
ar
X

iv
:2

00
6.

12
04

3v
1 

 [
m

at
h.

A
G

] 
 2

2 
Ju

n 
20

20

COHOMOLOGY RINGS OF TORIC BUNDLES AND THE RING OF CONDITIONS

JOHANNES HOFSCHEIER, ASKOLD KHOVANSKII, AND LEONID MONIN

To the memory of Ernest Borisovich Vinberg

Abstract. The celebrated BKK Theorem expresses the number of roots of a system of generic Laurent poly-
nomials in terms of the mixed volume of the corresponding system of Newton polytopes. In [PK92b], Pukhlikov
and the second author noticed that the cohomology ring of smooth projective toric varieties over C can be
computed via the BKK Theorem. This complemented the known descriptions of the cohomology ring of toric
varieties, like the one in terms of Stanley-Reisner algebras.

In [SU03], Sankaran and Uma generalized the “Stanley-Reisner description” to the case of toric bundles, i.e.
equivariant compactifications of (not necessarily algebraic) torus principal bundles. We provide a description of
the cohomology ring of toric bundles which is based on a generalization of the BKK Theorem, and thus extends
the approach by Pukhlikov and the second author. Indeed, for every cohomology class of the base of the toric
bundle, we obtain a BKK-type theorem. Furthermore, our proof relies on a description of graded-commutative
algebras which satisfy Poincaré duality.

From this computation of the cohomology ring of toric bundles, we obtain a description of the ring of
conditions of horospherical homogeneous spaces. We conclude the manuscript with a number of examples. In
particular, we apply our results to toric bundles over a full flag variety G/B. The description that we get
generalizes the corresponding description of the cohomology ring of toric varieties as well as the one of full flag
varieties G/B previously obtained by Kaveh in [Kav11].

1. Introduction

In this paper we discuss descriptions of the cohomology ring of toric bundles and how to use them to compute
the ring of conditions of horospherical homogeneous spaces. Our main contributions are:

(1) A generalization of the celebrated BKK Theorem (Theorem 4.1). We also provide an alternative inter-
pretation (Theorem 4.3).

(2) A description of finite-dimensional graded commutative algebras with Poincaré duality (Theorem 7.16).
(3) A description of the cohomology ring of toric bundles (Theorem 8.1).
(4) A description of the ring of conditions of horospherical homogeneous spaces (Corollary 8.4).
(5) We illustrate our results by computing the cohomology ring of some toric bundles over full flag varieties

and the corresponding ring of conditions (Theorem 9.10).

Let us start with a recollection of the classical toric case. Let T ≃ (C∗)n be an algebraic torus with character
lattice M and lattice of one-parameter subgroups N . Further, let XΣ be a smooth projective T -toric variety
given by a fan Σ ⊆ NR := N ⊗Z R. Denote the rays of Σ by Σ(1) = {ρ1, . . . , ρs} and their primitive generators
in N by e1, . . . , es. Recall the following well-known description of the cohomology ring of XΣ (see, for instance,
[CLS11, Theorem 12.4.1]):

H∗(XΣ,R) ≃ R[x1, . . . , xs]/(I + J) =: RΣ,

where I is generated by monomials xi1 · · ·xit such that ρi1 , . . . , ρit ∈ Σ(1) are distinct and do not form a cone in
Σ and J = 〈

∑s
i=1 χ(ei)xi : χ ∈ M〉. Note that I depicts the Stanley-Reisner ideal of the fan Σ and therefore we

refer to this description as the Stanley-Reisner description of H∗(XΣ,R). This description yields an algorithm
to evaluate products of cohomology classes in the top degree of RΣ. In Section 2.1, we provide further details.

On the other hand, given line bundles L1, . . . , Lt on XΣ, one can directly compute a top degree intersection
product c1(L1)

k1 · · · c1(Lt)
kt in H∗(XΣ,R) by using the BKK theorem [Kou76] (see also [Ber75, BKH76]). Here,

c1(Li) ∈ H2(XΣ,R) denotes the first Chern class of Li. More precisely, as any line bundle on XΣ is the difference
of two ample line bundles, it suffices to evaluate products c1(L1)

k1 · · · c1(Lt)
kt with all Li ample. By the toric

dictionary, the ample line bundles Li correspond to polytopes Pi whose normal fan coarsens the fan Σ. Using,
the BKK Theorem, we obtain

c1(L1)
k1 · · · c1(Lt)

kt = n! · V (P1, . . . , P1︸ ︷︷ ︸
k1 times

, . . . , Pt, . . . , Pt︸ ︷︷ ︸
kt times

)

where V (P1, . . . , P1, . . . , Pt, . . . , Pt) denotes the mixed volume of the n-tuple (P1, . . . , P1, . . . , Pt, . . . , Pt). In
[PK92b, Section 1.4], Pukhlikov and the second author observed that the information on these intersection
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products suffices to regain a description of the cohomology ring H∗(XΣ,R). As virtual polytopes play a crucial
role in this description, we refer to it as the virtual polytope description of the cohomology ring H∗(XΣ,R). In
Section 2.2, we provide further details.

In [Kav11], Kaveh used a similar approach to study the cohomology ring of spherical varieties provided that
it is generated in degree 2. In particular, he obtained a “volume-polynomial-description” for the cohomology
ring of full flag varieties G/B by using the relation between the volume of string polytopes and the degree of the
corresponding line bundle from [AB05]. Recently, in [KK20], Kaveh and the second author introduced the ring
of complete intersections for an (arbitrary) algebraic variety. For a smooth complete algebraic variety X whose
cohomology ring H∗(X,R) is generated in degree 2, the ring of complete intersections coincides with H∗(X,R).
They also provide a description of the ring of complete intersections which generalizes the results of [Kav11].

Certainly, the cohomology ring of toric varieties accepts many more descriptions. In particular, we want
to emphasize the description by Brion [Bri96]. Brion’s description is a byproduct of the computation of the
equivariant cohomology ring. In [Bri96], Brion proves that H∗(XΣ,R) is isomorphic to the ring of piecewise
polynomial functions on Σ modulo the ideal generated by global linear functions.

Our main contribution is a generalization of this picture to the case of toric bundles. For a principal T -torus
bundle p : E → B over a closed orientable real manifold B and a T -toric variety XΣ, let EΣ := (E ×XΣ)/T be
the associated toric bundle (see Section 3 for details). A generalization of the Stanley-Reisner description for
the cohomology ring H∗(EΣ,R) was obtained by Sankaran and Uma [SU03]. In [Hof19], the first author noticed
that Brion’s description also generalizes to the case of toric bundles (for more details see Section 8.2). Like in
the toric case, the description by Sankaran and Uma implicitly contains an algorithm to compute products of
cohomology classes in the top degree. In Section 3.1, we provide further details.

We complement the descriptions of the cohomology ring of toric bundles with a generalization of the virtual
polytope description. Like in the toric case our description relies on (a generalization of) the BKK theorem
(see Theorem 4.1). More precisely, we reduce the computation of intersection numbers on the toric bundle to
intersection numbers on the base. This provides a “BKK-type theorem” for any choice of a cohomology class
in the base γ ∈ H∗(B,R).

An equivalent description of the generalized BKK Theorem can be given as follows. Suppose the torus T has
rank n and the real dimension of B is k. Similar to the toric case, a virtual polytope ∆ defines a cohomology
class ρ(∆) ∈ H2(EΣ,R) on the T -toric bundle p : EΣ → B. In Theorem 4.3, for any given j, we define a map
which associates to a virtual polytope ∆ a cohomology class γ2j(∆) ∈ H2j(B,R) such that

ρ(∆)n+j · p∗(γ) = γ2j(∆) · γ,

for any γ ∈ Hk−2j(B,R). Here “·” denotes the cup product on the respective cohomology ring. We call the
class γ2j(∆) the horizontal part of ρ(∆)n+j . We refer to Section 4 for further details.

It should be mentioned that our statements above are true not only in the algebraic category, but more
generally hold for smooth manifolds.

Furthermore, unlike the toric case or the case studied in [Kav11], the cohomology ring of EΣ is not generated
in degree 2 in general. However, finite-dimensional graded commutative algebras which satisfy Poincaré duality
accept a description generalizing the one used by Pukhlikov and the second author (see Theorem 7.16).

From the generalized BKK-theorem and our description of graded commutative algebras with Poincaré
duality, we obtain a description of the cohomology ring of toric bundles (see Theorem 8.1). This description
is well suited to compute cohomology rings of toric bundles over a fixed base manifold B. In particular, a
computation of the ring of conditions of horospherical homogeneous spaces naturally follows (Corollary 8.4).
Recall that the ring of conditions is an intersection ring for (not necessarily complete) homogeneous spaces.
Furthermore, for a connected complex reductive group G a homogeneous space G/H is called horospherical if
H is a closed subgroup in G containing a maximal unipotent subgroup.

We conclude our manuscript by applying our results to a certain class of toric bundles (see Theorem 9.10).
In particular, we recover the results of [KK20] (and thus the results of [Kav11]) in the case of toric bundles over
complete flag varieties.

Organization of the paper. Section 2 provides further details for the two descriptions of the cohomology
ring of toric varieties mentioned above. Section 3 collects results about the cohomology ring of toric bundles
and horospherical varieties. Section 4 contains the statement of the generalized BKK theorem. Section 5
provides further details about virtual polytopes and the related convex chains. Section 6 contains the proof
of the generalized BKK theorem. Section 7 studies graded commutative finite-dimensional algebras satisfying
Poincaré duality. Section 8 describes the cohomology ring of toric bundles (in general) and computes the ring
of conditions of horospherical homogeneous spaces. Section 9 computes the cohomology ring of certain classes
of toric bundles including toric bundles over full flag varieties G/B and projective bundles.

Acknowledgements. We thank Megumi Harada and Kiumars Kaveh for several helpful and inspiring conver-
sations. The first author is supported by a Nottingham Research Fellowship from the University of Nottingham.
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The second author is partially supported by the Canadian Grant No. 156833-17. The third author is supported
by EPSRC Early Career Fellowship EP/R023379/1.

2. The Cohomology Ring of a Toric Variety

We assume fundamental knowledge of toric geometry and refer to [CLS11] for further details and references.
For the reader’s convenience, we give further details of the two descriptions of the cohomology ring of toric
varieties mentioned in Section 1. We continue to use the notation from the Introduction. In particular, M
denotes a lattice, i.e., a finitely generated free abelian group, i.e., M ≃ Zn, N = HomZ(M,Z) its dual lattice,
and 〈·, ·〉 · M × N → Z their dual pairing. Suppose that XΣ is a smooth projective toric variety given by a
smooth projective fan Σ ⊆ NR := N ⊗ R.

2.1. Intersection products in the Stanley-Reisner description. The Stanley-Reisner description of the
cohomology ring yields an algorithm to compute products of cohomology classes in the top degree ofH∗(XΣ,R):

As RΣ is generated in degree 1, it suffices to consider monomials xk1

i1
. . . xkt

it
. Recall that the graded piece of top

degree of RΣ, is one-dimensional and generated by xi1 · · ·xin for any collection i1, . . . , in of indices such that
the rays ρi1 , . . . , ρin generate a full-dimensional cone in Σ. Indeed, all such monomials xi1 · · ·xin yield the same

element in RΣ. Therefore, the evaluation of a monomial xk1

i1
. . . xkt

it
in the top degree amounts to expressing it

as a linear combination of square free monomials.
For a monomial xk1

i1
· · ·xkt

it
let
∑t

i=1(ki − 1) be its multiplicity, so that being square free is equivalent to

having multiplicity 0. To simplify notation, consider the monomial xk1

1 · · ·xkt

t (always possible by reordering

the variables). Suppose xk1

1 · · ·xkt

t is a monomial with multiplicity m > 0 and k1 > 1. The goal is to express it
as a linear combination of monomials of smaller multiplicity. If ρ1, . . . , ρt do not form a cone, then the monomial
is equal to zero in RΣ and we are done. Otherwise, the set {e1, . . . , et} can be extended to a lattice basis of
N , and thus there is χ ∈ M such that χ(e1) = 1 and χ(ej) = 0, for j = 2, . . . , t. Note that χ induces a linear
relation in J , so that we obtain

xk1

1 . . . xkt

t = xk1−1
1 . . . xkt

t ·

(
−

s∑

k=t+1

χ(ek)xk

)
.

This is a linear combination of monomials of multiplicity m − 1. Applying this procedure inductively, we end
up with a linear combination of square free monomials, and thus obtain an evaluation of xk1

1 · · ·xkt

t .

