
SOAR Math Course Homework Two Spring, 2003

These homework problems are meant to expand your understanding of what goes on
during class. Any you turn in will be graded and returned to you. Answers may or may
not be posted on the web, depending on demand.

1. In class we proved that
√

2 is not rational. This problem provides another proof via
a method called Fermat’s infinite descent.

(a) Suppose that a and b are positive integers with a/b =
√

2. Show that

2b− a

a− b
=
√

2

as well.

(b) Show that b > a− b > 0 and that 2b− a and a− b are integers.

(c) Deduce that if we can write
√

2 as a ratio of integers, we can always make the
denominator a smaller integer. Conclude that we may repeat this process (the
descent) until the denominator is 1, so c/1 =

√
2 for some integer c. This is a

contradiction (
√

2 is not an integer), so our original assumption (that
√

2 is a
fraction) must be false.

Recall that in class we defined a simple continued fraction as

[a1, a2, a3, a4, . . .] = a1 +
1

a2 + 1
a3+ 1

a4+···

where the ai are integers and ai > 0 for i ≥ 2. (That is, all the ai are integers and only
a1 may be negative or zero.) This fraction may continue forever, but if it terminates then
we say it is a finite simple continued fraction.

2. Let a = 119 and b = 37.

(a) Find the greatest common divisor gcd(a, b).

(b) Find the continued fraction representation of a/b.

(c) Repeat (a) and (b) with numbers of your own choosing. Make them as inter-
esting as possible.

3. Find the ordinary fraction representations of

(a) [1, 2]

(b) [1, 2, 3]

(c) [1, 2, 3, 4]

(d) [1, 2, 3, 4, 5]

(e) a finite simple continued fraction [a1, a2, a3, a4, a5] of your choosing.



4. We saw in class that
√

2 = (1, 2) and
√

3 = (1, 1, 2).

(a) Find the simple continued fraction for
√

5.

(b) Find the simple continued fraction for
√

6.

(c) Formulate a conjecture about
√

k, where k is not a perfect square (so
√

k is
not an integer).

5. Let φ = [1, 1, 1, 1, 1, . . .] = [1]. Find an expression for φ that doesn’t involve contin-
ued fractions.

6. In class we saw that, while any integer can be factored uniquely into prime factors,
this is not the case in every possible situation. This problem presents another
situation where unique factorization fails. (You may skip part (b) if you like and
just assume that it is true.)

(a) Let us write Z[
√
−5] for the set of numbers a + b

√
−5, where a and b are

integers. We can multiply these numbers together: show that

(a + b
√
−5) · (c + d

√
−5) = (ac− 5bd) + (bc + ad)

√
−5.

(Use the fact that (
√
−5)2 = −5.)

We remark that Z is the usual notation for the integers, and
√
−5 is just

shorthand for “a number about which all we know is that its square is −5.”
Thus Z[

√
−5] is notation that means the integers together with this

√
−5.

(b) [Hard] Show that 1 +
√
−5 is “prime” in the sense that if (a + b

√
−5) · (c +

d
√
−5) = 1 +

√
−5, then either a + b

√
−5 = ±1 or c + d

√
−5 = ±1.

You have just shown that multiplying two elements of Z[
√
−5] produces another

element of Z[
√
−5]. We say that Z[

√
−5] is closed under multiplication.

(c) Finally, show that (1 +
√
−5) · (1 −

√
−5) = 2 · 3, so 6 may be factored into

“primes” in two different ways. (You may assume that 2, 3, and 1−
√
−5 are

“primes” here.)


