
SOAR Math Course Homework Ten Solutions Spring, 2003

These solutions are written at the request of students. Please let me know if you don’t
understand these solutions; I’m happy to expand on them if necessary.

2. Let n be an odd number, not necessarily prime. Show that
(−1

n

)
= (−1)(n−1)/2 as

follows.

(a) Write n = p1p2 · · · pk as a product of odd (not necessarily distinct) primes.
Show that (

−1

n

)
= (−1)

∑
j

pj−1

2 .

Solution: We use two facts: first, that(
−1

n

)
=

(
−1

p1

)(
−1

p2

)
· · ·
(
−1

pk

)
and second, that

(
−1
p

)
= (−1)(p−1)/2. (For this second fact, you might be

saying to yourself: “Wait a minute, Peter’s trying to pull the wool over my

eyes. I know that
(

a
p

)
≡ a(p−1)/2 mod p, but he’s written ‘=’ up there.” It’s

true. But (−1)(p−1)/2 = ±1, and modulo p that’s still just ±1. It really is just
an equals, not equal modulo p.)

We use these facts and compute:(
−1

n

)
=

(
−1

p1

)(
−1

p2

)
· · ·
(
−1

pk

)
= (−1)

p1−1
2 (−1)

p2−1
2 · · · (−1)

pk−1

2

= (−1)
p1−1

2
+

p2−1
2

+···+ pk−1

2

= (−1)
∑

j

pj−1

2 ,

which is what we wished to prove.

(b) Write n = p1p2 · · · pk as

n = (1 + (p1 − 1))(1 + (p2 − 1)) · · · (1 + (pk − 1))

and show that this simplifies to

n = 1 +
k∑

j=1

(pj − 1) + 4K (∗)

for some integer K. (Use the fact that each pj is odd, so pj − 1 is even. You
may assume that there are at least two primes – so k ≥ 2 – as the k = 1 case
is simply n = p1.)



Solution: Let’s use induction on k, the number of prime factors of n. Our base case will
be k = 2, and we can do this by hand:

n = (1 + (p1 − 1))(1 + (p2 − 1)) = 1 + [(p1 − 1) + (p2 − 1)] + (p1 − 1)(p2 − 1).

Since p1 and p2 are both odd primes, we can write p1−1 = 2k1 and p2−1 = 2k2

for integers k1 and k2. Thus the above equation for n turns into

n = 1 +
2∑

j=1

(pj − 1) + 4(k1k2),

which is equation (∗) with K = k1k2.

Now we assume that equation (∗) holds for k and prove it holds for k + 1 as
well. Suppose n = p1p2 · · · pkpk+1 is the product of k + 1 odd primes. Then,
by the induction hypothesis, we can write

p1p2 · · · pk = 1 +
k∑

j=1

(pj − 1) + 4K

for some integer K. Now, to get n, we multiply both sides by pk+1. That is, we
multiply the left-hand side by pk+1 and the right-hand side by 1 + (pk+1 − 1):

n = p1p2 · · · pkpk+1 =

(
1 +

k∑
j=1

(pj − 1) + 4K

)
(1 + (pk+1 − 1))

= 1 +
k∑

j=1

(pj − 1) + 4K

+ (pk+1 − 1) + (pk+1 − 1)
k∑

j=1

(pj − 1) + 4K(pk+1 − 1)

= 1 +
k+1∑
j=1

(pj − 1) + 4K ′,

where

4K ′ = 4K + (pk+1 − 1)
k∑

j=1

(pj − 1) + 4K(pk+1 − 1).

(Clearly the first and last terms on the right-hand side are multiples of 4. The
middle term on the right is, as before, a product of two even numbers, and so
also a multiple of 4.) This finishes the proof.

(c) Conclude from part (b) that (−1)
∑

j

pj−1

2 = (−1)(n−1)/2, so that
(−1

n

)
= (−1)(n−1)/2.

Solution: Part (b) tells us that

n = 1 +
k∑

j=1

(pj − 1) + 4K



or, equivalently,

n− 1

2
=

1

2

k∑
j=1

(pj − 1) + 2K =
k∑

j=1

pj − 1

2
+ 2K.

This is our exponent for −1; we get

(−1)
n−1

2 = (−1)
∑k

j=1

pj−1

2
+2K

= (−1)
∑k

j=1

pj−1

2 (−1)2K

The second term on the right-hand side is −1 raised to an even power, which

is 1. Thus we’ve proved that (−1)(n−1)/2 = (−1)
∑k

j=1(pj−1)/2, which is the first
identity we wish to prove. By part (a), we know that this last expression is(−1

n

)
, so (−1)(n−1)/2 =

(−1
n

)
, as desired.