2.2. The virtual polytope description. As noted in the introduction, an arbitrary line bundle on XΣ can be
expressed as a differences of ample line bundles which, by the toric dictionary, correspond to polytopes whose
normal fan coarsens Σ. Recall that a fan Σ′ in NR coarsens Σ if every cone of Σ is contained in a cone of Σ′

and |Σ′| = |Σ|. One also says that Σ refines Σ′. In particular, every cone of Σ′ is a union of cones of Σ. One of
the crucial ideas in [PK92b] is to reformulate this observation on line bundles into convex geometry. Therefore
let us recall the definition of the space of virtual polytopes:

Let P+
Σ be the set of polytopes in MR := M ⊗ R such that Σ refines their normal fans. Recall that the

Minkowski sum of two polytope P,Q in MR is given by

P +Q = {p+ q : p ∈ P, q ∈ Q},

and that the normal fan of a Minkowski sum is the coarsest common refinement of the individual fans (see
[Zie95, Proposition 7.12]). Thus the Minkowski sum endows the structure of a monoid on P+

Σ . It is well-known
that a commutative semigroup can be embedded in a group if the operation is cancelative, i.e., P1+Q = P2+Q
implies P1 = P2. It is straightforward to show that the Minkowski sum satisfies this property. We denote the
smallest group PΣ containing the monoid P+

Σ the group of virtual polytopes (associated to the fan Σ). Clearly P+
Σ

accepts a natural multiplication map by the nonnegative reals R≥0 which straightforwardly extendeds to a scalar
multiplication by R on the group of virtual polytopes, thus turning PΣ into a real vector space. Moreover, note
that this also shows that P+

Σ is a cone in PΣ, and as it generates the ambient vector space it is full-dimensional.
For us the following alternative description of this vector space will be useful. Recall that one associates to

a non-empty compact convex set A ⊆ MR its support function:

hA : NR → R; x 7→ hA(x) := sup{〈a, x〉 : a ∈ A}

In other words, given an exterior normal vector x 6= 0, the position of the corresponding supporting hyperplane
is determined by its support function hA, namely A ⊆ {y ∈ MR : 〈y, x〉 ≤ hA(u)} with the hyperplane {y ∈
MR : 〈y, x〉 = hA(u)} intersecting A in a non-empty face. The crucial observation is that hA uniquely describes
A. Indeed, one can show that A = {x ∈ MR : 〈x, u〉 ≤ hA(u) for all u ∈ NR}.

Using the language of support functions P+
Σ and PΣ can be reformulated as follows:

P+
Σ = {h : NR → R : convex, piecewise linear function on Σ},

PΣ = {h : NR → R : piecewise linear function on Σ},
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where a function h : NR → R is piecewise linear on Σ if hσ := h|σ can be extended to a linear function on
span{σ} for any σ ∈ Σ. In addition, such a function is convex if h(u) ≥ hσ(u) for any σ ∈ Σ and u ∈ span{σ}.

With the above observation on line bundles we have that PΣ/MR ≃ H2(XΣ,R) where MR is interpreted as
a linear subspace of PΣ, namely the subspace of linear functions. Indeed, any m ∈ MR can be expressed as
a difference (P + m) − P for any polytope P ∈ P+

Σ . Note that the volume yields a well-defined polynomial
function on PΣ/MR. The following theorem is implicit in [PK92b] and forms a key idea to get a description of
the cohomology ring H∗(XΣ,R). The following version is taken from [Kav11, Theorem 1.1].

Theorem 2.1. Suppose A =
⊕n

i=0 Ai is a graded finite dimensional commutative algebra over a field K of
characteristic 0 such that A is generated (as an algebra) by the elements A1 of degree one, A0 ≃ An ≃ K, and
the bilinear map Ai ×An−i → An is non-degenerate for any i = 0, . . . , n (Poincaré duality). Then

A ≃ K[t1, . . . , tr]/{p(t1, . . . , tr) ∈ K[t1, . . . , tr] : p(
∂

∂x1
, . . . , ∂

∂xr
)f(x1, . . . , xr) = 0}

where we identify A1 with Kr via a basis v1, . . . , vr and define f : A1 ≃ Kr → K as the polynomial given by
f(x1, . . . , xr) = (x1v1 + . . .+ xrvr)

n ∈ An ≃ k.

Remark 2.2. Instead of identifying A1 with Kr, the previous theorem accepts a basis-free formulation in terms
of Diff(A1), the ring of differential operators with constant coefficients: A ≃ Diff(A1)/{p ∈ Diff(A1) : p(f) = 0}.

In Section 7, we study algebras with Poincaré duality which are not necessarily generated in degree 1. In
particular, we prove Theorem 7.16 which is a generalization of Theorem 2.1. Then in Theorem 9.1, we show
that Theorem 2.1 is indeed a corollary of Theorem 7.16.

Under the identification PΣ/MR ≃ H2(XΣ,R) together with BKK theorem, we get that the function
H2(XΣ,R) → H2n(XΣ,R) ≃ R;x 7→ xn corresponds to the volume polynomial on PΣ/M , and thus we ob-
tain (using the formulation from Remark 2.2):

H∗(XΣ,R) ≃ Diff(PΣ/MR)/Ann(Vol) ≃ Diff(PΣ)/Ann(Vol)

where Ann(Vol) denotes the ideal of differential operators which annihilate the volume polynomial Vol : PΣ → R.

3. Toric bundles and horospherical varieties

In this section, we collect several facts on toric bundles which will be used below. We also introduce horo-
spherical varieties which yield an important class of toric bundles.

3.1. Toric bundles. Let G be a topological group and let p : E → B be a G-principal bundle over a topological
space B, i.e., p : E → B is a fiber bundle with structure group G equipped with a G-atlas such that the action
of G on the fibers p−1(b) for any b ∈ B is free and transitive. For convenience, we will identify the fibers of p
with G, so that we obtain a (right) action of G on E which preserves the fibers and is transitive and free on
them. To any G-principal bundle p : E → B and any topological space X equipped with a continuous action
by G, one associates a fiber bundle by introducing a (right) action on the product E ×X :

(e, x) · g := (e · g, g−1 · x).

The associated fiber bundle is given as the quotient E ×G X := (E ×X)/G. It is a fiber bundle with fiber X .
If G = T is an algebraic torus, then a T –principal bundle is also called a torus bundle.

Crucial to the understanding of the cohomology of fiber bundles is the following theorem (see, for instance,
[BT82, Theorem 5.11] or [Hat02, Theorem 4D.1]):

Theorem 3.1 (Leray–Hirsch). Let E be a fibre bundle with fibre F over a compact manifold B. If there are
global cohomology classes u1, . . . , ur on E whose restrictions i∗(ui) form a basis for the cohomology of each fibre
F (where i : F → E is the inclusion), then we have an isomorphism of vector spaces:

H∗(B,R)⊗H∗(F,R) → H∗(E,R);
∑

i,j

bi ⊗ i∗(uj) 7→
∑

i,j

p∗(bi) · uj.

Corollary 3.2. If T is an algebraic torus, p : E → B a T -toric bundle as in Theorem 3.1, and X a smooth
projective T–toric variety, then as a group the cohomology of EX = E ×T X is given by

H∗(EX ,R) ≃ H∗(B,R)⊗H∗(X,R).

Proof. As a group, the cohomology of smooth projective toric varieties is generated by classes Poincaré dual
to orbit closures. For any orbit closure O of X , let EO = E ×T O be a submanifold of EX . Note that
EX is compact, and thus Poincaré duality applies. The cohomology classes u1, . . . , ur Poincaré dual to these
submanifolds satisfy the condition of Theorem 3.1. The statement follows. �
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Corollary 3.2 yields a description of the cohomology group of EX . Crucial for this description is the map
which associates to any orbit closure O of X the Poincaré dual of the corresponding T -invariant submanifold
of EX . By restricting this map to divisors and extending using linearity, we obtain

ρ : PΣ → H2(EX ,R) (where Σ is the fan of X = XΣ)

which plays an important role in our description of the cohomology ring of EX . We provide more details
for ρ. Recall that ρ1, . . . , ρr denote the rays of Σ with integer generators e1, . . . , er. Let D1, . . . , Dr be the
corresponding divisors in X . We also write Di for the submanifold E×T Di of EX . Then for ∆ ∈ PΣ, we have:

ρ(∆) =

r∑

i=1

h∆(ei)[Di] ∈ H2(EX ,R),

where [Di] is the class Poincaré dual to Di ⊆ EX and h∆ : NR → R is the support function of ∆.
The following observation about ρ(·) will be crucial for our approach. Any character λ ∈ M defines a one–

dimensional representation Cλ of T , namely t · z = λ(t)z for t ∈ T , and z ∈ Cλ. If Lλ denotes the associated
complex line bundle on B, i.e. Lλ ≃ E×TCλ, then Lλ+µ = Lλ⊗Lµ, and thus we obtain a group homomorphism:

c : M → H2(B,Z), λ 7→ c1(Lλ),

where c1(Lλ) is the first Chern class. By linearity, we extend the homomorphism to a map of vector spaces:

c : MR → H2(B,R).

Proposition 3.3. Let Σ be a smooth complete fan, and p : EX → B as before. Then for any character λ ∈ M :

p∗c(λ) = ρ(λ),

where on the right hand side of the equality λ is regarded as a virtual polytope.

Proof. A character λ of T defines a T -invariant divisor div(λ) on X which can be expressed as div(λ) =∑r
i=1 kiDi where the Di ⊆ X are distinct irreducible divisors and ki ∈ Z. Every divisor Di comes with a

(naturally) linearized line bundle Li and a global regular section si such that div(si) = Di. The sections si
yield generic global (smooth) sections of the associated line bundle E ×T Li → E ×T X with degeneracy locus
E ×T Di. By [GH94, Gauss–Bonnet Formula II, p. 413], c1(E ×T Li) is Poincaré dual to E ×T Di. Using
linearity of c1, we get c1(E ×T Lλ) = ρ(λ). It is straightforward to verify that E ×T Lλ = p∗Lλ, and so

p∗c(λ) = c1(p
∗Lλ) = c1(E ×T Lλ) = ρ(λ). �

We conclude this section with the following description of the cohomology ring of toric bundles by Sankaran
and Uma. We note that this description is true in greater generally as stated here and we refer the reader to
[SU03, Theorem 1.2] for the complete statement. The following version will be sufficient for what follows.

Theorem 3.4. We continue to use the notation from above. If XΣ is smooth and projective, the cohomology
ring H∗(EΣ,R) is isomorphic (as an H∗(B,R)-algebra) to the quotient of H∗(B,R)[x1, . . . , xr ] by

(
〈xj1 · · ·xjk : ρj1 , . . . , ρjk do not span a cone of Σ〉+

〈
c (λ)−

n∑

i=1

〈ei, λ〉xi : λ ∈ M

〉)
.

Note the similarities with the Stanley-Reisner description of the cohomology ring of toric varieties. Indeed,
the first ideal in Theorem 3.4 corresponds to the Stanley-Reisner ideal of the corresponding toric variety. In
particular, the algorithm from Section 2.1 can be used to compute products in the top degree of H∗(EX ,R).

3.2. Horospherical varieties. In this section, we recall horospherical varieties which provide an important
source of examples of toric bundles. We conclude with a description of their associated cohomology ring.

Let G be a connected reductive complex algebraic group. A closed subgroup H ⊆ G is called horospherical if
it contains a maximal unipotent subgroup U of G and E := G/H is called a horospherical homogeneous space.
Let B ⊆ G be a Borel subgroup whose unipotent radical is U . It is known that P := NG(H) is a parabolic
subgroup containing B. The natural quotient p : E → G/P is a torus bundle with fibre the torus T = P/H .
Let M be the character lattice of T . Let Σ ⊆ NR := HomZ(M,R) be a fan with corresponding toric variety
X = XΣ. The associated toric bundle p : EX → G/P is a horospherical variety. In general, an irreducible
normal G-variety Y together with an open equivariant embedding G/H →֒ Y is called a horospherical variety.
Recall that a morphism of G-varieties ϕ : Y → Y ′ is called equivariant if ϕ(g · y) = g · ϕ(y) for any g ∈ G and
y ∈ Y . We refer to [Kno91, Tim11] for further details and references on horospherical varieties.

We conclude this section with a combinatorial description of the cohomology ring H∗(EX ,R). Recall from
the previous section that any character λ ∈ M gives rise to a line bundle Lλ on G/P , so that we obtain a group
homomorphism c : M → H2(G/P,Z). The following statement combinatorially describes the cohomology ring
of EX provided XΣ is smooth and projective. It is a special case of a more general result.
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Theorem 3.5 ([SU03, Theorem 1.2]). Suppose Σ has rays ρ1, . . . , ρr with primitive vectors v1, . . . , vn ∈ N :=
HomZ(M,Z) along the edges ρi. If XΣ is smooth and projective, then the cohomology ring H∗(EX ,R) is
isomorphic as an H∗(G/P,R)-algebra to the quotient of H∗(G/P,R)[x1, . . . , xr] by the sum of ideals

〈xj1 · · ·xjk : ρj1 , . . . , ρjk do not span a cone of Σ〉+

〈
c(λ)−

r∑

i=1

〈vi, λ〉xi : λ ∈ M

〉
.

4. BKK theorems for toric bundles

This section provides an overview of the main results of this paper: Theorems 4.1 and 4.3. Details and proofs
will be given in Section 6, and in Section 8 these theorems will be used to describe the cohomology ring of toric
bundles.

As before, let p : E → B be a principal torus bundle with respect to a torus T ≃ (C∗)n over a compact smooth
orientable manifold B of real dimension k. Let M be the character lattice of T and Σ ⊆ NR = HomZ(M,R) be
a smooth complete fan which gives rise to a toric variety X = XΣ. Let EX be the total space of the associated
toric bundle. Note that EX is a compact smooth orientable manifold of real dimension k+2n. To keep notation
simple we denote the projection map of the toric bundle by p : EX → B as well.

