This is meant to be a quick sketch of the RSA algorithm so that you have an idea of how and why it works.

1. Select two large prime numbers p and q. Compute $n=p q$.

Typically these are fairly large. See after the next step.
Example: use $p=419$ and $q=541$. Then $n=226,579$.
2. Compute $n=p q$ and $m=\phi(n)=(p-1)(q-1)$.

The company RSA suggests that by the year 2010, for secure cryptography one should choose p and q so that n is 2048 bits, or $2^{2048} \approx 3 \times 10^{616}$. This is a large number, and a bit more than your calculator can probably handle easily.

Our example: $m=\phi(226,579)=(419-1)(541-1)=225,720$.
3. Pick an integer e relatively prime to $m=(p-1)(q-1)$.

To decrypt an encrypted message A, we will be computing $A^{e} \bmod n$.
Our example: we'll choose $e=2737$.
4. Compute d, the multiplicative inverse of e modulo $\phi(n)=m$

That is, we're computing d so that $e d \equiv 1 \bmod m$. We'll be using d to encrypt a message a to A; again, we'll be computing $A \equiv a^{d} \bmod n$. The idea is d and e invert each other, so that

$$
\left(a^{d}\right)^{e}=a^{d e} \equiv a \bmod n .
$$

Why does this work? Since $d e \equiv 1 \bmod m$, we have $d e=1+k m$ for some integer k. That is, $a^{d e}=a^{1+k m}=a^{1} \cdot\left(a^{m}\right)^{k}$. But Euler's theorem says that $a^{\phi(n)} \equiv 1 \bmod n$, so we get

$$
a^{d e}=a \cdot\left(a^{\phi(n)}\right)^{k} \equiv a \cdot 1^{k}=a \bmod n
$$

Our example: our value of d is $d=46513$. I computed this by using the Euclidean algorithm to compute $\operatorname{gcd}(e, m)$, from which I got the equation

$$
1=46513 * 2737+-564 * 225720
$$

This says that $46513 e \equiv 1 \bmod 225720=m$.

5. Encrypt with "Public Key" $P=(e, n)$, decrypt with (Private) Key" $S=(d, n)$. Keep $m=\phi(n)$ secret as well.

The basic steps of encryption / decryption are:
(1) Convert text message to a numerical message a.
(2) Encrypt a to $A \equiv a^{e} \bmod n$. Now A (the encrypted message) is safe from eavesdropping.
(3) Decrypt A to $a \equiv A^{d} \bmod n$.

Note that the encryption / decryption process is entirely reversible. That is, if someone encrypts something with your Public Key $P=(e, n)$, then to decrypt it one needs your Secret Key $S=(d, n)$.
6. Encryption / Decryption Using Our Example: Two problems: first,
(a) Decrypt the message 128661. This will produce a number.

Convert this number, two digits at a time, to text by assuming 01=A, 02=B, $03=\mathrm{A}$, and so on up to $26=\mathrm{Z}$, and $27=$ space. (For this example we won't use anything but letters and spaces.) For example, the number 030120 would be CAT.

Alternate problem: using $p=113$ and $q=151$. This will make the computation easier. The Public Key is now chosen to be $P=(e, n)=(12587,17063)$ and the encrypted message is 14747 . (This is the same message as before, it's just that the calculations are simpler.)
(b) Encrypt your initials (or any three letters) using this public key.

