These solutions are written at the request of students. Please let me know if you don't understand these solutions; I'm happy to expand on them if necessary.

1. An Expanded Chinese Remainder Theorem: Given $x \in M_{m}$ and $y \in M_{n}$ where $\operatorname{gcd}(m, n)=1$, there is a unique $z \in M_{m n}$ such that

$$
\begin{aligned}
& z \equiv x \bmod m \\
& z \equiv y \bmod n .
\end{aligned}
$$

Prove this statement as follows:
(a) Prove that $z=x n n^{-1}+y m m^{-1}$, where n^{-1} is the inverse of n modulo m and m^{-1} is the inverse of m modulo n, satisfies the equations.

Solution: We need to see that $z \equiv x \bmod m$ and $z \equiv y \bmod n$. These are both more or less the same, so we'll only show the first one: $z \equiv x \bmod m$. Recall that n^{-1} is the inverse of n modulo m. That is, n^{-1} is the integer so that $n n^{-1} \equiv 1 \bmod m$. This means that $x n n^{-1} \equiv x \bmod m$. On the other hand, $y m m^{-1} \equiv 0 \bmod m$, as it is a multiple of m. Thus $z=x n n^{-1}+y m m^{-1} \equiv x+0 \equiv x \bmod m$.
(d) Can you state (and prove?) a general Chinese remainder theorem?

Solution: The general version simply takes more values of x (and y) and more values of m (and n). We number them, and state the theorem as follows:

Given $m_{1}, m_{2}, \ldots, m_{k}$ all pair-wise relatively prime (that is, $\operatorname{gcd}\left(m_{i}, m_{j}\right)=$ 1 if $i \neq j$) and $x_{1}, x_{2}, \ldots, x_{k}$ so that $\operatorname{gcd}\left(x_{j}, m_{j}\right)=1$ (so that x_{j} represents an element of $M_{m_{j}}$), then there is a unique $z \in M_{m_{1} m_{2} \cdots m_{k}}$ such that

$$
z \equiv x_{j} \bmod m_{j}, \quad j=1, \ldots, k
$$

The proof is similar, except now each term has an inverse for every other m_{j}. That is, the first term is $x_{1} m_{2} m_{2}^{-1} m_{3} m_{3}^{-1} \cdots m_{k} m_{k}^{-1}$, where each of these inverses is in $M_{m_{1}}$ (that is, the inverse of m_{3} is the integer m_{3}^{-1} such that $\left.m_{3} m_{3}^{-1} \equiv 1 \bmod m_{1}\right)$. The next term has x_{2} and inverses of all m_{j} except m_{2}, and here the inverses are with respect to m_{2}. This is, of course, complicated to write down without notation. I would probably write this as

$$
z=\sum_{j=1}^{k} x_{j} \prod_{i \neq j} m_{i} m_{i}^{-1}
$$

where Π is a product sign (as \sum is a summation sign), and m_{i}^{-1} means the multiplicative inverse of m_{i} modulo m_{j}. This seems fairly complicated though.