Our main theorems show that a choice of a natural number i ≤ k
2 and γ ∈ Hk−2i(B,R) gives rise to a BKK

-type theorem. First, we define two functions Iγ and Fγ on PΣ as follows.
Let fγ : MR → R be given by

fγ(x) = c(x)i · γ,

where “·” denotes the cup product of the cohomology ring H∗(B,R). Since c : MR → H2(B,R) is a linear map,
fγ is a homogeneous polynomial of degree i on MR. This leads to the definition of Iγ :

Iγ : PΣ → R; Iγ(∆) :=

∫

∆

fγ(x) dµ for ∆ ∈ P+
Σ ,

where µ denotes the Lebesgue measure on MR normalized with respect to the lattice M , i.e. a cube spanned by
an affine lattice basis of M has volume 1. Note that we gave an explicit formula for Iγ on the full-dimensional

cone P+
Σ . By Theorem 5.5, Iγ extends to a homogeneous polynomial of degree n+ i on PΣ.

Recall the definition of ρ : PΣ → H2(EX ,R) from Section 3.1. This leads to the definition of the function Fγ :

Fγ : PΣ → R; Fγ(∆) := ρ(∆)n+i · p∗(γ).

Clearly, Fγ is a homogeneous polynomial of degree n+ i on PΣ.
The main result of this section is the following analog of the BKK theorem for toric bundles. Indeed, it

expresses certain intersection numbers of cohomology classes as mixed integrals.

Theorem 4.1. The polynomials Iγ and Fγ are proportional with coefficient of proportionality given by:

(n+ i)! · Iγ(∆) = i! · Fγ(∆) for any ∆ ∈ PΣ.

In particular, the polarizations of Iγ and Fγ are proportional multilinear forms, i.e. for any ∆1, . . . ,∆n+i ∈ PΣ

(n+ i)! · Iγ(∆1, . . . ,∆n+i) = i! · Fγ(∆1, . . . ,∆n+i).

For the reader’s convenience, we recall the concept of polarization (or equivalently mixed integrals). Let V
be a (possibly infinite-dimensional) vector space. Here V = PΣ is finite-dimensional, however eventually we
want to consider P which is an infinite-dimensional vector space.

Definition 4.2. The Lie derivative Lvf(x) of a function f : V → R with respect to a vector v ∈ V at a point
x ∈ V is the limit

Lvf(x) = lim
t→0

f(x+ t · v)− f(x)

t
,

provided this limit exists.

Note that for a finite-dimensional vector space V the concept of polynomials f : V → R is well-known. In
the next section, we recall how to extend the concept of polynomials to the infinite-dimensional case. As the
concept of polarization works both in the finite- and the infinite-dimensional case, we provide details for the
general situation here. The careful reader may want to consult Definition 5.1 before reading further.

Recall that for a homogeneous polynomial f : V → R of degree m, the polarization of f is the unique
symmetric multilinear form g : V m → R such that g(v, . . . , v) = f(v). It is a well-known fact that for any vector
space V and any homogeneous polynomial f of degree m, the polarization exists and can be defined as follows:

g(v1, . . . , vm) =
1

m!
Lv1 . . . Lvmf.

For a homogeneous polynomial f : MR → R, the polarization of If is called the mixed integral of f .
Note that in the case of a trivial torus bundle p : T → pt, Theorem 4.1 reduces to the classical BKK theorem.

We conclude this section with an alternative interpretation of Theorem 4.1 which can be favourable for certain
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applications. By the Leray-Hirsch Theorem (see Corollary 3.2), H∗(EX ,R) ≃ H∗(B,R)⊗H∗(X,R), and so for
∆ ∈ PΣ, the cycle ρ(∆)n+i ∈ H2n+2i(EX ,R) can be written as

ρ(∆)n+i = b2n+2i ⊗ x0 + b2n+2i−2 ⊗ x2 + . . .+ b2i+2 ⊗ x2n−2 + b2i ⊗ x2n,

with bs ∈ Hs(B,R) and xr ∈ Hr(X,R). As X is a smooth, complete toric variety, its cohomology groups in
odd degrees vanish, and therefore x2k+1 = 0 for any k. If x2n is normalized such that it is dual to a point, we
call b2i the horizontal part of ρ(∆)n+i. Equivalently, the horizontal part b2i of ρ(∆)n+i is the unique class in
H2i(B,R) such that

ρ(∆)n+i · p∗(η) = b2i · η,

for any η ∈ Hk−2i(B,R). Then Theorem 4.1 accepts the following reformulation.

Theorem 4.3. For any ∆ ∈ PΣ, the horizontal part of ρ(∆)n+i can be computed as

b2i =
(n+ i)!

i!

∫

∆

c(x)i dx.

Note that c(·)i : MR → H2i(B,R) is a vector valued map whose components (after choosing suitable coordi-
nates) are given by homogeneous polynomials of degree i. Thus the integral in Theorem 4.3 exists. Furthermore,
although we show that Theorem 4.1 implies Theorem 4.3, in fact they are equivalent.

Proof. Since H∗(B,R) satisfies Poincaré duality, it suffices to check that for any γ ∈ Hk−2i(B,R), we have

i! · γ · b2i = (n+ i)! · γ ·

∫

∆

c(x)i dx,

Recall from Theorem 3.1, that there are u1, . . . , ur ∈ H∗(EX ,R) such that the restrictions i∗(ui) form a basis for
the cohomology of each fibre X where i : X → EX is the inclusion. In particular, there are yi ∈ Ru1⊕ . . .⊕Rur

such that i∗(yi) = xi. Since x2n is Poincaré dual to a point (say to a torus fixed point x ∈ X), it follows that
y2n = E ×T {x}, i.e. y2n = [S]∗ is the class Poincaré dual to a section of p.

Let [pt]∗ ∈ Hk(B,R) be the class dual to a point in B. For γ ∈ Hk−2i(B,R), let γ · b2i = a · [pt]∗ for some
real number a ∈ R. Then,

p∗(γ) · ρ(∆)n+i = p∗(γ) · (p∗(b2n+2i) · y0 + p∗(b2n+2i−2) · y2 + . . .+ p∗(b2i+2) · y2n−2 + p∗(b2i) · y2n)

= p∗(γ · b2i) · y2n = a · p∗([pt]∗) · E ×T {x} = a · [X ]∗ · [S]∗ = a ∈ H2n+k(EX ,R) ≃ R,

where [X ]∗ is the class dual to a fibre of p. Hence, if we interpret γ · b2i and p∗(γ) · ρ(∆)n+i as real numbers
(multiples of classes dual to a point), we get

γ · b2i = p∗(γ) · ρ(∆)n+i = Fγ(∆).

On the other hand,

γ ·

∫

∆

c(x)i dx =

∫

∆

γ · c(x)i dx = Iγ(∆).

The statement follows by Theorem 4.1. �

Like Theorem 4.1, Theorem 4.3 admits a polarized version.

5. Convex chains

In this subsection, we recall how to extend the definition of Iγ : P+
Σ → R from to all of PΣ. In exposition we

mostly follow [PK92a]. Suppose that Σ ⊆ NR is a simplicial fan, i.e., any cone in Σ is spanned by part of a basis
of NR. Then the primitive generators e1, . . . , es of the rays Σ(1) = {ρi = R≥0ei : i = 1, . . . , s} naturally induce
coordinates on PΣ: a piecewise linear function h ∈ PΣ is uniquely determined by the tuple (h(e1), . . . , h(es)).
We denote the corresponding coordinates on PΣ ≃ Rs by (h1, . . . , hs).

We want to work with the space of virtual polytopes P . This is an infinite-dimensional vector space obtained
as inverse limit P = lim−→PΣ where the limit is taken over all complete fans Σ (partially ordered with respect

to refinement of fans). As mentioned above, we consider polynomials, like Iγ , on this space. Let us recall the
following notion of polynomials on a (possibly infinite-dimensional) real vector space V :

On the vector space of functions g : V → R, introduce the (forward) difference operator :

Dvg(x) := g(x+ v)− g(x) where v ∈ V .

Recall that a real topological vector space U is a real vector space equipped with a topology that makes the vector
space operations +: U ×U → U and · : R×U → U continuous. It is a known fact that every finite-dimensional
Hausdorff topological vector space has the usual topology. From now on, we consider all finite-dimensional
subspaces U ⊆ V to be equipped with a topology such that U is a Hausdorff topological vector space.



8 JOHANNES HOFSCHEIER, ASKOLD KHOVANSKII, AND LEONID MONIN

Definition 5.1. A function f : V → R is called a polynomial of degree ≤ m if for any v1, . . . , vm+1 ∈ V

Dv1 · · ·Dvm+1
f(x) = 0 for any x ∈ V ,

and the restriction f |U : U → R is continuous for any finite-dimensional vector space U ⊆ V .

Remark 5.2. It is straightforward to show that, if f : V → R is a polynomial and v1 . . . , vn ∈ V are linearly
independent, then for any λ1, . . . , λn ∈ R, we have

(1) f(λ1v1 + . . .+ λnvn) =
∑

α∈Zn
≥0

Dαf(0)

(
λ1

α1

)
· · ·

(
λn

αn

)

where Dα := Dα1
v1 · · ·Dαn

vn and
(
λ
α

)
= λ·(λ−1)···(λ−α+1)

α! denotes the binomial coefficient. Note that Definition 5.1
deviates from [PK92a, Section 2, Definition 1] by the additional assumption of continuity. Indeed, without this
assumption, equation (1) would be true for λ1, . . . , λn ∈ Q (which is sufficient in [PK92a]). However, in our
setting it is more natural to work over the field of real numbers, which makes this further assumption necessary.

In view of Remark 5.2, we may rephrase Definition 5.1 as follows:

Proposition 5.3. A function f : V → R is a polynomial of degree ≤ m if and only if its restriction to any finite
dimensional subspace U ⊆ V is a polynomial of degree ≤ m in the usual sense, i.e., an element in Sym(U∗).

Recall the objective of this section: Any smooth function f : MR → R defines a function If on the cone of
convex polytopes via (here µ denotes the standard Lebesgue measure on MR)

If : P
+ → R; If (∆) =

∫

∆

f(x) dµ.

Our goal is to extend If to the whole space of virtual polytopes P . We recall how this is done following [PK92a].
Observe that If : P+ → R is a finitely additive measure (also called a valuation) on the cone of convex

polytopes, i.e. for any two convex polytopes P,Q ∈ P+ such that P ∪Q is in P+, we have

If (P ∪Q) = If (P ) + If (Q)− If (P ∩Q).

A fundamental idea in [PK92a] is the introduction of the group of convex chains Z(MR), i.e. the additive group

consisting of functions of the form α =
∑k

i=1 ni1Pi
for integers ni and convex polytopes Pi ∈ P+ where 1Pi

denotes the characteristic function of the set Pi. The degree of a convex chain α ∈ Z(MR) is defined to be∑k
i=1 ni if α =

∑k
i=1 ni1Pi

for some Pi ∈ P+ (this is a well-defined number by [PK92a, Proposition-Definition
2.1]). In [PK92a, Proposition-Definition 2.3], Pukhlikov and the second author observe that the Minkowski sum
of polytopes induces a ring structure on Z(MR) via

1P ⋆ 1Q = 1P+Q for P,Q ∈ P+.

Clearly, the semigroup P+ can be embedded in the algebra of convex chains Z(MR). Furthermore, in [PK92a,
Section 6] it is shown that P can be identified with the set of invertible convex chains of degree 1.

Observe that finitely additive measures (as defined above) are in correspondence with homomorphisms of
additive groups ϕ : Z(MR) → R. A finitely additive measure is polynomial of degree ≤ m if for each α ∈ Z(MR)
the function MR → R given by λ 7→ ϕ(τ(λ, α)) is polynomial of degree ≤ m where τ(λ, ·) : Z(MR) → Z(MR)
denotes the linear map induced by translation by λ, i.e. τ(λ, α)(x) = α(x − λ). A fundamental result about
polynomial finitely additive measures is the following theorem:

Theorem 5.4 ([PK92a, Corollary 7.5]). A polynomial finitely additive measure ϕ : Z(MR) → R of degree ≤ k
restricted to the space of virtual polytopes ϕ : P → R is a polynomial of degree ≤ dim(MR) + k in the sense of
Definition 5.1 (however the continuity assumption might not be satisfied in general).

We now apply the results of [PK92a] summarized above to our situation. Note that If : P+ → R can be
naturally extended to a homomorphism of additive groups Z(MR) → R via

If (α) =

∫

MR

f(x) · α(x) dµ =
k∑

i=1

ni

∫

Pi

f(x) dµ for α =
k∑

i=1

ni1Pi
∈ Z(MR).

Furthermore, If : Z(MR) → R is a polynomial finitely additive measure of degree ≤ deg(f) which follows by

the observation that the following map is a polynomial of degree ≤ deg(f) for any α =
∑k

i=1 ni1Pi
∈ Z(MR):

If (τ(·, α)) : MR → R; λ 7→

∫

τ(λ,α)

f(x) dµ =

k∑

i=1

ni ·

∫

Pi+λ

f(x) dµ =

k∑

i=1

ni ·

∫

Pi

f(x− λ) dµ.

