2| = r1r2 (the
next-to-last equality uses Exercise (4a)). It remains to show that θ = θ1 + θ2, that
is, that eiθ1eiθ2 = ei(θ1+θ2), (this is Exercise (7a)). For example, let

z1 = 2 + i =
√

5eiθ1 , θ1 ≈ 0.464
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z2 = −2 + 4i =
√

20eiθ2 , θ2 ≈ 2.034

Then z3 = z1z2, where:

z3 = −8 + 6i =
√

100eiθ3 θ3 ≈ 2.498

r √5eiθ1
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Figure 3

Applying (4) to z1 = z2 = −4 + 4i = 4
√

2e
3
4
πi (our earlier example), we get

(−4 + 4i)2 = (4
√

2e
3
4
πi)2 = 32e

3
2
πi = −32i.

By an easy induction argument, the formula in (4) can be used to prove that for
any positive integer n

If z = reiθ, then zn = rneinθ

This makes it easy to solve equations like z3 = 1. Indeed, writing the unknown
number z as reiθ, we have r3ei3θ = 1 ≡ e0i, hence r3 = 1 (so r = 1) and 3θ = 2kπ,
k = 0,±1,±2, . . . . It follows that θ = 2kπ/3, k = 0,±1,±2, . . . . There are only
three distinct complex numbers of the form e2kπi/3, namely e0 = 1, e2πi/3 and e4πi/3.
The following figure illustrates z = 8i = 8eiπ/2 and its three cube roots z1 = 2eiπ/6,
z2 = 2e5iπ/6, z3 = 2e9iπ/6
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r 8i = 8eπi/2

r 2eπi/6r2e5πi/6

r 2e9πi/6

Figure 4

From the fact that (eiθ)n = einθ we obtain De Moivre’s formula:

(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ)

By expanding on the left and equating real and imaginary parts, this leads to
trigonometric identities which can be used to express cos(nθ) and sin(nθ) as a
sum of terms of the form (cos θ)j(sin θ)k. For example, taking n = 2 one gets
cos(2θ) = cos2(θ)− sin2(θ). For n = 3 one gets cos(3θ) = cos3(θ)−3 cos(θ) sin2(θ).

Exercises 2.

(6) Let z1 = 3i and z2 = 2− 2i
(a) Plot the points z1 + z2, z1 − z2 and z2.
(b) Compute |z1 + z2| and |z1 − z2|.
(c) Express z1 and z2 in polar form.

(7) Prove the following:
(a) eiθ1eiθ2 = ei(θ1+θ2).
(b) Use (a) to show that (eiθ)−1 = e−iθ, that is, e−iθeiθ = 1.

(8) Let z1 = 6eiπ/3 and z2 = 2e−iπ/6. Plot z1, z2, z1z2 and z1/z2.
(9) Find all complex numbers z which satisfy z3 = −1.

(10) Find all complex numbers z = reiθ such that z2 =
√

2eiπ/4.
(11) Find expressions for each of the following in terms of sin(θ) and cos(θ),

using the technique outlined above.
(a) sin(3θ)
(b) cos(4θ)
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