These solutions are written at the request of students. Please let me know if you don't understand these solutions; I'm happy to expand on them if necessary.
3. (c) Show that part (b) allows us to factor $x^{d}-1$ into

$$
x^{d}-1 \equiv x(x-m)\left(x-m^{2}\right)\left(x-m^{3}\right) \cdots\left(x-m^{d-1}\right) \bmod p .
$$

(Hint: what are the roots of the equation on the left-hand side? On the righthand side? You may assume that a polynomial of degree d has at most d roots.)
Solution: The solution here is to use the following fact: k is a root of a polynomial if and only if $(x-k)$ is a factor of the polynomial. In this case, we know from (b) that the d roots of $x^{d}-1$ are $0, m, m^{2}$, and so on up to m^{d-1}. This means that $(x-0),(x-m),\left(x-m^{2}\right)$, and so on up to $\left(x-m^{d-1}\right)$ are all factors of $x^{d}-1$. Thus we must have

$$
x^{d}-1=C x(x-m)\left(x-m^{2}\right)\left(x-m^{3}\right) \cdots\left(x-m^{d-1}\right)
$$

for some constant C. If you multiply out the right-hand side, the highest power of x is $C x^{d}$. Matching this with the left-hand side's x^{d}, we get $C=1$. This gives us the desired factorization.