By Theorem 5.4, the restriction of If to the space of virtual polytopes is a polynomial of degree ≤ dim(MR) +
deg(f). The continuity assumption of Definition 5.1 can be seen as follows.
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By [PK92a, Corollary 2.2], the natural inclusion P+ → Z(MR);P 7→ 1P extends to an isomorphism of groups
from P (with Minkowski addition) onto the invertible elements P∗ of Z(MR) of degree 1 (equipped with the
multiplication operation). The scalar multiplication on P naturally carries over to P∗:

(1P )
λ
=

{
1λP if λ ≥ 0,

1
−1
−λP if λ < 0

for any convex polytope P ⊆ MR and every real scalar λ.

We obtain an isomorphism of vector spaces between P ≃ P∗. By our choice of the topology from above,
restricting this isomorphism to corresponding finite-dimensional subspaces yields a homeomorphism. Let U ⊆
P∗ be a finite-dimensional subspace and choose a basis α1, . . . , αn ∈ U . Then two elements λ = αλ1

1 ⋆ · · · ⋆ αλn
n

and µ = αµ1

1 ⋆ · · · ⋆ αµn
n in U are close to each other if and only if the scalars λi and µi are close to each other

for any index i. It is straightforward to show that If (λ) and If (µ) are close to each other, i.e. If is continuous.
Recall that a polynomial f : V → R on a (possibly infinite-dimensional) vector space V is called homogeneous

of degree m if for all v ∈ V and every t ∈ R, we have f(t · v) = tm · f(v).
To summarize the above, let us state the following theorem.

Theorem 5.5. If f : MR → R is a homogeneous polynomial of degree m, then the function If : P+ → R; ∆ 7→
If (∆) =

∫
∆ f(x) dµ admits a unique extension to a homogeneous polynomial of degree n+m on P.

6. Proof of the BKK theorems

In this section we prove Theorem 4.1. For the reader’s convenience, we recall the used notation. Let p : E → B
be a principal torus bundle with respect to an n-dimensional torus T over a smooth compact orientable manifold
B of real dimension k. The character lattice of T we denote by M . Let Σ ⊆ NR = HomZ(M,R) be a smooth
complete fan with rays ρ1, . . . , ρs. The primitive ray generators we denote by e1, . . . , es. Let h1, . . . , hs be the
basis of PΣ consisting of piecewise linear functions which vanish on every ray of Σ except one where it evaluates
with 1 on the corresponding primitive ray generator. Let X = XΣ be the toric variety corresponding to Σ and
denote the total space of the associated toric bundle by EX . To keep notation simple we use the same notation
p : EX → B for the projection map of the toric bundle. Fix i ≤ k

2 and a class γ ∈ Hk−2i(B,R). The rays ρi
correspond to divisors in X which give rise to divisors Di in EX . For a virtual polytope ∆ ∈ PΣ, we introduced

ρ(∆) =

s∑

i=1

h∆(ei)[Di] ∈ H2(EX ,R),

where [Di] is the class dual to Di ⊆ EX and h∆ : NR → R is the support function of ∆. Further, we introduce

Fγ : PΣ → R;Fγ(∆) = ρ(∆)n+i · p∗(γ).

We noticed that Fγ is a homogeneous polynomial of degree n+ i on PΣ.
Recall that for any character λ ∈ M we have an associated complex line bundle Lλ on B. Taking Chern

classes and extending by linearity, we obtain a morphism of vector spaces c : MR → H2(B,R). Let fγ : MR → R

be the function fγ(x) = c(x)i · γ. We defined a map Iγ : PΣ → R which is explicitly given for ∆ ∈ P+
Σ by

Iγ(∆) =

∫

∆

fγ(x) dµ.

In the previous section, we saw how to extend this definition to all of PΣ. Furthermore, by Theorem 5.5, Iγ is
a homogeneous polynomial of degree n+ i on PΣ.

We prove Theorem 4.1 by induction on the parameter 0 ≤ i ≤ k
2 .

Let us start with the base case i = 0. If i = 0, then γ ∈ Hk(B,R) is a multiple of the class dual to a point.
For simplicity, let us assume that this multiple is 1. So p∗(γ) is the class dual to a fibre, which is a toric variety,
and thus ρ(∆)n · p∗(γ) coincides with the degree of the divisor in X corresponding to ∆. By the classical BKK
theorem, this can be computed by the normalized volume of ∆ which equals to n! · Iγ(∆). In other words, for
i = 0, Theorem 4.1 reduces to the classical BKK theorem.

As induction hypothesis, suppose that we know Theorem 4.1 for some i− 1 ≥ 0. The induction step consists
of proving that Theorem 4.1 is also true for i. Since both Fγ and Iγ are homogeneous polynomials of the same
degree n+ i, in order to show equality between (n+ i)! · Iγ(∆) and i! · Fγ(∆), it suffices to show that all their

partial derivatives of order n coincide. In other words, it suffices to consider differential monomials ∂k1

i1
. . . ∂kr

ir

where ∂i = ∂/∂hi
are the partial derivatives along the coordinate vectors of PΣ ≃ Rs and

∑r
i=1 ki = n. Let

us call the number
∑r

i=1(ki − 1) the multiplicity of the monomial ∂k1

i1
. . . ∂kr

ir
. In particular, a monomial has

multiplicity 0 if and only if it is square free.
The proof of equality of the partial derivatives of order n of (n + i)! · Iγ(∆) and i! · Fγ(∆) is by induction

on the multiplicity m of the applied differential monomial. We will refer to the induction over i as the “outer
induction” and we are going to call the induction over m the “inner induction”.

The base case of the inner induction (i.e., the case of square free differential monomials) is treated in the
next two subsections. The result of these calculations is summarized in Proposition 6.4.
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6.1. Differentiation of Iγ . The main result of this subsection is Lemma 6.1 below which computes the partial
derivative of Iγ with respect to square free monomial. Here, we work with a slightly more general situation
than needed for the proof of Theorem 4.1: we assume that Σ is a simplicial fan, and we define the function
If : P → R via If (δ) =

∫
δ
f dµ for any smooth function f on MR. In the proof of Theorem 4.1, we use f = fγ .

Lemma 6.1. Let I = {i1, . . . , ir} ⊆ {1, . . . , s} be a subset and k1, . . . , kr positive integers. If ∆ is a polytope in
the interior of P+

Σ and ρi1 , . . . , ρir do not span a cone in Σ, then we have

∂k1

i1
· · ·∂kr

ir
(If |PΣ

) (∆) = 0.

However, if r = n and ρi1 , . . . , ρin span a cone in Σ dual to the vertex A ∈ ∆, we have

∂I (If |PΣ
) (∆) = f(A) · | det(ei1 , . . . , ein)|.

Here det(ei1 , . . . , ein) denotes the determinant of the matrix whose j-th column is given by the vector eij .
Furthermore, ∂I denotes the partial derivative ∂/∂hi1 · · · ∂/∂hin along the coordinate vectors.

The proof of Lemma 6.1 relies on a folklore result on convex chains. We continue to use the notation from
above. Fix real numbers {λi}i∈I and define the virtual polytope h +

∑
i∈I λihi where h denotes the support

function of the polytope ∆. If {λi}i∈I are sufficiently small, the virtual polytope h +
∑

i∈I λihi is in the

interior of P+
Σ in which case it corresponds to the polytope obtained from ∆ by moving the facets corresponding

to the rays ρij according to the coefficients λij . For any subset J ⊆ I we introduce the virtual polytope
∆(J) := h+

∑
j∈J λjhj. Furthermore, we define the convex chain

σ(λi1 , . . . , λir ) =
∑

J⊆I

(−1)r+|I−|+|J| · 1∆(J) where I− := {i ∈ I : λi < 0}.

The following folklore result will be needed in the proof of Lemma 6.1.

Proposition 6.2. Let I = {i1, . . . , ir} ⊆ {1, . . . , s} be a subset and let {λi}i∈I be sufficiently small real numbers.
If any λi = 0 for i ∈ I or ρi1 , . . . , ρir do not span a cone in Σ, then σ(λi1 , . . . , λir ) = 0. If all λi 6= 0 for i ∈ I,
and the cardinality of I is n = dim(NR), and ρi1 , . . . , ρin span a cone in Σ dual to the vertex A ∈ ∆, then

σ(λi1 , . . . , λin) = 1A+Π(λi1
,...,λin ).

Here, A+Π(λi1 , . . . , λin) denotes the half-open parallelepiped spanned by the vectors λi1ei1 , . . . , λinein shifted
by the vertex A:

Π (λi1 , . . . , λin) =

{
∑

i∈I

aiλiei : 0 < ai ≤ 1 if λi > 0 and 0 ≤ ai < 1 if λi < 0

}
.

See Figures 1 and 2 for an illustration of Lemma 6.2 in dimension 2.

− − + =

∆+ λ1x1 + λ2x2 ∆+ λ1x1 ∆+ λ2x2 ∆

Figure 1. Alternating sum of characteristic functions for two adjacent edges.

− − + = 0

∆ + λ1x1 + λ3x3 ∆+ λ1x1 ∆+ λ3x3 ∆

Figure 2. Alternating sum of characteristic functions for two disjoint edges.
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Sketch of proof. For the reader’s convenience we include a sketch of proof.
It is straightforward to check that σ(λi1 , . . . , λir ) vanishes if any λi = 0 for i ∈ I. Hence suppose no λi

vanishes for i ∈ I. It turns out to be more convenient to work with the case that all λi > 0 for i ∈ I. We can
always reduce to this case as follows. Let I− := {i ∈ I : λi < 0} and set ∆′ = h +

∑
i∈I−

λihi. Let h′ be the

support function of ∆′ and define ∆′(J) = h′ +
∑

j∈J |λj |hj for any subset J ⊆ I. Consider the convex chain

σ′(|λi1 |, . . . , |λir |) =
∑

J⊆I

(−1)r+|J|
1∆′(J).

It is straightforward to verify that σ(λi1 , . . . , λir ) = (−1)|I−| · σ′(|λi1 |, . . . , |λir |), and thus we may assume from
now on that λi > 0 for every i ∈ I.

Suppose that the facet Fi of ∆ corresponding to the ray ρi ∈ Σ is given by the supporting hyperplane
Hi = {x ∈ MR : 〈x, ei〉 = ci} for some ci ∈ R. Note that the polytope ∆(I) is obtained from ∆ by moving the
supporting hyperplanes Hi for i ∈ I outwards. We say that a point x ∈ ∆(I) is beyond the hyperplane Hi for
i ∈ I if 〈x, ei〉 > ci. We get a map from the points of ∆(I) to the powerset 2I of I:

∆(I) → 2I ;x 7→ I(x) := {i ∈ I : 〈x, ei〉 > ci}.

For J ⊆ I define the region C(J) as the set of points x ∈ ∆(I) where I(x) = J is constant. The regions C(J)
form a (disjoint) decomposition of ∆(I) into (possibly half-open) polytopes. Points in these regions behave well
with respect to the characteristic functions 1∆(J) which appear in the convex chain σ(λi1 , . . . , λir ):

1∆(J) =

{
1 if I(x) ⊆ J ,

0 otherwise
for x ∈ ∆(I) and J ⊆ I.

For x ∈ ∆(I), a straightforward computation yields

σ(λi1 , . . . , λir )(x) =

{
0 if |I(x)| < r,

(−1)r if |I(x)| = r.

Hence, σ(λi1 , . . . , λir ) = (−1)r · 1C(I). It is straightforward to show that C(I) = ∅ if ρi1 , . . . , ρir do not span
a cone in Σ. If |I| = n = dim(NR) and ρi1 , . . . , ρin span a cone in Σ dual to the vertex A ∈ ∆, then a
straightforward computation shows that C(I) = A+Π(λi1 , . . . , λin). �

Proof of Lemma 6.1. To keep notation simple assume ρij = ρj .

For a monomial ∂k1

1 · · ·∂kr
r , let ∂I = ∂1 · · · ∂r be the corresponding square free monomial. It is enough to

show that ∂IFγ(∆) = 0 in order to prove that ∂k1

1 · · ·∂kr
r Fγ(∆) = 0.

For a smooth function g on PΣ, the partial derivative ∂Ig(x) can be expressed as

(2) ∂Ig(x) = lim
λ1,...,λr→0

(
1

λ1 · · ·λr
Dλ1h1

. . .Dλrhr
g(x)

)
,

where Dλihi
denotes the difference operator introduced above and λ1, . . . , λr ∈ R.

