11 Smooth functions and partitions of unity

11.1 Smooth functions

Example 11.1 The function $\theta : \mathbb{R} \to \mathbb{R}$ given by

$$\theta(t) = 0, \, t \leq 0$$

and

$$\theta(t) = e^{-1/t}, \, t > 0$$

is smooth and all its derivatives are 0 at $t = 0$. In particular it is not represented by its Taylor series at 0.

The open cube $C(r)$ is defined as follows.

Definition 11.2

$$C(r) = \{(x_1, \ldots, x_n) \in \mathbb{R}^n | |x_i| < r \forall i\}$$

The closure of $C(r)$ is denoted $\overline{C(r)}$.

Lemma 11.3 There exists a smooth function $h : \mathbb{R}^n \to \mathbb{R}$ with

1. $0 \leq h(x) \leq 1$
2. $h(x) = 1, \, x \in \overline{C(1)}$
3. $h(x) = 0, \, x \notin C(2)$

Remark 11.4 The function h is called the bump function.

Proof: Define

$$\phi(x) = \frac{\theta(x)}{\theta(x) + \theta(1-x)}.$$

Then $\phi(x) = 1$ for $x > 1$ and $\phi(x) = 0$ for $x \leq 0$. Define $\psi : \mathbb{R} \to \mathbb{R}$ by

$$\psi(x) = \phi(x + 2)\phi(2 - x).$$

Then $\psi(x) = 1, \, |x| \leq 1$ while $\psi(x) = 0, \, |x| \geq 2$. Thus define $h(x_1, \ldots, x_n) = \psi(x_1) \ldots \psi(x_n)$. 43
Definition 11.5 The support of a smooth function $f : M \to \mathbb{R}$ is the closure of the set of points $x \in M$ where $f(x) \neq 0$.

Consequences of existence of the function h:

Proposition 11.6 Let M be a smooth manifold and let (U, ϕ) be a chart in an atlas for M. There exists a smooth function $f : M \to \mathbb{R}$ with $f(M) \subset [0, 1]$ and $\text{Supp}(f) \subset U$, and $f(x) = 1$ on a neighbourhood of $p \in U$.

Proof: For a point $p \in U$ choose a cubical neighbourhood $B \subset \mathbb{R}^n$ around $\phi(p)$, say

$$\{x : |\phi(p_i) - x_i| < \epsilon\}.$$

Define $\alpha : B \to C(2)$ by

$$\alpha(x) = \frac{2}{\epsilon} (x - \phi(p))$$

and define

$$f(x) = \{h \circ \alpha \circ \phi(x), x \in U \cap \phi^{-1}(B)\}$$

and 0 otherwise. Then $h : \mathbb{R}^n \to \mathbb{R}$, $h(x) = 1$ if $|x_i| \leq 1$ for all i, and $h(x) = 0$ if $|x_i| \geq 2$ for some i.

Definition 11.7 A partition of unity subordinate to an open cover $\{U_\alpha\}$ of M is a collection of smooth functions $f_\gamma : M \to \mathbb{R}$ such that

1. For all γ, $\text{Supp}(f_\gamma) \subset U_\alpha$ for some α (here $\text{Supp}f_\gamma$ is the closure of the subset where $f_\gamma(x) \neq 0$)

2. $0 \leq f_\gamma \leq 1$ on M

3. $\forall x \in M$ there is an open neighbourhood V_x of x s.t. there exist only finitely many f_γ s.t. $\text{Supp}f_\gamma \cap V_x \neq \emptyset$ are nonzero at any points on V_x

4. $\sum_\gamma f_\gamma(x) = 1$ (this sum is finite because of (3))

We shall prove existence of a partition of unity. We require some facts from general topology.

Lemma 11.8 Manifolds are regular (in other words if $C \subset X$ is a closed subset, $C \neq X$ and $x \in X \setminus C$ then these can be separated by disjoint open subsets)

Let M be a Hausdorff space.
Definition 11.9 M is paracompact if

1. M is regular
2. every open cover admits a locally finite refinement

Definition 11.10 An open cover \(\{V\} \) is a refinement of the open cover \(\{U\} \) if there exists \(\iota: \mathcal{I}_V \to \mathcal{I}_U \) (where \(\mathcal{I}_V \) is the indexing set of \(\{V\} \) and similarly for \(\{U\} \)) such that \(V_\beta \subset I_{\iota(\beta)} \).

