These solutions are written at the request of students. Please let me know if you don't understand these solutions; I'm happy to expand on them if necessary.
2. One of the skipped parts of a proof from today's class was the following claim: that x can be written as

$$
\begin{equation*}
x=\frac{x_{n} p_{n-1}+p_{n-2}}{x_{n} q_{n-1}+q_{n-2}} \tag{*}
\end{equation*}
$$

where $x=\left[a_{1}, a_{2}, a_{3}, \ldots\right], x_{n}$ is defined by $x=\left[a_{1}, a_{2}, \ldots, a_{n-1}, x_{n}\right]$, and the nth convergent is $C_{n}=\frac{p_{n}}{q_{n}}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$.
(a) Prove that $p_{n+1}=a_{n+1} p_{n}+p_{n-1}$ and $q_{n+1}=a_{n+1} q_{n}+q_{n-1}$ for $n=1, n=2$, and $n=3$. By convention, (that is, so the formulas work) we assume $p_{0}=1$ and $q_{0}=0$.
Proof. Let's begin with computing the convergents C_{1}, C_{2}, C_{3}, and C_{4}. (We'll need all of these for the computations through $n=3$.) The equations are

$$
C_{1}=\left[a_{1}\right]=a_{1}=\frac{a_{1}}{1},
$$

so $p_{1}=a_{1}$ and $q_{1}=1$. Slightly more involved,

$$
\begin{aligned}
C_{2} & =\left[a_{1}, a_{2}\right]=a_{1}+\frac{1}{a_{2}} \\
& =\frac{a_{1} a_{2}+1}{a_{2}},
\end{aligned}
$$

so $p_{2}=a_{1} a_{2}+1$ and $q_{2}=a_{2}$. Next,

$$
\begin{aligned}
C_{3} & =\left[a_{1}, a_{2}, a_{3}\right]=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}}} \\
& =a_{1}+\frac{1}{\frac{a_{2} a_{3}+1}{a_{3}}} \\
& =a_{1}+\frac{a_{3}}{a_{2} a_{3}+1} \\
& =\frac{a_{1} a_{2} a_{3}+a_{1}+a_{3}}{a_{2} a_{3}+1},
\end{aligned}
$$

so $p_{3}=a_{1} a_{2} a_{3}+a_{1}+a_{3}$ and $q_{3}=a_{2} a_{3}+1$. Finally,

$$
\begin{aligned}
C_{4} & =\left[a_{1}, a_{2}, a_{3}, a_{4}\right]=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}}}} \\
& =a_{1}+\frac{1}{a_{2}+\frac{1}{\frac{a_{3} a_{4}+1}{a_{4}}}} \\
& =a_{1}+\frac{1}{a_{2}+\frac{a_{4}}{a_{3} a_{4}+1}} \\
& =a_{1}+\frac{1}{\frac{a_{2} a_{3} a_{4}+a_{2}+a_{4}}{a_{3} a_{4}+1}} \\
& =a_{1}+\frac{a_{3} a_{4}+1}{a_{2} a_{3} a_{4}+a_{2}+a_{4}} \\
& =\frac{a_{1} a_{2} a_{3} a_{4}+a_{1} a_{2}+a_{1} a_{4}+a_{3} a_{4}+1}{a_{2} a_{3} a_{4}+a_{2}+a_{4}},
\end{aligned}
$$

so

$$
\begin{aligned}
p_{4} & =a_{1} a_{2} a_{3} a_{4}+a_{1} a_{2}+a_{1} a_{4}+a_{3} a_{4}+1 \\
q_{4} & =a_{2} a_{3} a_{4}+a_{2}+a_{4} .
\end{aligned}
$$

Now we verify that

$$
\begin{aligned}
p_{n+1} & =a_{n+1} p_{n}+p_{n-1} \\
q_{n+1} & =a_{n+1} q_{n}+q_{n-1}
\end{aligned}
$$

for $n=1,2$, and 3 . We begin with $n=1$. Then

$$
\begin{aligned}
& a_{2} p_{1}+p_{0}=a_{2} a_{1}+1=p_{2}, \\
& a_{2} q_{1}+q_{0}=a_{2} 1+0=a_{2}=q_{2}
\end{aligned}
$$

which is as desired. For $n=2$, we have

$$
\begin{aligned}
a_{3} p_{2}+p_{1} & =a_{3}\left(a_{2} a_{1}+1\right)+a_{1} \\
& =a_{3} a_{2} a_{1}+a_{3}+a_{1} \\
& =p_{3},
\end{aligned}
$$

and

$$
\begin{aligned}
a_{3} q_{2}+q_{1} & =a_{3}\left(a_{2}\right)+1 \\
& =a_{3} a_{2}+1 \\
& =q_{3},
\end{aligned}
$$

again as desired. Finally, for $n=3$,

$$
\begin{aligned}
a_{4} p_{3}+p_{2} & =a_{4}\left(a_{3} a_{2} a_{1}+a_{3}+a_{1}\right)+\left(a_{2} a_{1}+1\right) \\
& =a_{4} a_{3} a_{2} a_{1}+a_{4} a_{3}+a_{4} a_{1}+a_{2} a_{1}+1 \\
& =p_{4},
\end{aligned}
$$

and

$$
\begin{aligned}
a_{4} q_{3}+q_{2} & =a_{4}\left(a_{3} a_{2}+1\right)+a_{2} \\
& =a_{4} a_{3} a_{2}+a_{4}+a_{2} \\
& =q_{4}
\end{aligned}
$$

Thus we've verified that

$$
\begin{aligned}
p_{n+1} & =a_{n+1} p_{n}+p_{n-1} \\
q_{n+1} & =a_{n+1} q_{n}+q_{n-1}
\end{aligned}
$$

for $n=1,2$, and 3 .
(b) Prove equation ($*$) for $n=1, n=2$, and $n=3$.

