These solutions are written at the request of students. Please let me know if you don't understand these solutions; I'm happy to expand on them if necessary.

6(b) [Hard] Show that
$$1 + \sqrt{-5}$$
 is "prime" in the sense that if $(a + b\sqrt{-5}) \cdot (c + d\sqrt{-5}) = 1 + \sqrt{-5}$, then either $a + b\sqrt{-5} = \pm 1$ or $c + d\sqrt{-5} = \pm 1$.

Proof. I warned you this was difficult. It isn't really, but we need some other concepts. In particular, we need the idea of a *norm*, which is a generalization of the idea of length. We define the norm of $a + b\sqrt{5}$ to be

$$\left|a + b\sqrt{5}\right| = \sqrt{a^2 + 5b^2}.$$

The useful property we'll need (and we'll prove this later) is the following multiplicative property of norms.

Multiplicative Property of Norms. For any integers a, b, c, and d, we have

$$|(a+b\sqrt{-5})\cdot(c+d\sqrt{-5})| = |a+b\sqrt{-5}|\cdot|c+d\sqrt{-5}|$$
 (*)

or, equivalently,

$$\left| (a + b\sqrt{-5}) \cdot (c + d\sqrt{-5}) \right|^2 = \left| a + b\sqrt{-5} \right|^2 \left| c + d\sqrt{-5} \right|^2 \tag{**}$$

We use this property as follows. We assume that $(a + b\sqrt{-5}) \cdot (c + d\sqrt{-5}) = 1 + \sqrt{-5}$, so that

 $\left| (a + b\sqrt{-5}) \cdot (c + d\sqrt{-5}) \right|^2 = \left| 1 + \sqrt{-5} \right|^2$

The right-hand side is $1^2 + 5 \cdot 1^2 = 6$. We use the property to simplify the left-hand side to

$$|a + b\sqrt{-5}|^2 \cdot |c + d\sqrt{-5}|^2 = 6,$$

$$(a^2 + 5b^2) \cdot (c^2 + 5d^2) = 6.$$
 (†)

or

This is the key equality. Notice that everything is now an integer, and we can uniquely factor this equation. That is, $a^2 + 5b^2$ is one of 1, 2, 3 or 6. The key claim is that it can't be 3 (and it can't be 2 because $c^2 + 5d^2$ can't be 3 either), so either $a^2 + 5b^2 = 1$ or $c^2 + 5d^2 = 1$. We'll make this more explicit.

Claim 1. If a and b are integers, then $a^2 + 5b^2 \neq 3$.

Proof. This is simple: if $b \neq 0$, then $5b^2 > 3$. Hence we must have b = 0, and so the claim is simply that $a^2 \neq 3$. This is true as a is an integer.

In fact more is true: $a^2 + 5b^2 \not\equiv 3 \mod 4$. We'll prove this as well, but you may skip this without losing the thread of the proof.

We'll show that $x^2 \equiv 0$ or 1 mod 4 for any x. Really this is just checking: if $x \equiv 0 \mod 4$, then $x^2 \equiv 0 \mod 4$. Let's just make a small table:

	$\mod 4$			
x	0	1	2	3
x^2	0	1	0	1

Thus $a^2 + 5b^2 \equiv a^2 + 1 \cdot b^2 \neq 3 \mod 4$, as I can't add two of 0 and 1 to get 3. Claim 2. If $(a^2 + 5b^2)(c^2 + 5d^2) = 6$, then either $a^2 + 5b^2 = 1$ or $c^2 + 5d^2 = 1$.

Proof. Since both terms on the left-hand side are integers, they must be factors of 6; that is, the only possible values for $a^2 + 5b^2$ are 1, 2, 3, or 6. We've already shown that $a^2 + 5b^2 \neq 3$. If $a^2 + 5b^2 = 2$, then $c^2 + 5d^2 = 3$, which can't happen by the first claim. Hence $a^2 + 5b^2$ is either 1 or 6, in which case $c^2 + 5d^2 = 1$.

Finally, we notice that if $a^2 + 5b^2 = 1$, then $a = \pm 1$. This is just as before (in the proof of Claim 1): $5b^2 > 1$ if $b \neq 0$, so we must have b = 0. Thus $a^2 = 1$, or $a = \pm 1$. Similarly, if $a^2 + 5b^2 = 6$, then $c^2 + 5d^2 = 1$ and $c = \pm 1$.

This completes the proof.

There is still the little matter of the proof of the multiplicative property of norms. This computation follows.

Proof of Multiplicative Property of Norms. We'll prove equation (**); equation (*) is simply the square root of this.

We'll compute each side of equation (**).

The left-hand side of equation (**) is given by

$$\begin{aligned} \left| (a+b\sqrt{-5}) \cdot (c+d\sqrt{-5}) \right|^2 &= \left| (ac-5bd) + (bc+ad)\sqrt{-5} \right|^2 \\ &= (ac-5bd)^2 + 5(bc+ad)^2 \\ &= a^2c^2 - 10abcd + 25b^2d^2 + 5b^2c^2 + 10abcd + 5a^2d^2 \\ &= a^2c^2 + 25b^2d^2 + 5b^2c^2 + 5a^2d^2. \end{aligned}$$

On the other hand, the right-hand side of equation (**) is

$$|a+b\sqrt{-5}|^{2} \cdot |c+d\sqrt{-5}|^{2} = (a^{2}+5b^{2}) \cdot (c^{2}+5d^{2})$$
$$= a^{2}c^{2}+5b^{2}c^{2}+5a^{2}d^{2}+25c^{2}d^{2}$$

This two sums are equal, proving the property claimed.