Theorem 11.11 Manifolds are paracompact.

Proof: There exist compact subsets \(K_1 \subset K_2 \subset \ldots \) of \(M \) such that \(K_r \subset \text{Int}(K_{r+1}) \) and \(M = \bigcup_r \text{Int}(K_r) \). Let \(\{W_i\} \) be a countable base of the topology with each \(W_i \) compact. \(K_1 = W_1, \ldots, K_r \subset \bigcup_{i=1}^\ell W_i \) (let \(\ell \) be the smallest for which this is true) and \(K_{r+1} = \bigcup_{i=1}^\ell W_i \). Let \(\{U_\alpha\} \) be an open cover: to get a locally finite refinement, choose finitely many \(V_i = U_\alpha \) covering \(K_1 \).

Extend this by \(\{U_\alpha\}_{i=\ell_1+1}^{\ell_2} \) to give an open cover of \(K_2 \). \(M \) is Hausdorff so \(K_1 \) is closed, and \(V_i = U_\alpha \setminus K_1 \) is open, \(\ell_1 + 1 \leq \ell_2 \) and \(\{V_i\}_{i=\ell_1+1}^{\ell_2} \) is an open cover of \(K_2 \).

Note that \(V_i \) does not meet \(K_1 \) for \(i > \ell_1 \).

By induction we get \(\{V_i\} \) such that \(K_r \) meets only finitely many elements of \(V \) \(\forall r \geq 1 \).

For any \(x \in M \), \(x \in \text{Int}(K_r) \) for some \(r \), there exists a neighbourhood meeting only finitely many elements of \(V \).

Definition 11.12 A precise refinement of an open cover \(\{U_\alpha\} \) is a locally finite refinement indexed by the same set with \(\bar{V}_\alpha \subset U_\alpha \).

Proposition 11.13 If \(M \) is a paracompact manifold and \(\{U_\alpha\} \) is an open cover of \(M \), then this cover has a precise refinement.

Proof: There exists a refinement \(\{W_k\} \) with \(j: K \to A \) such that \(W_k \subset U_{j(k)} \) (since \(M \) is regular). Passing to a locally finite refinement of \(W \) gives a locally finite refinement \(V' \) of \(U \) with \(\iota: B \to A \) with \(\bar{V}'_\beta \subset U_{\iota(\beta)} \). The \(\bar{V}'_\beta \) are a locally finite family of closed subsets of \(M \). For all \(\alpha \in A \), define \(\beta_\alpha := \iota^{-1}(\alpha) \).

\[
V_\alpha = \bigcup_{\beta_\alpha} V'_\beta
\]

Because \(V' \) is locally finite, \(\bar{V}_\alpha = \bigcup_{\beta_\alpha} \bar{V}'_\beta \subset U_\alpha \).

Definition 11.14 M is normal if whenever \(A \) and \(B \) are disjoint closed subsets of \(M \), there is an open set \(U \) containing \(A \) and disjoint from \(B \) with \(\bar{U} \cap \bar{B} = \emptyset \).

Lemma 11.15 Paracompact spaces are normal.
Proposition 11.16 (Urysohn’s lemma) Suppose M is normal and A and B are closed subsets of M. There exists a smooth function $f : M \to [0, 1]$ such that $f |_A = 1$ and $f |_B = 0$.

Theorem 11.17 Suppose K is compact and $K \subset U$ for an open set U. Then there exists a smooth function $f : \mathbb{R}^n \to [0, 1]$ with $f |_K = 1$ and f supported in U.

Use Lemma 11.3 to show that

Lemma 11.18 If $A = (a_1, b_1) \times \ldots \times (a_n, b_n) \subset \mathbb{R}^n$ then there is a smooth function $g_A : \mathbb{R}^n \to [0, 1)$ such that $g_A > 0$ for $y \in A$ and $g_A |_{\mathbb{R}^n \setminus A} = 0$.

