These solutions are written at the request of students. Please let me know if you don't understand these solutions; I'm happy to expand on them if necessary.

1. (d) Let $F(n)$ be the nth Fibonacci number. That is, $F(1)=1, F(2)=1$, and $F(n)=F(n-1)+F(n-2)$ for $n \geq 3$. Show that

$$
\begin{equation*}
\sum_{k=1}^{n} F(k)^{2}=F(n) F(n+1) . \tag{1}
\end{equation*}
$$

We first prove that equation (1) holds for $n=1$. This is simply showing that $\sum_{k=1}^{1} F(k)^{2}=F(1) F(1+1)$, or $F(1)^{2}=F(1) F(2)$. Since $F(1)=F(2)=1$, this is clearly true.
Now we move on to the inductive step: we assume that equation (1) holds for n and prove that it holds for $n+1$. That is, we wish to prove that equation (1) implies that

$$
\begin{equation*}
\sum_{k=1}^{n+1} F(k)^{2}=F(n+1) F(n+2) \tag{2}
\end{equation*}
$$

The left-hand side of this equation simplifies to

$$
\begin{array}{rlr}
\sum_{k=1}^{n+1} F(k)^{2} & =\sum_{k=1}^{n} F(k)^{2}+F(n+1)^{2} & \\
& =F(n) F(n+1)+F(n+1)^{2} & \\
& =[F(n)+F(n+1)] F(n+1) & \\
& =F(n+2) F(n+1) & \text { by equation (1) } \\
& \text { since } F(n+2)=F(n+1)+F(n)
\end{array}
$$

This is equation (2), which is what we wish to prove.
(e) Show that $2^{2^{n}}+3^{2^{n}}+5^{2^{n}}$ is divisible by 19 for every $n \geq 1$. (Hint: prove that if this is true for n then it is also true for $n+2$. You will need two base cases here - one for odd n and the other for even n.)
We use the hint and establish two base cases. That is, we show that $2^{2^{1}}+3^{2^{1}}+$ $5^{2^{1}}(n=1)$ and $2^{2^{2}}+3^{2^{2}}+5^{2^{2}}(n=2)$ are both divisble by 19. This is (again) simply computation: $2^{2^{1}}+3^{2^{1}}+5^{2^{1}}=4+9+25=38$ and $2^{2^{2}}+3^{2^{2}}+5^{2^{2}}=$ $16+81+625=722$. Both these numbers are divisible by 19 .
We know proceed with the inductive step. That is, we assume that 19 divides $\left(2^{2^{n}}+3^{2^{n}}+5^{2^{n}}\right)$ and try to prove that 19 also divides $\left(2^{2^{n+2}}+3^{2^{n+2}}+5^{2^{n+2}}\right)$.

Now we compute modulo 19 , using the fact that $2^{2^{n}}+3^{2^{n}}+5^{2^{n}} \equiv 0 \bmod 19$:

$$
\begin{aligned}
2^{2^{n+2}}+3^{2^{n+2}}+5^{2^{n+2}} & =2^{4 \cdot 2^{n}}+3^{4 \cdot 2^{n}}+5^{4 \cdot 2^{n}} \\
& =\left(2^{4}\right)^{2^{n}}+\left(3^{4}\right)^{2^{n}}+\left(5^{4}\right)^{2^{n}} \\
& =16^{2^{n}}+81^{2^{n}}+625^{2^{n}} \\
& \equiv(16-19)^{2^{n}}+(81-19 \cdot 4)^{2^{n}}+(625-33 \cdot 19)^{2^{n}} \bmod 19 \\
& =(-3)^{2^{n}}+(5)^{2^{n}}+(-4)^{2^{n}} \\
& =3^{2^{n}+5^{2^{n}}+4^{2^{n}}} \\
& \equiv 0 \bmod 19 .
\end{aligned}
$$

We've also used the fact that $(-3)^{2^{n}}=3^{2^{n}}$ (and similarly for $(-4)^{2^{n}}=4^{2^{n}}$). This problem is originally from the web page http://www.geocities.com/ jespinos57/induction.htm. This is a nice page of problems, all of which may be solved using induction. Check it out!

