
SOAR Math Course Homework Nine Spring, 2003

These homework problems are meant to expand your understanding of what goes on
during class. Any you turn in will be graded and returned to you. Answers may or may
not be posted on the web, depending on demand.

1. Of the following numbers, one is prime and the others are composite. Of the com-
posites, one is a base 2 pseudo-prime, another is a base 3 pseudo-prime, and the
final one is simply composite. Discover which is which, and explain how you did it.

(a) 2701 (b) 1441 (c) 1891 (d) 1531

Related to work we did in class today is the group On2, which consists of the set Z≥0 =
{0, 1, 2, 3, . . .} of non-negative integers with the operation ⊕ given by the following two
rules:

(i) If m 6= n, then 2m ⊕ 2n = 2m + 2n (here + is ordinary addition).

(ii) x⊕ x = 0 for any x ∈ Z≥0.

These two rules generate ⊕ for any two non-negative integers as in the following example:

7⊕ 11 = (4 + 2 + 1)⊕ (8 + 2 + 1)

= 8⊕ 4⊕ (2 + 2)⊕ (1 + 1)

= 8 + 4 + 0 + 0

= 12.

The two rules for our addition can be re-written as

(i)′ If y < x and x = 2k, then x⊕ y = x + y (ordinary addition).

(ii)′ If x = 2k, then x⊕ x = 0.

You should convince yourself (by the end of these assignment) that these new rules are the
same as the old rules. (I’ve taken this group from John H. Conway’s book On Numbers
and Games.)

2. Complete the following addition table for the group On2. This should help famil-
iarize you with the operations, as well as convince you of some of the facts you will



need to explain in the next problem.

⊕ 0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10

3. We now show that this group On2 is actually a group. We verify each of the four
axioms of groups as follows.

(a) [Identity] Show that the element 0 is the identity in On2. That is, show that
x ⊕ 0 = x and 0 ⊕ x = x for any element x of On2. (There’s really almost
nothing to do here.)

(b) [Inverses] Find the inverse of an element x of On2. That is, given x, find y
such that x⊕ y = 0.

(c) [Closure] If x and y are non-negative integers, then x⊕ y is as well. Explain
why this is so.

(d) [Associativity] Show that (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) for any three elements
x, y, and z of On2. (For simplicity, you may assume that x ≤ y ≤ z. Even in
this case, there are still many cases: x = y, or x⊕ y < z, or x⊕ y > z, and so
on. As usual, this is a bit tedious, so feel free to skip this part if you like.)

4. We now relate On2 to addition in base 2. We usually use base 10, which means
that, for example, 17 = 1 × 101 + 7 × 100. Another base (like 2) means we change
the value 10 to 2. So 17 in base 10 is 10001 in base 2:

10001 = 1× 24 + 0× 23 + 0× 22 + 0× 21 + 1× 20.

Addition is now just like base 10, except that 1 + 1 = 10 in base 2, so carrying
occurs quite a lot. For example:

1 1 0 0 1 0
+ 1 0 1 1 0 0 1
1 0 0 0 1 0 1 1

(a) Compute 1001010101+1000111001 in base 2. Check your answer by converting
all three terms (the sum and the summands) into base 10.



(b) The addition in On2 is simply summation in base 2 with no carrying. That is,
without any carrying, the above example would be:

1 1 0 0 1 0
+ 1 0 1 1 0 0 1

1 1 0 1 0 1 1

Explain why this is the same as addition in On2.

(c) Explain why one way to view the winning strategy in Nim is to use summation
in On2. (This is why Conway calls ⊕ “Nim” and reads 2⊕ 4, for example, as
“two Nim four.”)

A new feature this week is the group of the week. We won’t dwell on the abstract idea
of a group, but with each homework for the next few weeks I’ll give you a new group to
play with.

This week’s group is the set

G =

{
A =

[
a b
c d

] ∣∣∣ a, b, c, d are real and ad− bc 6= 0

}
together with the operation ∗ given by[

a b
c d

]
∗

[
x y
z w

]
=

[
ax + bz ay + bw
cx + dz cy + dw

]
.

(These funny squares are called matrices, the plural of matrix, and the operation ∗ is
called matrix multiplication (and the symbol ∗ is usually not written).)