Applying equality (2) to the function If |PΣ
one gets

∂IIf (∆) = lim
λ1,...,λr→0

1

λ1 · · ·λr

∫

MR

f(x) · (−1)|I−| · σ(λ1, . . . , λr)(x) dµ

where σ(λ1, . . . , λr) is the convex chain defined above and I− = {i = 1, . . . , r : λi < 0}. By Proposition 6.2,
the convex chain σ(λ1, . . . , λr) vanishes if ρ1, . . . , ρr do not form a cone in Σ. By the same proposition,
if r = n and ρ1, . . . , ρn generate a cone in Σ dual to the vertex A ∈ ∆, it is equal to the characteristic
function 1A+Π(λ1,...,λn) of the half-open parallelepiped spanned by the vectors λ1e1, . . . , λnen at the point
A. In this latter case, i.e. ρ1, . . . , ρn span a cone in Σ, let T : Rn → MR be the diffeomorphism given by
T (x1, . . . , xn) = x1e1 + . . .+ xnen +A. Then by a straightforward calculation, we obtain:

∫

A+Π(λ1,...,λn)

f(x) dµ = (−1)|I−| ·

∫ λ1

0

· · ·

∫ λn

0

f(T (x1, . . . , xn)) · | det(e1, . . . , en)| dx1 · · · dxn,

where det(e1, . . . , en) is the determinant of the Jacobian matrix of T . So the lemma follows by the fundamental
theorem of calculus:

lim
λ1,...,λn→0

1

λ1 . . . λn

∫

A+Π(λ1e1,...,λnen)

(−1)|I−| · f(x) dµ = f(A) · | det(e1, . . . , en)|. �
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6.2. Differentiation of Fγ . Next we verify the base case of square free differential monomials for Fγ :

Lemma 6.3. Let I = {i1, . . . , ir} ⊆ {1, . . . , s} be a subset and k1, . . . , kr positive integers. If ∆ is a polytope in
the interior of P+

Σ such that ρi1 , . . . , ρir do not span a cone in Σ, we have

∂k1

i1
· · · ∂kr

ir
(Fγ |PΣ

) (∆) = 0.

If r = n = dim(NR) and ρi1 , . . . , ρin span a cone in Σ dual to the vertex A ∈ ∆, we have

∂I (Fγ |PΣ
) (∆) =

(n+ i)!

i!
fγ(A).

Proof. To keep notation simple assume ij = j for j = 1, . . . , r.

For a monomial ∂k1

1 · · ·∂kr
r , let ∂I = ∂1 · · · ∂r be the corresponding square free monomial. It is enough to

show that ∂IFγ(∆) = 0 in order to prove that ∂k1

1 · · ·∂kr
r Fγ(∆) = 0.

We compute the expansion of the polynomial Fγ at ∆. This amounts to expressing Fγ(∆ +
∑s

i=1 λihi) in
terms of the monomials λα1

1 · · ·λαs
s for non-negative integers α1, . . . , αs. A straightforward computation yields:

Fγ

(
∆+

s∑

i=1

λihi

)
=

(
ρ(∆) +

s∑

i=1

λi[Di]

)n+i

· p∗(γ)

=
∑

α0+α1+...+αs=n+i

(
n+ i

α0, α1, . . . , αs

)
· ρ(∆)α0 · [D1]

α1 · · · [Ds]
αs · p∗(γ) · λαi

1 · · ·λαs

s

=
(n+ i)!

(n+ i− r)!
· ρ(∆)n+i−r · [D1] · · · [Dr] · p

∗(γ) · λ1 · · ·λr + (other terms)

where
(

n+i
α0,α1,...,αs

)
= (n+i)!

α0!·α1!···αs!
denotes the usual multinomial coefficient. The derivative ∂IFγ(∆) is equal to

the coefficient in front of the monomial λ1 · · ·λr in the expression Fγ(∆ +
∑s

i=1 λihi):

∂IFγ(∆) =
(n+ i)!

(n+ i− r)!
· ρ(∆)n+i−r · [D1] · · · [Dr] · p

∗(γ).

Since Σ is a smooth fan, the divisors D1, . . . , Dr intersect transversely in EX . So the product [D1] · · · [Dr] is the
class Poincaré dual to the set theoretic intersection of these divisors. In the case that e1, . . . , er do not generate
a cone in Σ the set theoretic intersection of D1, . . . , Dr is empty, and so ∂IFγ(∆) = 0.

For the proof of the second part, let r = n = dim(NR). We have

∂IFγ(∆) =
(n+ i)!

i!
· ρ(∆)i · [D1] · · · [Dn] · p

∗(γ).

If e1, . . . , en generate a cone in Σ dual to the vertex A of ∆, then [D1] · · · [Dn] = EA, where EA = E ×T A is
the torus invariant submanifold in EX corresponding to A. In particular, the restriction of the projection map
p : EA → B is a diffeomorphism.

Let h∆̃ be the support function of the polytope ∆̃ = ∆ − A which is the translation of the polytope ∆ for

which the vertex A is at the origin. Since the vertex of ∆̃ corresponding to A is at the origin, we get

h∆̃(e1) = . . . = h∆̃(en) = 0, and so ρ(∆̃) =
∑

j>n

h∆̃(ej) · [Dj ].

Hence, by the first part, we get ρ(∆̃)·[D1] · · · [Dn] = 0 as there is no cone in Σ with more than n-rays. Therefore:

ρ(∆)i · [D1] · · · [Dn] · p
∗(γ) = ρ(∆̃ +A)i · [D1] · · · [Dn] · p

∗(γ) = ρ(A)i ·EA · p∗(γ).

By Proposition 3.3, ρ(A) = p∗c(A). Since p : EA → B is a diffeomorphism, we get:

ρ(A)i · p∗(γ) · EA = (p∗c(A))i · p∗(γ) · EA = c(A)i · γ = fγ(A),

and therefore ∂IFγ(∆) = (n+i)!
i! fγ(A). �

The base case of the inner induction is an immediate corollary of Lemmas 6.1 and 6.3:

Corollary 6.4 (Base case of the inner induction). For any i ≤ k
2 , any γ ∈ Hk−2i(B,R) and any square free

differential monomial ∂I = ∂i1 . . . ∂in of order n (where I = {i1, . . . , in} ⊆ {1, . . . , s}), we have:

∂I ((n+ i)! · Iγ(∆)) = ∂I (i! · Fγ(∆)) .
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6.3. The inner induction step. In this subsection, the index set I ⊆ {1, . . . , s} is considered a multiset.
As induction hypothesis, suppose that ∂I ((n+ i)! · Iγ(∆)) = ∂I (i! · Fγ(∆)) for any differential monomial ∂I of
multiplicity m− 1 ≥ 0. It remains to show that the equality is true for differential monomials of multiplicity m.
As before, to keep notation simple assume ij = j for j = 1, . . . , r, so that ∂I = ∂k1

1 . . . ∂kr
r for positive integers

k1, . . . , kr. By reordering the coordinates of PΣ, we may assume k1 > 1. By Lemmas 6.1 and 6.3, it suffices to
consider the case where the vectors e1, . . . , er form a cone in Σ (as otherwise ∂IIγ(∆) = 0 = ∂IFγ(∆)).

The plan is to express ∂1 in terms of a Lie derivative Lv (for some v ∈ MR) and other partial derivatives.
Then the (inner) induction step will follow by an explicitly computation of LvIγ(∆) and LvFγ(∆).

As e1, . . . , er form a cone in the smooth fan Σ, they can be completed to a basis of NR. We take v to be
the first vector of the dual basis of MR. Then 〈v, e1〉 = 1, and 〈v, ej〉 = 0 for j = 2, . . . , r. Since v ∈ MR

(considered as an element of PΣ) is given by v =
∑s

i=1〈v, ei〉hi, we obtain that Lv =
∑s

i=1〈v, ei〉∂i, and thus
∂1 = Lv −

∑
j>r〈v, ej〉∂j . We get:

∂I = ∂k1

1 . . . ∂kr

r =


Lv −

∑

j>r

〈v, ej〉∂j


 ∂k1−1

1 · ∂k2

2 · · · ∂kr

r

= Lv · ∂
k1−1
1 · ∂k2

2 · · · ∂kr
r −

∑

j>r

〈v, ej〉 · ∂
k1−1
1 · ∂k2

2 · · · ∂kr
r · ∂j .

Since k1 > 1 and j > r, each monomial in the sum
∑

j>r〈v, ej〉∂
k1−1
1 · ∂k2

2 · · · ∂kr
r · ∂j has multiplicity m− 1, so

by the induction hypothesis (of the inner induction), we get

(n+ i)! ·


∑

j>r

〈v, ej〉∂
k1−1
1 · ∂k2

2 · · · ∂kr

r · ∂j


 · Iγ(∆) = i! ·


∑

j>r

〈v, ej〉∂
k1−1
1 · ∂k2

2 · · · ∂kr

r · ∂j


 · Fγ(∆).

It remains to consider the first summand:

Lemma 6.5. In the situation above, we have (n+ i)! · LvIγ(∆) = i! · LvFγ(∆).

Proof. A direct calculation shows:

LvIγ(∆) = ∂t

∣∣∣∣∣
t=0

(∫

∆+tv

c(x)i · γ dµ

)
= ∂t

∣∣∣∣∣
t=0

(∫

∆

c(x+ tv)i · γ dµ

)
=

= ∂t

∣∣∣∣∣
t=0

(∫

∆

(
i∑

a=0

(
i

a

)
ta · c(v)ac(x)i−a

)
· γ dµ

)
=

∫

∆

i · c(v)c(x)i−1 · γ dµ

= i ·

∫

∆

c(x)i−1 · (c(v) · γ) dµ = i · Ic(v)·γ(∆).

Similarly, by a direct calculation and Proposition 3.3, we get

LvFγ(∆) = ∂t

∣∣∣
t=0

(
ρ(∆ + tv)n+i · p∗(γ)

)
= ∂t

∣∣∣
t=0

(
(ρ(∆) + tρ(v))n+i · p∗(γ)

)
=

= ∂t

∣∣∣∣∣
t=0

((
n+i∑

a=0

(
n+ i

a

)
ta · ρ(v)a · ρ(∆)n+i−a

)
· p∗(γ)

)
= (n+ i) · ρ(v) · ρ(∆)n+i−1 · p∗(γ)

= (n+ i) · ρ(∆)n+i−1 · p∗(c(v) · γ) = (n+ i) · Fc(v)γ(∆).

Since c(v) · γ ∈ Hk−2(i−1)(B,R), by the induction hypothesis of the outer induction, we have

(n+ i− 1)! · Ic(v)·γ(∆) = (i − 1)! · Fc(v)·γ(∆).

Therefore,

(n+ i)! · LvIγ(∆) = (n+ i)! · i · Ic(v)·γ(∆) = i! · (n+ i) · Fc(v)·γ(∆) = i! · LvFγ(∆). �

7. Graded-commutative n-self-dual algebras

7.1. Introduction. Suppose A is a cohomology ring of a compact oriented manifold which can be represented
as factor-algebra of some other algebra B. In this section we discuss the question what extra information is
needed to determine A out of B? For the reader’s convenience, we recall several crucial notions.

Definition 7.1. A graded K-algebra A = A0 ⊕A1 ⊕ · · · ⊕Ak ⊕ · · · over a field K is called graded-commutative
if for any homogeneous elements x, y, the following relation hold:

xy = (−1)deg(x)+deg(y)yx

where deg(x) (resp. deg(y)) denotes the degree of x (resp. of y).
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Such algebras are fundamental in geometry. For example, the cohomology ring A = H∗(X,K) of a CW
complex X is known to be a graded-commutative K-algebra. However, the cohomology ring of compact oriented
manifolds satisfies further important properties:

Definition 7.2. Let n be a natural number. A graded-commutative K-algebra is Poincaré n-self-dual (or just,
is n-self-dual) if the following conditions hold:

(1) The algebra A has a multiplicative unit element e which is homogeneous of degree zero, i.e. e ∈ A0 ⊆ A.
(2) The homogeneous components Ak for k > n vanish, i.e. Ak = 0 for k > n, and dimK(A

n) = 1.
(3) The pairingAk×An−k → An induced by multiplication in the algebraA is non-degenerate for 0 ≤ k ≤ n.

Remark 7.3. By the non-degeneracy of the pairing Ak × An−k → An, we have dimK(A
k) = dimK(A

n−k) for
every 0 ≤ k ≤ n such that the component Ak is a finite dimensional space. In particular, dimK(A

0) = 1.

The following example plays a key role in our discussion.

Example 7.4. Let M be a connected compact oriented n-dimensional manifold. By Poincaré duality, the
cohomology ring A = H∗(M,K) is an n-self-dual graded-commutative K-algebra. Moreover, A is equipped with
two extra structures:

(1) A K-linear function ℓ∗ : A → K given as follows. By linearity, it suffices to define ℓ∗ on homogeneous
elements. For homogeneous α of degree n, we let ℓ∗(α) be equal to the value of the cohomology class α
on the fundamental class of the oriented manifold M . If the degree of α is not n, we set ℓ∗(α) = 0.

(2) A K-bilinear intersection form Fℓ∗ on A defined by the identity Fℓ∗(α, β) = ℓ∗(α · β) (recall that we
denote the cup product of the cohomology ring A by “·”). Note that Fℓ∗ is non-degenerate (the non-
degeneracy of Fℓ∗ is equivalent to the Poincaré duality on A).

Consider another graded-commutative K-algebra B = B0 ⊕ B1 ⊕ · · · ⊕ Bk ⊕ · · · with multiplicative unit
element e ∈ B0 and dimK(B

0) = 1. Suppose that the cohomology ring A = H∗(M,K) from Example 7.4 is a
factor-algebra of B.

Question 7.5. We are going to investigate the following questions:

(1) What extra information on B is needed to determined the algebra A?
(2) What extra information on B is needed to determined the intersection form Fℓ∗ on A?

We provide answers to both questions in Subsections 7.2 and 7.3 respectively.

7.2. Graded-commutative n-self-dual factor algebras. In this section, let B = B0 ⊕B1 ⊕ · · · ⊕Bk ⊕ · · ·
be a graded-commutative K-algebra with multiplicative unit element e ∈ B0 and dimK(B

0) = 1. We want to
describe all n-self dual factor-algebras of B. To that extent we introduce the following notion.

