These solutions are written at the request of students. Please let me know if you don't understand these solutions; I'm happy to expand on them if necessary.
3. One thing we didn't cover in class is that the various elliptic curve expressions, from

$$
\begin{equation*}
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{1}
\end{equation*}
$$

to

$$
\begin{equation*}
y^{2}=x^{3}+A x^{2}+B x+C \tag{2}
\end{equation*}
$$

and finally

$$
\begin{equation*}
y^{2}=x^{3}+a x+b \tag{3}
\end{equation*}
$$

may be obtained by changing variables. This question is essentially algebra, walking through these changes.
(a) Show that if we change $y$ to $y-\frac{a_{1}}{2} x-\frac{a_{3}}{2}$, the expression (1) changes to equation (2). (Here we leave $x$ unchanged.)
Solution: We re-write the left-hand side of expression (1) as

$$
y^{2}+a_{1} x y+a_{3} y=y\left(y+a_{1} x+a_{3}\right)
$$

Now we replace $y$ with $y-\frac{a_{1}}{2} x-\frac{a_{3}}{2}$, as required. This left-hand side becomes

$$
y\left(y+a_{1} x+a_{3}\right)=\left(y-\frac{a_{1}}{2} x-\frac{a_{3}}{2}\right)\left(y+\frac{a_{1}}{2} x+\frac{a_{3}}{2}\right) .
$$

This is of the form $(y-k)(y+k)=y^{2}-k^{2}$, where $k=\frac{a_{1}}{2} x+\frac{a_{3}}{2}$. We square this to get

$$
\begin{aligned}
y\left(y+a_{1} x+a_{3}\right) & =y^{2}-\left(\frac{a_{1}}{2} x+\frac{a_{3}}{2}\right)^{2} \\
& =y^{2}-\left(\frac{a_{1}^{2}}{4} x^{2}+\frac{a_{1} a_{3}}{2} x+\frac{a_{3}^{2}}{4}\right) .
\end{aligned}
$$

This means that equation (1) becomes

$$
y^{2}-\left(\frac{a_{1}^{2}}{4} x^{2}+\frac{a_{1} a_{3}}{2} x+\frac{a_{3}^{2}}{4}\right)=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

or

$$
y^{2}=x^{3}+\left(a_{2}+a_{1}^{2} / 4\right) x^{2}+\left(a_{4}+a_{1} a_{3} / 2\right) x+\left(a_{6}+a_{3}^{2} / 4\right) .
$$

This is the same form as expression (2), with $A=a_{2}+a_{1}^{2} / 4, B=a_{4}+a_{1} a_{3} / 2$, and $C=a_{6}+a_{3}^{2} / 4$.
(b) Show that if we change $x$ to $(x-3 A) / 9$ and $y$ to $y / 27$, the expression (2) changes to equation (3).

Solution: Now we start with

$$
\begin{equation*}
y^{2}=x^{3}+A x^{2}+B x+C \tag{2}
\end{equation*}
$$

and replace $x$ with $(x-3 A) / 9$ and $y$ with $y / 27$. From expression (2), we get

$$
\begin{equation*}
\left(\frac{y}{27}\right)^{2}=\left(\frac{x-3 A}{9}\right)^{3}+A\left(\frac{x-3 A}{9}\right)^{2}+B\left(\frac{x-3 A}{9}\right)+C \tag{2}
\end{equation*}
$$

We expand these expressions to find that

$$
\frac{y^{2}}{729}=\left(\frac{x^{3}-9 A x^{2}+27 A^{2} x-27 A^{3}}{729}\right)+A\left(\frac{x^{2}-6 A x+9 A^{2}}{81}\right)+B\left(\frac{x-3 A}{9}\right)+C
$$

We multiply through by 729 to clear the denominators. We get

$$
y^{2}=\left(x^{3}-9 A x^{2}+27 A^{2} x-27 A^{3}\right)+9 A\left(x^{2}-6 A x+9 A^{2}\right)+81 B(x-3 A)+729 C,
$$

or

$$
\begin{aligned}
y^{2}= & x^{3}+(-9 A+9 A) x^{2}+\left(27 A^{2}-54 A^{2}+81 B\right) x \\
& +\left(-27 A^{3}+81 A^{2}-243 A B+729 C\right) \\
= & x^{3}+27\left(-2 A^{2}+3 B\right) x+27\left(-A^{3}+3 A^{2}-9 A B+27 C\right)
\end{aligned}
$$

This is the required expression (3), with coefficients $a=27\left(-2 A^{2}+3 B\right)$ and $b=27\left(-A^{3}+3 A^{2}-9 A B+27 C\right)$.

This means that, in a sense, the two expressions (1) and (3) represent the same object. (Compare this notion with the discussion in problem 3 of homework 6 . We've just transformed one expression into the other.)

