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Abstract. In this paper we develop a theory of volume polynomials of generalized virtual polytopes based on
the study of topology of affine subspace arrangements in a real Euclidean space. We apply this theory to obtain

a topological version of the BKK Theorem, the Stanley-Reisner and Pukhlikov-Khovanskii type descriptions for

cohomology rings of generalized quasitoric manifolds.

1. Introduction

In [PK92a] Pukhlikov and the first author generalized the classical theory of finitely-additive measures of
convex polytopes and proposed a geometric construction for a virtual polytope as a Minkowski difference of two
convex polytopes. Using this notion, in [PK92b] the same authors proved a Riemann-Roch type theorem linking
integrals and integer sums of quasipolynomials over convex chains from a certain family. As a byproduct, they
obtained a description for a cohomology ring of a complex nonsingular projective toric variety via a volume
polynomial of a virtual polytope. A theory of mixed volumes of virtual convex bodies was developed in [Tim99]
in order to produce an ’elementary’ proof of the classical g-theorem, motivated by the ideas of [PK92b] and the
approach of [McM93].

A topogical generalization of a complex nonsingular projective toric variety is known in toric topology as
a (quasi)toric manifold. It was introduced and studied alongside with its real counterpart, a small cover,
in [DJ91]: in particular, it was shown that the Stanley-Reisner description for cohomology rings holds for
quasitoric manifolds. Since that time quasitoric manifolds and their generalization, torus manifolds [Mas99,
HM03], have been studied intensively in toric topology and found numerous valuable applications in homotopy
theory [CMS08, HKS16, HK17], unitary [BPR07, LW16] and special unitary bordism [LP16, LLP18], hyperbolic
geometry [BP16, BEM+17, BGLV20], and other areas of research.

A remarkable property of torus manifolds is that they acquire a combinatorial description in a similar way
to that in the case of toric varieties. Namely, instead of a (rational polyhedral) fan, it is based on the notions
of a multi-fan and a multi-polytope, introduced and studied in [HM03]. A multi-fan is a collection of cones,
which can overlap each other, unlike it was in the classical case of an ordinary fan. A multi-polytope is an
arbitrary finite collection of rays emanating from the origin in the real Euclidean space alongside with positive
numbers, the distances to the normal affine hyperplanes from the origin, one number for each ray. In [AM16]
the theory of multi-poytopes was applied to prove a version of the BKK Theorem and the Pukhlikov-Khovanskii
description for cohomology rings of quasitoric manifolds. On the other hand, a Stanley-Reisner type description
for the cohomology of certain torus manifolds was obtained in [MP06] using methods and tools of the theory of
manifolds with corners and equivariant topology.

Smooth structures on quasitoric manifolds were constructed in [BPR07] by means of a topological analogue of
the Cox construction, in which a coordinate subspace arrangement is replaced by a moment-angle manifold. By
the result of [PU12], a moment-angle-complex over a starshaped sphere has a smooth structure. This allowed
us in [KLM21] to introduce generalized quasitoric manifolds as quotient spaces of moment-angle-complexes over
starshaped spheres by freely acting compact tori of maximal possible rank.

This paper is devoted to developing the theory of generalized virtual polytopes and applying it in order
to obtain a topological version of the BKK Theorem, the Stanley-Reisner and Pukhlikov-Khovanskii type
descriptions for intersection rings of generalized quasitoric manifolds.

Generalized virtual polytopes and affine subspace arrangements. The first part of the paper is de-
voted to the theory of generalized virtual polytopes and integration over them, based on studying the homotopy
types of unions of affine subspace arrangements in a real Euclidean space. The construction and the theory of
generalized virtual polytopes were motivated by the properties of integral functionals on the space of smooth
convex bodies. We discuss smooth convex bodies in Section 2.

Let Q be a polynomial of degree ≤ k (homogeneous polynomial of degree k) on Rn, ω = dx1∧· · ·∧dxn be the
standard volume form on Rn, and let Cs be the cone of strictly convex bodies ∆ ⊂ Rn with smooth boundary.
Then the function

F (∆) =

∫
∆

Qω
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on the cone Cs is a polynomial of degree ≤ k + n (homogeneous polynomial of degree k + n).
Now, to extend the integration functional to the vector space generated by the cone Cs, we introduce the

notion of a virtual convex body as a formal difference of convex bodies (with the usual identification ∆1−∆2 =
∆3 −∆4 ⇔ ∆1 + ∆4 = ∆2 + ∆3). Then the following statement summarizes the results of Section 2:

let M be the space of virtual convex bodies representable as a difference of convex bodies from the cone Cs.
Then the functional F on Cs can be extended as an integral of the form Qω over the chain of virtual convex
bodies. Moreover, such an extension is a polynomial on M .