Definition 7.6. An ideal I ⊆ B is called n-self-dual (or n-sd ideal for short) if I is a two-sided homogeneous
ideal and the factor-algebra A = B/I is n-self-dual.

Clearly, factor-algebras of B which are n-self-dual are in correspondence with n-sd ideals. Therefore part (1)
of Question 7.5 boils down to describing all n-sd ideals in B. Our solution consists of the following steps:

(1) If I is an n-sd ideal then I ∩Bn is a hyperplane in Bn (see Lemma 7.7).
(2) Conversely, for any hyperplane L ⊆ Bn there is a unique n-sd ideal I = I(L) such that I ∩Bn = L (see

Lemmas 7.12 and 7.13).
(3) We present an explicit construction of the n-sd ideal I(L) (see Definition 7.11).

Lemma 7.7. If I ⊆ B is an n-sd ideal then L = I ∩Bn is a hyperplane in Bn.

Proof. Since Bn/(I ∩Bn) = An and dim(An) = 1, L is a hyperplane in Bn. �

As hyperplanes are in correspondence with linear functions, we introduce the following:

Definition 7.8. A linear function ℓ : B → K on a graded-commutative K-algebra B is n-homogeneous if it
is not identically equal to zero on B, but for any m 6= n its restriction to the homogeneous component Bm

vanishes. Denote by Lℓ ⊆ Bn the hyperplane in Bn defined by identity Lℓ = {ℓ = 0} ∩Bn.

Clearly, any hyperplane L ⊆ Bn is equal to the hyperplane Lℓ for a unique (up to a non-zero scalar multiple)
n-homogeneous linear function ℓ. Next, we explain how to obtain an n-self-dual factor-algebra from an n-
homogeneous linear function ℓ : B → K.

Definition 7.9. For an n-homogeneous linear function ℓ : B → K let I1(Lℓ) and I2(Lℓ) be the subsets of B
defined by the following conditions:

(1) an element a ∈ B belongs to I1(Lℓ) if and only if ℓ(ab) = 0 for all b ∈ B;
(2) an element b ∈ B belongs to I2(Lℓ) if and only if ℓ(ab) = 0 for all a ∈ B.

Clearly, the sets I1(Lℓ) and I2(Lℓ) depend only on the hyperplane L = Lℓ ⊆ Bn.
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Lemma 7.10. For an n-homogeneous linear function ℓ, I1(Lℓ) = I2(Lℓ) is a two-sided homogeneous ideal in
B.

Proof. We first prove that the set I1(Lℓ) is a right ideal in B. If a ∈ I1(Lℓ) and b ∈ B, then for any c ∈ B
the identity ℓ((ab)c) = ℓ(a(bc)) = 0 holds, and thus ab ∈ I1(Lℓ). If a, b ∈ I1(Lℓ) then ℓ(ac) = ℓ(bc) = 0 for any
c ∈ B. Hence, ℓ((a+ b)c) = 0 which implies a+ b ∈ I1(Lℓ).

Next we prove that I1(Lℓ) is homogeneous, i.e. if a =
∑d

i=0 ai for ai ∈ Bi is in I1(Lℓ), then ai ∈ I1(Lℓ)

for every i. For c =
∑d′

m=0 cm with cm ∈ Bm, we have ℓ(aic) =
∑d′

m=0 ℓ(aicm), and thus it suffices to show
ℓ(aicm) = 0 for any homogeneous cm ∈ Bm. Since ℓ is n-homogeneous, ℓ(aicm) = 0 for every i with i+m 6= n.

However, from 0 = ℓ(acm) =
∑d

i=0 ℓ(aicm), it follows ℓ(an−mcm) = 0. Thus ai ∈ I1(Lℓ).
Analogously, it follows that I2(Lℓ) is a homogeneous left ideal in B.

Let us show that I1(Lℓ) ⊆ I2(Lℓ). Let a =
∑d

j=0 aj be in I1(Lℓ) and b =
∑d′

i=0 bi be in B where ai, bi ∈ Bi.

Then ℓ(ba) =
∑d′

i=0

∑d
j=0 ℓ(biaj) =

∑d′

i=0

∑d
j=0(−1)i+jℓ(ajbi). Since I1(Lℓ) is homogeneous, we have aj ∈

I1(Lℓ), and thus ℓ(ajbi) = 0 for all couples i, j. It follows ℓ(ba) = 0 which means that I1(Lℓ) ⊆ I2(Lℓ).
Similarly, we can prove that I2(Lℓ) ⊆ I1(Lℓ) and the statement is proven. �

Definition 7.11. For an n-homogeneous linear function ℓ, let I(Lℓ) be the two-sided ideal I1(Lℓ) = I2(Lℓ).
The ideal I(Lℓ) depends only on the hyperplane L = Lℓ, and so the notation I(L) = I(Lℓ) makes sense.

Lemma 7.12. For any hyperplane L ⊆ Bn the set I(L) ⊆ B is an n-sd ideal.

Proof. By Lemma 7.10, I(L) is a two-sided homogeneous ideal. Set A = B/I(L).

If k > n, then for any bk ∈ Bk and any c =
∑d

i=0 ci in B with ci ∈ Bi, we have ℓ(bkc) =
∑d

i=0 ℓ(bkci) = 0

(since ℓ is n-homogeneous). Hence, Bk = I(L) ∩Bk for k > n, or equivalently Ak vanishes for k > n.
It remains to show that the pairing Ak ×An−k → An induced by multiplication is non-degenerate. Suppose

a ∈ Ak is in the kernel of this pairing, i.e. ab = 0 for any b ∈ An−k. Let a∗ ∈ Bk be an element whose image
in A is equal to a. Then for any b∗ ∈ Bn−k, we have a∗b∗ ∈ I(L), and in particular, ℓ(a∗b∗) = 0. Since ℓ is
n-homogeneous, for any c ∈ B, we have ℓ(a∗c) = ℓ(a∗cn−k) where cn−k ∈ Bn−k is the homogeneous component
of c of degree n− k. Thus a∗ ∈ I1(Lℓ) = I(L), or equivalently a = 0 in A, i.e. the pairing is non-degenerate in
the first component. A similar argument shows non-degeneracy in the second component. �

Lemma 7.13. For any hyperplane L ⊆ Bn there is a unique n-sd ideal I ⊆ B such that I ∩Bn = L. This ideal
I coincides with the ideal I(L).

Proof. Let ℓ be an n-homogeneous linear function such that L = Lℓ.
We start by showing that I(L) ∩ Bn = L. The inclusion “⊆” is straightforward. For the reverse inclusion

suppose a ∈ L. Then for any b =
∑d

i=0 bi in B with bi ∈ Bi, we have ℓ(ab) =
∑d

i=0 ℓ(abi) = ℓ(ab0) = b0ℓ(a) = 0,
and thus a ∈ I(L) ∩Bn. This shows the existence-part of the statement.

To show uniqueness, let I ⊆ B be an n-sd ideal with I ∩ Bn = L. As both I and I(L) are homogeneous, it
suffices to show that I ∩ Bk = I(L) ∩ Bk for every k. If a ∈ I(L) ∩ Bk = I1(Lℓ) ∩ Bk, then its image in the
factor-algebra A = B/I belongs to the kernel of the pairing Ak × An−k → An = B/L. Thus a ∈ I ∩ Bk and
I1(Lℓ)∩Bk ⊆ I ∩Bk. Conversely, if a /∈ I1(Lℓ)∩Bk, then there is b ∈ Bn−k such that ab /∈ L. Thus the image
of the element ab ∈ Bn is not equal to zero in A = B/I and a /∈ I ∩Bk. �

7.3. Frobenius forms and n-self-dual factor-algebras. In this section, we investigate the second part of
Question 7.5. For the reader’s convenience, we provide a summary at the end of the section.

Consider a bilinear form F : L1 × L2 → K on a product of K-linear spaces L1 and L2. Recall the left radical
R1 ⊆ L1 respectively the right radical R2 ⊆ L2 of F :

(1) a ∈ R1 if and only if F (a, b) = 0 for all b ∈ L2;
(2) b ∈ R2 if and only if F (a, b) = 0 for all a ∈ L1.

Definition 7.14. Let ℓ : B → K be an n-homogeneous linear function on a graded-commutative algebra B. The
Frobenius bilinear form Fℓ : B ×B → K associated with ℓ is the form defined by the identity Fℓ(a, b) = ℓ(a · b).

Theorem 7.15. Let ℓ : B → K be an n-homogeneous linear function on a graded-commutative algebra B.

(1) The n-sd ideal I(Lℓ) = I1(Lℓ) = I2(Lℓ) coincides with the left and also the right radical of Fℓ.
(2) There is a unique n-homogeneous linear function ℓ∗ on the factor algebra A = B/I(L) such that ℓ = ρ∗ℓ∗

where ρ : B → A is the natural homomorphism. Furthermore, for any a, b ∈ B the relation Fℓ(a, b) =
Fℓ∗(ρ(a), ρ(b)) holds.

(3) The Frobenius form Fℓ∗ on A is non-degenerate.

Proof. By definition the left radical (resp. the right radical) of the form Fℓ coincides with I1(Lℓ) (resp. with
I2(Lℓ)). By Lemma 7.10, I(Lℓ) = I2(Lℓ) = I2(Lℓ), and thus the first statement follows (see also Definition 7.11).
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For the second statement, observe that the kernel L ⊆ Bn of the restriction of the function ℓ|Bn coincides with
the kernel of the surjective map ρ : Bn → An (see Lemma 7.13). Thus there is a unique function ℓ∗ : A

n → K

such that ℓ = ρ∗ℓ∗. The relation Fℓ(a, b) = Fℓ∗(ρ(a), ρ(b)) follows by definition.
For the last statement, observe that the form Fℓ∗ is obtained from the form Fℓ by taking the quotient of B

by the left and right radical of the form Fℓ. Thus Fℓ∗ is a non-degenerate form. �

Let us summarize the results from this section. In order to reconstruct an n-sd factor-algebra A = B/I
equipped with an intersection form on A it suffices to fix a Frobenius form Fℓ on B corresponding to an n-
homogeneous linear function ℓ on B. The algebra A is equal to B/I(Lℓ) (note that the algebra A depends only
on the hyperplane L = Lℓ, i.e. proportional n-homogeneous functions define the same algebra A). The form Fℓ

is induced by the unique non-degenerate intersection form Fℓ∗ on A. The set of n-sd factor-algebras A = B/I
equipped with non-degenerate intersection forms is in one-to-one correspondence with the set of n-homogeneous
linear functions on B.

Theorem 7.16. Let B be a graded-commutative algebra over a field K, and let A be an n-sd factor-algebra of
B with a chosen isomorphism φ : An → K. Let ρ : B → A be the natural homomorphism. Then

A ≃ B/I(Lℓ),

where ℓ is the n-homogeneous linear function defined by

ℓ : Bn → K, ℓ(b) = φ(ρ(b)),

and extended by 0 to Bi with i 6= n.
Moreover, for any n-homogeneous linear function ℓ, the algebra A = B/I(Lℓ) is n-self dual and the corre-

sponding Frobenius form Fℓ∗ on A is non-degenerate.

8. Applications

8.1. The Cohomology ring of toric bundles. In this section, we apply the results from Sections 6 and 7
to give a description of the cohomology ring of a toric bundle. Let, as before, p : E → B be a principal torus
bundle, Σ a smooth projective fan with Σ(1) = {ρ1, . . . , ρr}, X = XΣ the corresponding toric variety, and EX

the corresponding toric bundle. By the Leray-Hirsch theorem (see Theorem 3.1) the cohomology ringH∗(EX ,R)
is a quotient of the polynomial algebra R[x1, . . . , xr], where R = H∗(B,R) is the cohomology ring of the base.

Theorem 8.1. In the notation from above the cohomology ring of EX is given by

H∗(EX ,R) ≃ R[x1, . . . , xr]/I(Lℓ)

where ℓ : R[x1, . . . , xr ] → R is a (k + 2n)-homogeneous linear function defined by:

ℓ(γ · xi1 · · ·xis) = Iγ(ρi1 , . . . , ρis)

for any monomial γ · xi1 · · ·xis with deg(γ) + 2s = k + 2n.

Proof. By Theorem 7.16, asH∗(EX ,R) is a graded commutative (k+2n)-self dual factor algebra of R[x1, . . . , xr],
it is given by R[x1, . . . , xr]/I(Lℓ) for a (k + 2n)-homogeneous linear function ℓ which is obtained by pairing
cohomology classes with the fundamental class of EX . Hence the statement follows by Theorem 4.1. �

8.2. Ring of conditions. The ring of conditions constitutes an intersection ring for horospherical homogeneous
spaces. We refer to [DCP85] for further details and references. The exposition given here follows [Hof19].