Proof: (of Theorem) Let $K \subset \mathbb{R}^n$ be compact and $U \subset \mathbb{R}^n$ an open neighbourhood of K. For each $x \in K$, let A_x be an open bounded neighbourhood of x of the form

$$A_x = (a_{1,x}, b_{1,x}) \times \ldots \times (a_{n,x}, b_{n,x})$$

with $A_x \subset U$, $x \in A_x$. By Lemma 11.18, there is a smooth function $g_x : \mathbb{R}^n \to [0, 1)$ with $g_x(y) > 0$ for $y \in A_x$ and $g_x(y) = 0$ for $y \not\in A_x$. Since K is compact, it is covered by finitely many A_{x_1}, \ldots, A_{x_q}. Define $G = g_{A_{x_1}} + \ldots + g_{A_{x_q}} : \mathbb{R}^n \to \mathbb{R}$. Then G is smooth on \mathbb{R}^n, $G(x) > 0$ if $x \in K$ and $\text{supp}(G) = A_{x_1} \cup \ldots \cup A_{x_q} \subset U$. Since K is compact, there exists $\delta > 0$ such that $G(x) \geq \delta$ for $x \in K$. Define our bump function ℓ so it is 0 for $t \leq 0$ and 1 for $t \geq \delta$. Define $f = \ell \circ G : \mathbb{R}^n \to [0, 1]$. Then

1. f is smooth
2. $\text{supp}(f) \subset U$
3. $f |_K = 1$

Theorem 11.19 There is a partition of unity subordinate to any open cover \mathcal{U}.

Proof: If \mathcal{V} is a refinement of \mathcal{U}, then a partition of unity subordinate to \mathcal{V} induces one subordinate to \mathcal{U}.

$$\iota : \mathcal{B} \to \mathcal{U}$$

If $\beta \subset U_{\iota^{-1}(\beta)} \{\mu_\beta\}$ subordinate to \mathcal{U}

$$\lambda_\alpha = \sum_{\beta \in \iota^{-1}(\alpha)} \mu_\beta.$$

So since manifolds are locally compact, WLOG each U_α has compact closure in M.

46
A precise refinement has the property that \(\bar{V}_\alpha \subset U_\alpha \) is a compact subset. We may use Urysohn’s lemma to give \(f \). We choose a precise refinement \(\mathcal{V} \) with \(\mathcal{W} \) a precise refinement of \(\mathcal{V} \).

\(\{ \gamma_\alpha \}_{\alpha \in U} \text{ satisfy } \gamma_\alpha|_{W_\alpha} = 1 \text{ and } \text{supp}(\gamma_\alpha) \subset \bar{V}_\alpha \subset U_\alpha. \)

\(\{ \text{supp} \gamma_\alpha \} \text{ is locally finite. } \gamma := \sum_\alpha \gamma_\alpha \text{ is smooth and } \geq 0. \) Define \(v_\alpha = \gamma_\alpha / \gamma \), which is smooth. The \(v_\alpha \) are a partition of unity.

Applications of partitions of unity:

The primary application is integration on manifolds. Let us begin with integration of a function on \(\mathbb{R}^n \). Assume \(\{ U_\alpha \} \) is an open cover of \(\mathbb{R}^n \) and consider a partition of unity \(\{ f_\alpha \} \) subordinate to this open cover. Let \(g \) be a smooth function on \(\mathbb{R}^n \). Then

\[
\int_{\mathbb{R}^n} g = \int_{\mathbb{R}^n} (\sum_\alpha f_\alpha) g = \sum_\alpha \int_{U_\alpha} (f_\alpha g).
\]

Application to Whitney embedding theorem:

Proposition 11.20 Let \(X \) be a compact manifold. Then there is an injective immersion from \(X \) into \(\mathbb{R}^M \) for some \(M \).

Proof: Construct a covering of \(X \) by charts \((U_\alpha, \phi_\alpha) \), and take a partition of unity \(\{ f_\alpha \} \) subordinate to the covering \(\{ U_\alpha \} \). Since \(X \) is compact, WLOG we may assume the number of \(U_\alpha \) is a finite number \(M \). Then define \(F : X \to \mathbb{R}^M \) by

\[
F(x) = (f_1(x)\phi_1(x), \ldots, f_M(x)\phi_M(x))
\]