In Section 3 we study the homological properties of unions X of (finite) arrangements of affine subspaces
{Li} in a real Euclidean space L = Rn by means of the nerves KX of their (closed) coverings by Li’s.

Given two affine subspace arrangements indexed by the same finite set I, we say that the nerve KX of the
collection {Li} dominates the nerve KY of the collection {Mi} if⋂

j∈J
Lj 6= ∅ implies that

⋂
j∈J

Mj 6= ∅ for any J ⊂ I,

and we write KX ≥ KY in this case. Furthermore, we say that a continuous map f : X → Y is compatible with
KX and KY if

x ∈ Li1 ∩ . . . ∩ Lik then f(x) ∈Mi1 ∩ . . . ∩Mik .

Our main tool in the study of the homological properties of unions of affine subspaces is the statement that
the following conditions hold:

(i) If a map f : X → Y compatible with KX and KY exists, the condition KX ≥ KY holds;
(ii) if a map f : X → Y compatible with KX and KY exists, then it is unique up to a homotopy;

(iii) if KX is isomorphic to KY and a map f : X → Y compatible with KX and KY exists, then f provides
a homotopy equivalence between X and Y .

We then prove that any union X of affine subspaces has the so called good triangulation (see Definition 3.6)
and use this fact to show that if KX ≥ KY , then there is a map f : X → Y compatible with KX and KY .

Now, suppose we have an arrangement of hyperplanes {Hi} in L = Rn. We call it non-degenerate if there
is no proper linear subspace V ⊂ Rn which is parallel to all Hi’s. Then the union X of such an arrangement
has the homotopy type of a wedge of (n − 1)-dimensional spheres, in which the number of spheres is equal to
the number of bounded regions in L \X, see also Theorem 4.9. Therefore, each cycle Γ ∈ Hn−1(X,Z) is equal
to a linear combination Γ =

∑
λj∂∆j , where each coefficient λj equals the winding number of the cycle Γ

around a point aj ∈ ∆j \∂∆j . Here, ∆j denotes a closure of the bounded open polyhedron, which is a bounded
component of L \X.

In Section 4 we study the homotopy properties of unions X of (finite) arrangements of affine subspaces {Li}
in a real Euclidean space L = Rn by means of the methods developed in Section 3 and the theory of smooth
convex bodies in L.

We say that the two hyperplane arrangements, H1 and H2 are combinatorially equivalent if the corresponding
nerves KH1

,KH2
are isomorphic. Let H = {H1, . . . ,Hs},H′ = {H ′1, . . . ,H ′s} be two combinatorially equivalent

hyperplane arrangements, and let X =
⋃
Hi and Y =

⋃
H ′i be the corresponding unions of hyperplanes. Then

there exists a canonical homotopy equivalence f : X → Y . Moreover, we show that for any (finite) simplicial
complex K there exists a (finite) affine subspace arrangement {Li} such that the nerve of the (closed) covering
of X by the Li’s is homotopy equivalent to X and has the homotopy type of K.

In order to study the homotopy type of a union of affine subspaces in Rn, we consider a finite union U ⊂ Rn
of open convex bodies: U =

⋃
Ui. Our goal is then to study the homotopy type of the set Rn \U . We will do it

making use of the following notion from convex geometry. By a tail cone tail(U) of a convex body U we mean
the set of points v ∈ Rn such that for any a ∈ U and t ≥ 0, the inclusion a+ tv ∈ U holds.

It is easy to see that, for any convex set U ⊂ Rn, its tail cone tail(U) has the following properties:

• The set tail(U) is a convex closed cone in Rn. A convex set U is bounded if and only if tail(U) is the
origin O ∈ Rn;

• If tail(U) is a vector space V , then for any transversal space V ′ (i.e. for any V ′ such that Rn = V ⊕V ′),
the set U can be represented in the form U = U ′⊕V , where U ′ = U ∩V ′ is a bounded convex set. That
is, if tail(U) is a vector space, then one has: U = U ′ ⊕ tail(U) for a certain bounded convex set U ′.

Our main result here is the following theorem:
the set Rn \ U is homotopy equivalent to the set Rn \

⋃
{ai + tail(Ui)}, where the summation is taken over

all i such that tail(Ui) is a vector space.
Now, assume that all the linear spaces Vi = tail(Ui) above are equal to the same linear space V and denote

by T a transversal subspace to V , i.e. such a linear subspace of Rn that Rn = T ⊕ V . Then the set Rn \ U
is homotopy equivalent to T \ {bi}, where bi := T ∩ {ai + Vi}. This statement totally describes the homotopy
type of the set Rn \

⋃
Hi, where {Hi} is any collection of affine hyperplanes in Rn. Indeed, the complement

Rn \
⋃
Hi is a union of open convex sets. Moreover, the maximal linear subspaces contained in tail(Ui) are
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the same for each Ui: each of them is equal to the intersection of the linear spaces H̃i parallel to the affine
hyperplanes Hi.

