These solutions are written at the request of students. Please let me know if you don't understand these solutions; I'm happy to expand on them if necessary.
6. Let F_{k} be the Fibonacci numbers and L_{k} be the Lucas numbers. That is, $F_{0}=0$, $F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Similarly, $L_{0}=2, L_{1}=1$, and $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$.
To help with both solutions, I'm going to make a short table of values for L_{n} and F_{n} so that we can perhaps see the pattern in the table:

$$
\begin{array}{c|ccccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
F_{n} & 0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 \\
L_{n} & 2 & 1 & 3 & 4 & 7 & 11 & 18 & 29 & 47 & 76 & 123
\end{array}
$$

(a) Use induction to show that $L_{n}=F_{n+1}+F_{n-1}$ for $n \geq 1$.

Notice: I'm very sorry - there was a typo in this question. The correct question is posed above; the equation was originally stated as $L_{n}=\left(F_{n+1}+F_{n-1}\right) / 2$. This can be seen to be incorrect by looking at the table above.
Solution: Notice first that $L_{1}=1$ and $F_{2}+F_{0}=1+0=1$, so the required formula holds for $n=1$. It also holds for $n=2: L_{2}=3$ and $F_{3}+F_{1}=2+1=3$.
Now we assume that $L_{k}=F_{k+1}+F_{k-1}$ for all k with $1 \leq k \leq n$, and we prove that $L_{n+1}=F_{n+2}+F_{n}$. This is simply a computation:

$$
\begin{aligned}
L_{n+1} & =L_{n}+L_{n-1} \\
& =\left(F_{n+1}+F_{n-1}\right)+\left(F_{n}+F_{n-2}\right) \quad \text { by the inductive hypothesis } \\
& =\left(F_{n+1}+F_{n}+F_{n-1}+F_{n-2}\right) \\
& =F_{n+2}+F_{n} \quad \text { since } F_{n+2}=F_{n+1}+F_{n} \text { and } F_{n}=F_{n-1}+F_{n-2} .
\end{aligned}
$$

This is the desired equation. (Notice in the second line of this displayed set of equations, we needed to use the required expression for both L_{n} and L_{n-1}. This is why we established the formula for $n=1$ and $n=2$ at the outset.)
(b) Use induction to show that $F_{n}=\left(L_{n+1}+L_{n-1}\right) / 5$ for $n \geq 1$.

Solution: Again, we establish the desired formula for $n=1$ and $n=2$. When $n=1$, $F_{1}=1$ and $\left(L_{2}+L_{0}\right) / 5=(3+2) / 5=1$ as well. Similarly, $F_{2}=1$ and $\left(L_{3}+L_{1}\right) / 5=(4+1) / 5=1$.
Now assume that $F_{k}=\left(L_{k+1}+L_{k-1}\right) / 5$ for all k with $1 \leq k \leq n$. We'll show that $F_{n+1}=\left(L_{n+2}+L_{n}\right) / 5$ as well. This is a computation:

$$
\begin{aligned}
F_{n+1} & =F_{n}+F_{n-1} \\
& =\frac{1}{5}\left(L_{n+1}+L_{n-1}\right)+\frac{1}{5}\left(L_{n}+L_{n-2}\right) \quad \text { by the inductive hypothesis } \\
& =\frac{1}{5}\left(L_{n+1}+L_{n}+L_{n-1}+L_{n-2}\right) \\
& =\frac{1}{5}\left(L_{n+2}+L_{n}\right) \quad \text { since } L_{n+2}=L_{n+1}+L_{n} \text { and } L_{n}=L_{n-1}+L_{n-2} .
\end{aligned}
$$

This is the desired equation. (The same remarks in the solution to part (a) apply here as well.)