For example, the matrix

[
2 3
1 4

]
is in G since 2 · 4− 3 · 1 = 5 6= 0, but the matrix

[
2 −2
1 −1

]
is not in G as 2 · −1− (−2) · 1 = 0. Also, as an example of multiplication,[

2 3
1 4

]
∗

[
0 2
1 1

]
=

[
2 · 0 + 3 · 1 2 · 2 + 3 · 1
1 · 0 + 4 · 1 1 · 2 + 4 · 1

]
=

[
3 7
4 6

]
.

The first of the following problems should help orient you with G, and the next four
problems together form a proof that this week’s example is a group.

5. Two of the following three matrices are in G, and one is not. Identify which one is
not, and multiply the other two together both ways. (That is, both A∗B and B ∗A
if A and B are both in G.)

A =

[
1 1
2 3

]
B =

[
−1 3
−2 6

]
C =

[
2 −1
2 1

]
.



6. [Identity] Show that the element I =

[
1 0
0 1

]
is the identity in G. This means you

must show that I ∈ G (that is, I is an element of G) and that I ∗ A = A = A ∗ I
for any element A of G.

7. [Inverses] Show that if A =

[
a b
c d

]
is an element of G, then

A−1 =

[
d

ad−bc
− b

ad−bc

− c
ad−bc

a
ad−bc

]
is its inverse. Again, you must show both that A−1 ∗A = I and A ∗A−1 = I. Also,
you should show that A−1 is an element of G.

8. [Closure] Show that if A and B are elements of G, then so is A ∗ B. Hint: show
that

(ax + bz)(cy + dw)− (ay + bw)(cx + dz) = (ad− bc)(xw − yz).

9. [Associativity] (This is a bit tedious, so you should feel free to skip it.) Show
that if A, B, and C are elements of G, then A ∗ (B ∗ C) = (A ∗B) ∗ C.

10. In this problem, we show that for elements A and B of G, A ∗ B need not equal
B ∗ A. (This is different than ordinary multiplication, of course.) To see this, we
need only produce an example.

(a) Show that A ∗B 6= B ∗ A when

A =

[
1 2
0 1

]
and B =

[
1 0
−3 1

]
(b) Let

A =

[
1 a
0 1

]
and B =

[
1 0
b 1

]
For what values of a and b does A ∗ B = B ∗ A? For what values of a and b
does A ∗B 6= B ∗ A?

If A ∗B always equals B ∗A, then a group is called commutative or abelian. You’ve
just shown that Gl(2,R) is non-commutative (or non-abelian).

11. Why do we require ad− bc 6= 0? This problem gives the reason.

(a) Show that A =

[
1 2
2 4

]
is not in the group G.

(b) Show that A =

[
1 2
2 4

]
has no inverse as follows. Assume that

[
a b
c d

]
is the

inverse, so [
1 2
2 4

]
∗

[
a b
c d

]
=

[
1 0
0 1

]
Now try to solve for a, b, c, and d in this equation, and show that it isn’t
possible to do so.



You’ve just shown that a particular element is not in G and has no inverse. In
fact, this is what always happens: a matrix has an inverse exactly when it is in G.
Looked at another way: a matrix has no inverse exactly when it is not in G.

This week’s group is usually called the general linear group of two-by-two real matrices,
and written Gl(2,R). (The 2 is for the fact that the matrices each have two rows and two
columns, and the R indicates that the elements in each matrix is a real number.) In fact,
we’ve already seen these – each matrix corresponds to a transformation as in Homework 6,
Problem 200:

A =

[
a b
c d

]
corresponds to

x′ = ax + by

y′ = cx + dy

(In fact, the unimodular transformations from Homework 6 can be thought of as a sub-
group of Gl(2,R), but we won’t go into that.) As you might expect, the 2 may be replaced
by any other positive integer n, and the real numbers R may be replaced with the ratio-
nals (fractions), integers (as in Homework 6), complex numbers, or even such things as
Zp (the integers modulo a prime p). There are also matrices that aren’t square – that is,
that do not have the same number of rows and columns. The study of matrices is a rich
and well-developed; an introductory course in the subject (usually called linear algebra)
is often taken by second-year university students.