Let G be a reductive complex algebraic group and H ⊆ G a closed subgroup. A cycle of codimension k
of G/H is a formal linear combination k1X1 + . . . + krXr of irreducible closed subvarieties Xi of G/H with
ki ∈ Z. We write Zk(G/H) for the Z-module of cycles of codimension k. Two cycles X,Y are said to intersect
properly if either their intersection is empty or the dimension of each irreducible component of X ∩ Y equals
dim(X) + dim(Y )− dim(G/H). We need the following result by Kleiman [Kle74, Corollary 4]:

Theorem 8.2 (Kleiman’s transversality theorem). For any two irreducible subvarieties X,Y ⊆ G/H there
exists a dense open U ⊆ G such that g ·X and Y intersect properly for each g ∈ U . If X,Y have complementary
dimensions, g ·X ∩ Y is a finite union of points and |g ·X ∩ Y | is constant for generic g ∈ G.

Theorem 8.2 gives rise to an intersection pairing between algebraic cycles of complementary codimensions:

Zk(G/H)×Zdim(G/H)−k(G/H) → Z; (X,Y ) 7→ (X · Y ) := |g ·X ∩ Y | (for generic g ∈ G),

where X,Y ⊆ G/H are assumed to be irreducible subvarieties.
Two algebraic cycles X,Y ∈ Zk(G/H) are said to be equivalent if for any algebraic cycle of complementary

codimension Z ∈ Zdim(G/H)−k(G/H) the intersection products coincide, i.e. (X · Z) = (Y · Z). We denote the
group of equivalence classes by Ck(G/H) (“the group of conditions of codimension k”). The intersection pairing
factors through the equivalence relation, so that we obtain a pairing: Ck(G/H)× Cdim(G/H)−k(G/H) → Z.

De Concini and Procesi showed that C∗(G/H) :=
⊕dim(G/H)

k=0 Ck(G/H) can be equipped with a ring structure:
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Theorem 8.3 ([DCP85, Section 6.3]). Suppose G/H is a horospherical homogeneous space. Define an in-
tersection product on C∗(G/H): [X ] · [Y ] := [gX ∩ Y ] for generic g ∈ G where X,Y ⊆ G/H are irreducible
subvarieties. This intersection product is well-defined and there is a canonical isomorphism of graded rings

C∗(G/H) = lim
−→
E

H∗(E,Z)

where the limit is taken over complete (or equivalently smooth) horospherical embeddings G/H →֒ E.

Theorem 8.3 is a special case of [DCP85, Section 6.3] which suffices for our purposes. Furthermore, the
intersection product in Theorem 8.3 might not be well-defined for arbitrary homogeneous spaces G/H . We refer
to [Hof19, Exercise 4.1] for a counterexample. In this paper we will exclusively work with the ring of conditions
with real coefficients. Therefore, we introduce the notation C∗

R
(G/H) for the tensor product C∗(G/H)⊗Z R.

For the rest of this section let H ⊆ G be a horospherical subgroup. In Section 3.2, we saw that P = NG(H)
is a parabolic subgroup and that E = G/H is a principal torus bundle over G/P with respect to the torus
T = P/H . For a T -toric variety X , we saw that the associated toric bundle EX is a horospherical variety. Since
any toric variety is dominated by a smooth projective one, the same is true for these horospherical varieties EX .
Furthermore, using the Luna-Vust theory of spherical embeddings (see, for instance, [Kno91, Theorem 3.3]), it
follows that an (arbitrary) horospherical variety G/H →֒ Y is dominated by some horospherical variety EX as
described above. Thus, the smooth projective EX form a cofinal set for the direct limit in Theorem 8.3.

We now give a description of the ring of conditions C∗
R
(G/H) using Theorem 8.1. Let R = H∗(G/P,R)

be the cohomology ring of the flag variety G/P and Sym∗(P) be the symmetric algebra of virtual polytopes.
Furthermore set k = dimC(G/P ) and n = dimC(P/H).

Corollary 8.4. With the notation above, C∗(G/H) is an 2(n+ k)-self dual factor algebra of R ⊗ Sym(P):

C∗
R(G/H) = R⊗ Sym(P)/Iℓ, with ℓ(γ ⊗∆i1 · · ·∆is) = Iγ(∆i1 , . . . ,∆is).

In particular, ℓ(γ ⊗∆i1 · · ·∆is) = 0 unless deg(γ) + 2s = 2(n+ k).

We conclude this section with an alternative description of C∗
R
(G/H) using the description of the cohomology

ring from Section 3.2. The challenge is to find a good description of the ring in Theorem 3.4 as we want to take
the direct limit over all smooth projective EX . The following approach is inspired by [Bri96] (see also [Hof19]).

As in Section 3.2, let M be the character lattice of the torus T = P/H and set MR = M ⊗ R and NR =
HomZ(M,R). Let Σ be a smooth projective fan in NR. A map f : NR → R is piecewise polynomial if for any
σ ∈ Σ, the map f |σ : σ → R extends to a polynomial function on the linear space spanR{σ}, i.e. a piecewise
polynomial function f on Σ is a collection of compatible polynomial functions fσ : σ → R. In particular, such
a function is continuous. We denote by PPΣ the set of all piecewise polynomial functions on Σ which is a ring
under pointwise addition and multiplication. Let Sym(MR) be the symmetric algebra of polynomial functions
on NR. Note that PPΣ is a positively graded R-algebra with graded subalgebra Sym(MR). Indeed, any piecewise
polynomial function uniquely decomposes into a sum of homogeneous piecewise polynomial functions.

We can now reformulate Theorem 3.4:

Proposition 8.5 ([Hof19, Proposition 4.10]). If EX is a horospherical variety obtained as associated toric bundle
of a smooth projective toric variety X, the cohomology ring H∗(EX ,R) is isomorphic as an H∗(G/P,R)-algebra
to the quotient of H∗(G/P,R)⊗ PPΣ by the ideal 〈c(m)⊗ 1− 1⊗ 〈·,m〉 : m ∈ M〉.

Let PP be the set of all piecewise polynomial functions on smooth projective fans in NR, i.e., PP =
⋃

Σ PPΣ

where the union is taken over all smooth projective fans Σ ⊆ NR.

Theorem 8.6 ([Hof19, Theorem 4.11]). We have that

C∗
R(G/H) ≃ (H∗(G/P,R)⊗ PP) / 〈c(m)⊗ 1− 1⊗ 〈·,m〉 : m ∈ M〉 ,

where 〈·,m〉 ∈ Sym(MR) is a globally linear function on NR.

9. Examples

In this section, we apply the results obtained above to special cases where the description becomes partic-
ularly transparent. We determine how the description of the cohomology ring of toric bundle simplifies if the
cohomology ring of the base variety B is generated in degree 2 and the map c : MR → H2(B,R) is surjective.
Full flag varieties provide an ample class of varieties satisfying these assumptions. By using the theory of string
polytopes, we obtain an explicit description of the cohomology ring of toric bundles over a full flag variety. The
section is concluded by a reproduction of the famous description of the cohomology ring of projective bundles.
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9.1. Assumptions on the base manifold. The results above become particularly nice if the cohomology ring
H∗(B,R) is generated by the image of the map c : MR → H2(B,R). In this case, the map c : MR → H2(B,R)
is surjective, and H∗(B,R) is generated in degree 2. As all odd degrees of H∗(B,R) vanish, we get that the
(real) dimension of B is even, say k = 2r. Furthermore, for any smooth projective fan Σ, the cohomology ring
H∗(EX ,R) of the toric bundle EX associated to the toric variety X = XΣ, is also generated in degree 2. If
dimension of the torus is n, then the real dimension of EX is 2(n+ r) and in particular even.

Since all odd degrees of H∗(EX ,R) vanish, we consider the grading H∗/2(EX ,R) on this ring where all
degrees are divided by 2. Note that in this specific situation the property of graded-commutativity coincides
with the ring being commutative. These notational changes will make the results below look more ergonomic.

Our goal is to extend the description of the cohomology ring of smooth projective toric varieties in terms of
differential forms and the volume polynomial to this situation (see 2.1). For the reader’s convenience, we recall
the necessary objects.

Let V be a finite-dimensional vector space over a field K and let Diff(V ) be the ring of differential operators
on V with constant coefficients. A choice of a basis for V , induces an isomorphism of Diff(V ) with the ring of
polynomials in symbols ∂i corresponding to the partial derivatives along the i-th coordinate (induced by the
chosen basis). The ring Diff(V ) acts naturally on the ring Sym(V ∗) of polynomials on V . In order to describe
the cohomology ring of the toric bundle EX in the case that c is surjective, we use the following theorem which
is an analogue of Theorem 7.16 for commutative algebras which are generated in degree 1. It is implicitly
contained in the work of Pukhlikov and the second author (see [PK92b], see also [Kav11, Theorem 1.1.]).

Theorem 9.1. Let A be a commutative finite dimensional graded algebra over K. Write A =
⊕n

i=0 Ai where
Ai is the i-th graded piece of A. Suppose the following conditions hold:

(1) A is generated (as an algebra) by A1, and A0 ≃ An ≃ K.
(2) The bilinear map Ai ×An−i → An ≃ K given by (u, v) 7→ u · v is non-degenerate for all i = 0, . . . , n.

If ρ : V → A1 is a surjective linear map, then A (as a graded algebra) is isomorphic to the algebra Diff(V )/Ann(f).
Here, f(v) := ρ(v)n ∈ An ≃ K is a homogeneous polynomial of degree n on V and Ann(f) = {d ∈ Diff(V ) : df =
0} is its annihilator.

We provide a proof to show how Theorem 9.1 follows from Theorem 7.16.

Proof. Since the algebra A is generated in degree 1, the surjective linear map ρ : V → A1 gives rise to a
surjection p : Diff(V ) ≃ Sym(V ) → A. Hence, by Theorem 7.16, there is an isomorphism A ≃ Diff(V )/I(Lℓ)
where ℓ = φ ◦ p : Diff(V ) → K (φ : An → K a fixed isomorphism). So it remains to show that I(Lℓ) = Ann(f).

The map ℓ : Diff(V ) → K is defined by its values on the n-th graded piece Diffn(V ) of Diff(V ). For v1, . . . , vn ∈
V , the value ℓ(Lv1 · · ·Lvn) at the corresponding differential monomial is given by polarization of f : V → K

(recall that Lvi denotes the Lie derivative with respect to the vector vi; see Definition 4.2):

ℓ(Lv1 · · ·Lvn) =
1

n!
Lv1 · · ·Lvnf .

Extending by linearity from the product of linear forms to all of Diffn(V ), we obtain

ℓ(d) =
1

n!
df for any d ∈ Diffn(V ).

Clearly, for any j > n, we have I(Lℓ) ∩ Diffj(V ) = Ann(f) ∩ Diffj(V ) = Diffj(V ). Since both ideals are

homogeneous, it suffices to check I(Iℓ) ∩Diffj(V ) = Ann(f) ∩Diffj(V ) for j ≤ n.

Let d ∈ Ann(f) be a differential operator of degree j ≤ n. Then d′df = 0 for any d′ ∈ Diffi(V ) for any i,
and thus d ∈ I(Lℓ). Otherwise, if d /∈ Ann(f), then df is a non zero polynomial of degree n− j and hence there

exists d′ ∈ Diffn−j(V ) with d′df 6= 0. It follows that ℓ(d′d) 6= 0 which implies d /∈ I(Lℓ). So I(Lℓ) = Ann(f)
and the theorem is proved. �

With Theorem 9.1, we can prove the following statement.

Theorem 9.2. Let p : E → B be a torus bundle for which the map c : MR → H2(B,R) is surjective. Let Σ be
a smooth projective fan with associated toric variety X. Then the cohomology ring H∗(EX ,R) is given by

H∗/2(EX ,R) ≃ Diff(PΣ)/Ann(I),

where I is the homogeneous polynomial on PΣ defined by I(∆) =
∫
∆ c(x)r dx.

In the proof of Theorem 9.2, we need the following observation.

Lemma 9.3. In the situation above, the map ρ : PΣ → H2(EX ,R) is surjective.

Proof. By the Leray-Hirsch Theorem (see Theorem 3.1), we have

H2(EX ,R) ≃ H2(B,R)⊕H2(X,R) ≃
(
H2(B,R)⊕ PΣ

)
/{c(λ)− ρ(λ) = 0: λ ∈ M},

where the second isomorphism follows by Theorem 3.5. The statement follows from the subjectivity of the map
c : MR → H2(B,R). �
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Proof of Theorem 9.2. By Theorem 9.1 and Lemma 9.3, the cohomology ring H∗(EX ,R) of EX is given by
H∗/2(EX ,R) ≃ Diff(PΣ)/Ann(f), where f(∆) = ρ(∆)n+r . By Theorem 4.1 (with i = r), for any ∆ ∈ PΣ,

r! · ρ(∆)n+r = (n+ r)! · I(∆).

Hence, Ann(f) = Ann(I), and so the theorem is proven. �

The reader might wonder how strong the assumptions in Theorem 9.2 are: torioidal horospherical varieties
over a full flag variety provide an ample class of examples which satisfy the conditions of Theorem 9.2. A
prominent example in this class is the following. Let G be a semisimple algebraic group, B a Borel subgroup in
G, U ⊂ B the unipotent radical of B, and T ⊂ B a maximal torus. Consider the toric bundle

p : E = G/U → G/B.

In [Bor53], Borel showed that the cohomology ring of the full flag variety G/B is isomorphic to the ring of
coinvariants of the Weyl group W = NG(T )/T of G, i.e. the following factor ring where the action of W on the
ring of polynomials on the Lie algebra of T is given by the diagonal action of the coadjoint action on MR:

H∗(G/B,R) ≃ Sym(MR)/Sym(MR)
W .

