These solutions are written at the request of students. Please let me know if you don't understand these solutions; I'm happy to expand on them if necessary.
2. Let n be an odd number, not necessarily prime. Show that $\left(\frac{-1}{n}\right)=(-1)^{(n-1) / 2}$ as follows.
(a) Write $n=p_{1} p_{2} \cdots p_{k}$ as a product of odd (not necessarily distinct) primes. Show that

$$
\left(\frac{-1}{n}\right)=(-1)^{\sum_{j} \frac{p_{j}-1}{2}} .
$$

Solution: We use two facts: first, that

$$
\left(\frac{-1}{n}\right)=\left(\frac{-1}{p_{1}}\right)\left(\frac{-1}{p_{2}}\right) \cdots\left(\frac{-1}{p_{k}}\right)
$$

and second, that $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$. (For this second fact, you might be saying to yourself: "Wait a minute, Peter's trying to pull the wool over my eyes. I know that $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \bmod p$, but he's written ' $=$ ' up there." It's true. But $(-1)^{(p-1) / 2}= \pm 1$, and modulo p that's still just ± 1. It really is just an equals, not equal modulo p.)
We use these facts and compute:

$$
\begin{aligned}
\left(\frac{-1}{n}\right) & =\left(\frac{-1}{p_{1}}\right)\left(\frac{-1}{p_{2}}\right) \cdots\left(\frac{-1}{p_{k}}\right) \\
& =(-1)^{\frac{p_{1}-1}{2}}(-1)^{\frac{p_{2}-1}{2}} \cdots(-1)^{\frac{p_{k}-1}{2}} \\
& =(-1)^{\frac{p_{1}-1}{2}+\frac{p_{2}-1}{2}+\cdots+\frac{p_{k}-1}{2}} \\
& =(-1)^{\sum_{j} \frac{p_{j}-1}{2}}
\end{aligned}
$$

which is what we wished to prove.
(b) Write $n=p_{1} p_{2} \cdots p_{k}$ as

$$
n=\left(1+\left(p_{1}-1\right)\right)\left(1+\left(p_{2}-1\right)\right) \cdots\left(1+\left(p_{k}-1\right)\right)
$$

and show that this simplifies to

$$
\begin{equation*}
n=1+\sum_{j=1}^{k}\left(p_{j}-1\right)+4 K \tag{*}
\end{equation*}
$$

for some integer K. (Use the fact that each p_{j} is odd, so $p_{j}-1$ is even. You may assume that there are at least two primes - so $k \geq 2$ - as the $k=1$ case is simply $n=p_{1}$.)

Solution: Let's use induction on k, the number of prime factors of n. Our base case will be $k=2$, and we can do this by hand:
$n=\left(1+\left(p_{1}-1\right)\right)\left(1+\left(p_{2}-1\right)\right)=1+\left[\left(p_{1}-1\right)+\left(p_{2}-1\right)\right]+\left(p_{1}-1\right)\left(p_{2}-1\right)$.
Since p_{1} and p_{2} are both odd primes, we can write $p_{1}-1=2 k_{1}$ and $p_{2}-1=2 k_{2}$ for integers k_{1} and k_{2}. Thus the above equation for n turns into

$$
n=1+\sum_{j=1}^{2}\left(p_{j}-1\right)+4\left(k_{1} k_{2}\right),
$$

which is equation $(*)$ with $K=k_{1} k_{2}$.
Now we assume that equation $(*)$ holds for k and prove it holds for $k+1$ as well. Suppose $n=p_{1} p_{2} \cdots p_{k} p_{k+1}$ is the product of $k+1$ odd primes. Then, by the induction hypothesis, we can write

$$
p_{1} p_{2} \cdots p_{k}=1+\sum_{j=1}^{k}\left(p_{j}-1\right)+4 K
$$

for some integer K. Now, to get n, we multiply both sides by p_{k+1}. That is, we multiply the left-hand side by p_{k+1} and the right-hand side by $1+\left(p_{k+1}-1\right)$:

$$
\begin{aligned}
n=p_{1} p_{2} \cdots p_{k} p_{k+1}= & \left(1+\sum_{j=1}^{k}\left(p_{j}-1\right)+4 K\right)\left(1+\left(p_{k+1}-1\right)\right) \\
= & 1+\sum_{j=1}^{k}\left(p_{j}-1\right)+4 K \\
& +\left(p_{k+1}-1\right)+\left(p_{k+1}-1\right) \sum_{j=1}^{k}\left(p_{j}-1\right)+4 K\left(p_{k+1}-1\right) \\
= & 1+\sum_{j=1}^{k+1}\left(p_{j}-1\right)+4 K^{\prime},
\end{aligned}
$$

where

$$
4 K^{\prime}=4 K+\left(p_{k+1}-1\right) \sum_{j=1}^{k}\left(p_{j}-1\right)+4 K\left(p_{k+1}-1\right) .
$$

(Clearly the first and last terms on the right-hand side are multiples of 4 . The middle term on the right is, as before, a product of two even numbers, and so also a multiple of 4.) This finishes the proof.
(c) Conclude from part (b) that $(-1)^{\sum_{j} \frac{p_{j}-1}{2}}=(-1)^{(n-1) / 2}$, so that $\left(\frac{-1}{n}\right)=(-1)^{(n-1) / 2}$.

Solution: Part (b) tells us that

$$
n=1+\sum_{j=1}^{k}\left(p_{j}-1\right)+4 K
$$

or, equivalently,

$$
\frac{n-1}{2}=\frac{1}{2} \sum_{j=1}^{k}\left(p_{j}-1\right)+2 K=\sum_{j=1}^{k} \frac{p_{j}-1}{2}+2 K .
$$

This is our exponent for -1 ; we get

$$
\begin{aligned}
(-1)^{\frac{n-1}{2}} & =(-1)^{\sum_{j=1}^{k} \frac{p_{j}-1}{2}+2 K} \\
& =(-1)^{\sum_{j=1}^{k} \frac{p_{j}-1}{2}}(-1)^{2 K}
\end{aligned}
$$

The second term on the right-hand side is -1 raised to an even power, which is 1 . Thus we've proved that $(-1)^{(n-1) / 2}=(-1)^{\sum_{j=1}^{k}\left(p_{j}-1\right) / 2}$, which is the first identity we wish to prove. By part (a), we know that this last expression is $\left(\frac{-1}{n}\right)$, so $(-1)^{(n-1) / 2}=\left(\frac{-1}{n}\right)$, as desired.