Proof. We're trying to verify that

$$
\begin{equation*}
x=\frac{x_{n} p_{n-1}+p_{n-2}}{x_{n} q_{n-1}+q_{n-2}} \tag{*}
\end{equation*}
$$

where x_{n} is defined by $x=\left[a_{1}, a_{2}, \ldots, a_{n-1}, x_{n}\right]$. As with part (a), we begin with $n=1$. In this case, x_{1} is given by $x=\left[x_{1}\right]=x_{1}$ (so $x_{1}=x$). Thus what we're trying to show is that

$$
x=\frac{x_{1} p_{0}+p_{-1}}{x_{1} q_{0}+q_{-1}}=\frac{x \cdot 1+0}{x \cdot 0+1},
$$

which is the case. (I guess the important point is that we assume that $p_{-1}=0$ and $q_{-1}=1$, which I didn't tell you. Sorry about that!)
For $n=2$, we have x_{2} is defined by $x=\left[a_{1}, x_{2}\right]=a_{1}+\frac{1}{x_{2}}$, or $x_{2}=\frac{1}{x-a_{1}}$. We're trying to verify that

$$
x=\frac{x_{2} p_{1}+p_{0}}{x_{2} q_{1}+q_{0}}=\frac{x_{2} \cdot a_{1}+1}{x_{2} \cdot 1+0}=\frac{a_{1} x_{2}+1}{x_{2}} .
$$

We use our expresion for x_{2} to simplify the right-hand side:

$$
\frac{a_{1} x_{2}+1}{x_{2}}=\frac{a_{1} \cdot \frac{1}{x-a_{1}}+1}{\frac{1}{x-a_{1}}}=\left(\frac{a_{1}}{x-a_{1}}+1\right)\left(x-a_{1}\right)=a_{1}+x-a_{1}=x
$$

as desired.
Finally, x_{3} is defined by

$$
x=\left[a_{1}, a_{2}, x_{3}\right]=a_{1}+\frac{1}{a_{2}+\frac{1}{x_{3}}},
$$

and so

$$
x-a_{1}=\frac{1}{a_{2}+\frac{1}{x_{3}}} .
$$

From this we have

$$
\frac{1}{x-a_{1}}=a_{2}+\frac{1}{x_{3}}
$$

from which we get

$$
\frac{1}{x_{3}}=\frac{1}{x-a_{1}}-a_{2}=\frac{1-a_{2} x+a_{1} a_{2}}{x-a_{1}}
$$

which implies

$$
x_{3}=\frac{x-a_{1}}{1-a_{2} x+a_{1} a_{2}} .
$$

We're trying to verify

$$
x=\frac{x_{3} p_{2}+p_{1}}{x_{3} q_{2}+q_{1}}=\frac{x_{3}\left(a_{1} a_{2}+1\right)+a_{1}}{x_{3} a_{2}+1} .
$$

We use our value of x_{3} and try to simplify the right-hand side:

$$
\begin{aligned}
\frac{x_{3}\left(a_{1} a_{2}+1\right)+a_{1}}{x_{3} a_{2}+1} & =\frac{\frac{x-a_{1}}{1-a_{2} x+a_{1} a_{2}}\left(a_{1} a_{2}+1\right)+a_{1}}{\frac{x-a_{1}}{1-a_{2} x+a_{1} a_{2}} a_{2}+1} \\
& =\frac{\frac{\left(x-a_{1}\right)\left(a_{1} a_{2}+1\right)+a_{1}\left(1-a_{2} x+a_{1} a_{2}\right)}{1-a_{2} x+a_{1} a_{2}}}{\frac{a_{2}\left(x-a_{1}+\left(1-a_{2} x+a_{1} a_{2}\right)\right.}{1-a_{2} x+a_{1} a_{2}}} \\
& =\frac{\left(x-a_{1}\right)\left(a_{1} a_{2}+1\right)+a_{1}\left(1-a_{2} x+a_{1} a_{2}\right)}{1-a_{2} x+a_{1} a_{2}} \cdot \frac{1-a_{2} x+a_{1} a_{2}}{a_{2}\left(x-a_{1}\right)+\left(1-a_{2} x+a_{1} a_{2}\right)} \\
& =\frac{a_{1} a_{2} x+x-a_{1}^{2} a_{2}-a_{1}+a_{1}-a_{1} a_{2} x+a_{1}^{2} a_{2}}{1-a_{2} x+a_{1} a_{2}} \cdot \frac{1-a_{2} x+a_{1} a_{2}}{a_{2} x-a_{1} a_{2}+1-a_{2} x+a_{1} a_{2}} \\
& =\frac{x}{1-a_{2} x+a_{1} a_{2}} \cdot \frac{1-a_{2} x+a_{1} a_{2}}{1} \\
& =x,
\end{aligned}
$$

as desired. (Yikes!)