More precisely, the above isomorphism is induced by the map c : MR → H2(G/B,R), and so c is surjective.

9.2. Relation to string polytopes. We continue to examine the example at the end of the previous section,
i.e. the torus bundle p : E = G/U → G/B. If G = SLn, then Theorem 9.2 has a beautiful reformulation.

For λ a dominant weight, let GZλ ⊆ RN=n(n−1)/2 be the corresponding Gelfand-Zetlin polytope (see [GC50]).
From the defining inequalities, it can be straightforwardly deduced that Gelfand-Zetlin polytopes are additive:

GZλ+µ = GZλ +GZµ for any dominant weights λ, µ.

By linearity, we extend the definition of Gelfand-Zetlin polytopes to all of the positive Weyl chamber Λ+, i.e.
we define GZλ for any λ ∈ Λ+: if λ is in the positive Weyl chamber, we can write λ =

∑r
i=1 ai · µi for positive

real numbers ai and dominant (integral) weights µi; set GZλ =
∑r

i=1 ai · GZµi
(Minkowski addition). By the

additivity of Gelfand-Zetlin polytopes, it follows that this definition is well-defined.
The Gelfand-Zetlin polytopes form a linear family of polytopes, a concept which we recall from [KV18,

Definition 1.2]. Let V,W be two real vector spaces (not necessarily finite-dimensional) and let C ⊆ V be a full-
dimensional convex cone. Note that the cone C isn’t necessarily closed. We only assume that c1x1 + c2x2 ∈ C
for any x1, x2 ∈ C and all non-negative real numbers c1, c2 ≥ 0. An R-linear map ∆: C → P+

W is called a linear
family of polytopes where “linearity” is explained in the following folklore result:

Proposition 9.4. A map ∆: C → P+
W is called linear if either of the following equivalent conditions is satisfied:

(1) ∆(c1x1 + c2x2) = c1∆(x1) + c2∆(x2) for any x1, x2 ∈ C and all non-negative real numbers c1, c2 ≥ 0.
(2) There is a (unique) linear map V → PW such that its restriction to C coincides with ∆(·).

For the reader’s convenience, we include a proof for Proposition 9.4.

Proof. The implication “(2) ⇒ (1)” is straightforward. It remains to show the reverse implication.
Choose a (Hamel) basis of V , say {vi}i∈I . Since C is full-dimensional, we may (and will) assume that

{vi}i∈I ⊆ C. We define a linear map F : V → PW by setting F (vi) = ∆(vi) for i ∈ I and show that F |C = ∆.
Let x ∈ C expressed as x =

∑
j∈J λjxj for a finite subset J ⊆ I and λj ∈ R. Consider the partition of J :

J− := {j ∈ J : λj < 0} and J+ := {j ∈ J : λj > 0}.

Then x+
∑

j∈J−
(−λj)vj =

∑
j∈J+

λjvj , and thus

∆


x+

∑

j∈J−

(−λj)vj


 = ∆


∑

j∈J+

λjvj


⇒ ∆(x) +

∑

j∈J−

(−λj)∆(vj) =
∑

j∈J+

λj∆(λj) ⇒ ∆(x) =
∑

j∈J

λj∆(vj),

where the second implication follows by our assumption that (1) holds. The statement follows by the observation
that F (x) =

∑
j∈J λj∆(vj). �

Example 9.5. It is straightforward to show that Gelfand-Zetlin polytopes GZ : (Λ+)◦ → P+
RN form a linear

family of polytopes. Here, (Λ+)◦ denotes the interior of the positive Weyl chamber.

For a linear family of polytopes ∆: C → P+
W , we construct its lift ∆̃ : C → P+

V⊕W where C denotes the
following convex cone (C◦ denotes the interior of C)

C := {Q ∈ P+
V : Q ⊆ C◦}.

Proposition 9.6. C is a full-dimensional convex cone.
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Proof. A straightforward calculation shows that C is a convex cone. To show that C ⊆ PV is full-dimensional,
let Q = Q1 −Q2 ∈ PV where Q1, Q2 ∈ P+

V . Since C ⊆ V is full-dimensional, there is a translation vector v ∈ V
such that Q1 + v,Q2 + v ⊆ C. The statement follows from the observation that Q = (Q1 + v)− (Q2 + v). �

We define the lift ∆̃ : C → P+
V⊕W of the linear family of polytopes ∆: C → P+

W by setting for any Q ∈ C :

∆̃(Q) := {(x, y) ∈ V ⊕W : x ∈ Q, y ∈ ∆(x)}.

Proposition 9.7. Suppose V is finite-dimensional. Then for any Q ∈ C , ∆̃(Q) is a polytope, i.e. ∆̃(Q) ∈

P+
V ⊕W . Furthermore, ∆̃ : C → P+

V ⊕W is linear in the sense of Proposition 9.4.

Proof. Let Q ∈ C . Consider the H-representation of Q, i.e.

Q =
s⋂

i=1

{x ∈ V : 〈x, ni〉 ≤ bi} where ni ∈ V ∗ are the facet normals and bi ∈ R.

To determine the H-representation of ∆̃(Q), we also need the H-representation of ∆(x) for x ∈ C◦. By [KV18,
Proposition 1.3], the polytopes ∆(x) for x ∈ C◦ share the same normal fan (indeed, Kaveh and Villella assume
C to be polyhedral, but their argument can be easily generalized for arbitrary convex cones). In particular,

∆(x) =

σ⋂

j=1

{y ∈ W : 〈y, νj〉 ≤ βj(x)} where νj ∈ W ∗ are the facet normals and βj(x) ∈ R.

Since for x, x′ ∈ C◦, ∆(x), ∆(x′) and ∆(x) + ∆(x′) share the same normal fan (see for instance [Zie95,
Proposition 7.12]), it straightforwardly follows from the linearity of ∆ that the βj : C

◦ → R are linear in the
sense of Proposition 9.4. In particular, βj can be uniquely extended to a linear function on V , i.e. βj ∈ V ∗.

From the above it follows that ∆̃(Q) ⊆ V ⊕W is a polytope as ∆̃(Q) is bounded with H-representation:

∆̃(Q) = {(x, y) ∈ V ⊕W : 〈x, ni〉 ≤ bi for i = 1, . . . , s and 〈y, νj〉 ≤ 〈x, βj〉 for j = 1, . . . , σ}.

Hence, ∆̃(Q) ∈ P+
V⊕W . By using the linearity of ∆ (in the sense of Proposition 9.4) a straightforward calculation

shows that ∆̃ : C → PV ⊕W is linear too. �

We denote the composition of the (linear) lift ∆̃ : C → P+
V⊕W with the volume polynomial on PV ⊕W by Ṽol.

The polynomial Ṽol has degree dim(V ) + dim(W ).
Let us apply this construction of linear families of virtual polytopes to the linear family of Gelfand-Zetlin

polytopes GZ : Λ+ → P+
RN . The polynomial Ṽol has degree dim(MR) + N = dimC(E), and thus its degree

coincides with the degree of the polynomial I : PMR
→ R. Indeed, these two polynomials coincide up to a

constant scalar multiple. We get the following result.

Theorem 9.8. Consider the torus bundle E = SLn /U . Let Σ be a smooth projective fan with corresponding
toric variety X. Then the cohomology ring H∗(EX ,R) is given by

H∗/2(EX ,R) ≃ Diff(PΣ)/Ann(Ṽol).

Proof. The statement follows from Theorem 9.2 and the fact that c(λ)N = N ! · Vol(GZλ) (see for example
[AB05, Remark 3.9 (iii)] or [Kav11, Theorem 2.5]). �

As a straightforward corollary, we obtain the following result.

Corollary 9.9. The ring of conditions C∗
R
(SLn /U) is given by

C∗
R(SLn /U) ≃ Diff(PMR

)/Ann(Ṽol).

9.3. Toric bundles over a full flag variety G/B. In general, suppose G is an (arbitrary) semisimple Lie
group and let U ⊆ B ⊆ G be as above. We use the same letter N to denote the (complex) dimension of the
full flag variety G/B. In this case, for any character λ in the positive Weyl chamber, one can define a string
polytope Sλ ⊆ RN such that c(λ)N = N ! ·Vol(Sλ) (see [AB05, Remark 3.9 (iii)] or [Kav11, Theorem 2.5]). The
construction of string polytopes depends on the choice of a reduced expression w0 of the longest element w0 in
the Weyl group. Fix some reduced expression w0.

String polytopes Sλ are not necessarily additive, i.e. Sλ+µ = Sλ + Sµ might not be true. However, there
exists a convex cone Cw

0
⊆ MR ⊕ RN called weighted string cone such that

Sλ = π−1(λ) ∩ Cw
0
,

where π : MR ⊕ RN → MR is the natural projection (see [Lit98, BZ01]). By [KV18, Proposition 1.4], it follows
that the map which sends weights to the corresponding string polytopes is piecewise linear with respect to a
fan F which subdivides the positive Weyl chamber. That is, if Λ+ denotes the positive Weyl chamber, then
the map S : Λ+ → PRN ;λ 7→ Sλ is piecewise linear with respect to F . In particular, if σ is a full dimensional



COHOMOLOGY RINGS OF TORIC BUNDLES AND THE RING OF CONDITIONS 21

cone of F , then S : σ → P+
RN is a linear family of polytopes. By the construction from above, we obtain its

corresponding lift PMR
→ PMR⊕RN which gives rise to a polynomial Ṽol of degree dim(MR) +N = dim(G/U).

The same arguments as above yield generalizations of Theorem 9.8 and Corollary 9.9:

Theorem 9.10. Consider the torus bundle E = G/U → G/B. Let Σ be a smooth projective fan with associated
toric variety X. Then the cohomology ring H∗(EX ,R) is given by

H∗/2(EX ,R) ≃ Diff(PΣ)/Ann(Ṽol).

Furthermore, the ring of conditions C∗(G/U) is given by

C∗
R(G/U) ≃ Diff(PMR

)/Ann(Ṽol).

In this case the ring of conditions C∗
R
(G/U) coincides with the ring of complete intersections defined in

[KK20] and our description of C∗
R
(G/U) is analogous to the one given there.

Remark 9.11. Note that the lift of the linear family of string polytopes depends on the choice of a maximal cone
σ of F . However, since for λ in the positive Weyl chamber the volume of Sλ coincides (up to a constant multiple)

with the degree of the corresponding line bundle Lλ, the lifted volume polynomial Ṽol is independent of the

choice of σ of F . Indeed, for polytopes Q in the interior of the positive Weyl chamber, Ṽol(Q) =
∫
Q

1
N !c(λ)

N dλ.

9.4. Projective bundles. Let p : E → B be a torus bundle for a torus T ∼= (C∗)n as before and Σ be the toric
fan of the projective space Pn. After an appropriate choice of coordinates in N ≃ Zn, the fan Σ coincides with
the normal fan of the standard simplex. More precisely, Σ has rays generated by e1, . . . , en, en+1, where

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1), en+1 = (−1, . . . ,−1),

and the cones of Σ are spanned by any subset of these rays. By Theorem 3.4, the cohomology ring of EX can
be computed as

H∗(EX ,R) ≃
H∗(B,R)[H1, . . . , Hn+1]

〈H1 · · ·Hn+1〉+ 〈c(λi)−Hi +Hn+1 : i = 1, . . . , n〉
≃

H∗(B,R)[Hn+1]

(Hn+1 + c(λ1)) · · · (Hn+1 + c(λn))
,

where λ1, . . . , λn denotes the bases of M dual to e1, . . . , en.
We conclude this section by relating this description to the standard description of the cohomology ring of

projective bundles (see for instance [Ful98, Theorem 3.3]). Let Dn+1 be the divisor on EX corresponding to
the ray ρn+1. Then EX \Dn+1 has the structure of a vector bundle V over B. Furthermore, EX coincides with
the projectivization of the vector bundle V ⊕ O where O denotes the trivial line bundle on B. The following
theorem reproduces the classical description of the cohomology ring of EX .

Theorem 9.12. The cohomology ring of EX can be computed as:

H∗(EX ,R) ≃
H∗(B,R)[t]

tn+1 + c1(V ⊕O) · tn + . . .+ cn(V ⊕O) · t+ cn+1(V ⊕O)
.

Here c1(V ⊕O), . . . , cn+1(V ⊕O) denote the Chern classes of the vector bundle V ⊕O of rank n+1 over B.

Proof. The vector bundle V is the direct sum of the line bundles Lλi
corresponding to the basis of M ≃ Zn

dual to e1, . . . , en, i.e V = Lλ1
⊕ . . .⊕ Lλn

. Therefore, the Chern classes of V ⊕O can be computed as

ci(V ⊕O) = si(c(λ1), . . . , c(λn)),

where si is the i-th elementary symmetric polynomial in n variables. The theorem follows from the fact that

(Hn+1 + c(λ1)) · · · (Hn+1 + c(λn)) = Hn+1
n+1 + s1(c(λ1), . . . , c(λn)) ·H

n
n+1 + . . .+ sn(c(λ1), . . . , c(λn)) ·Hn+1.

�

Remark 9.13. The choice of the coordinates in which the fan Σ has standard form is not unique, but the
resulting rings are isomorphic.
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