Volumes of generalized virtual polytopes and intersection rings of generalized quasitoric man-
ifolds. In the second part of the paper we apply the theory of volume polynomials of generalized virtual
polytopes to study the cohomology rings of generalized quasitoric manifolds.

First, we work out the monomial and linear relations between characteristic submanifolds of codimension
2 in the intersection rings of generalized quasitoric manifolds. Then we prove a topological version of the
BKK Theorem, based on the properties of the volume polynomial for a generalized virtual polytope, which
yields a convex theoretic formula for the self-intersection polynomial on the second cohomology of a generalized
quasitoric manifold. Finally, we make use of the BKK Theorem as well as the polynomial ring description of a
Poincaré duality algebra worked out in [PK92b, KM21] to obtain the Pukhlikov-Khovanskii type description of
the cohomology ring of a generalized quasitoric manifold.

In Section 5 we introduce the notion of a generalized virtual polytope and study the properties of integral
functionals on the space of generalized virtual polytopes. Let ∆ be a triangulation of an (n − 1)-dimensional
sphere on the vertex set V (∆) = {v1, . . . , vm}. In what follows, we will identify a simplex of ∆ with the set of
its vertices view as a subset in {1, 2, . . . ,m}.

A map λ : V (∆)→ (Rn)∗ is called a characteristic map if for any vertices vi1 , . . . , vir belonging to the same
simplex of ∆ the images λ(vi1), . . . , λ(vir ) are linearly independent (over R). Similarly, one can define the notion
of an integer characteristic map λ : V (∆)→ (Zn)∗.

Such a map defines an m-dimensional family of hyperplane arrangements AP in the following way. For any
h = (h1, . . . , hm) ∈ Rm, the arrangement AP(h) is given by

AP(h) = {H1, . . . ,Hm} with Hi = {`i(x) = hi},
where we denote by `i the linear function λ(vi) for each i ∈ [m] := {1, 2, . . . ,m}. Given a subset I ⊂ [m], we
also denote by HI =

⋂
j∈I Hj and by ΓI the face dual to the simplex I ∈ ∆ in the polyhedral complex ∆⊥ dual

to the simplicial complex ∆ (facets of ∆⊥ are closed stars in ∆′ of the vertices of ∆ viewed as vertices of its
barycentric subdivision ∆′).

By a generalized virtual polytope we mean a map f : ∆⊥ →
⋃
AP(h)Hi subordinate to the characteristic map

λ; that is, for any I ⊂ [m], we have:

f(ΓI) ⊂ HI .

Let U be a bounded region of Rn\
⋃
AP(h)Hi and W (U, f) be a winding number of a map f . For a polynomial

Q on Rn let us consider the following integral functional on the space of generalized virtual polytopes:

IQ(f) :=
∑

W (U, f)

∫
U

Qω.

The key result of Section 5 is the computation of all partial derivatives of IQ(f), which goes as follows. Let
I = {i1, . . . , ir} ⊆ [m] be such that I /∈ ∆ and k1, . . . , kr be positive integers. Then we have

∂k1
i1
· · · ∂krir (IQ) (f) = 0.

However, if r = n = dim ∆ + 1 and I is a simplex in ∆ dual to the vertex A ∈ ∆⊥, then we have

∂I (IQ) (f) = sign(I)Q(A) · | det(ei1 , . . . , ein)|.

We observe that the volume of the oriented image fh(∆⊥) ⊂ Rn is a function on the real vector space
L = {fh : ∆⊥ → Rn} and its value V ol(fh) on a generalized virtual polytope fh is a homogeneous polynomial
in h1, . . . , hm of degree n. It follows easily that all the partial derivatives for two homogeneous polynomials, the
volume polynomial Vol(f) and the integral functional IQ(f), for a generalized virtual polytope f coincide (up to
a constant multiple), see Corollary 5.10. This means that, up to the constant multiple, those two polynomials
coincide.

We start Section 6 by recalling the notion of a generalized quasitoric manifold introduced in [KLM21]. In
what follows we assume that K = KΣ is a starshaped sphere, i.e. an intersection of a complete simplicial fan
Σ in Rn ' N ⊗Z R with the unit sphere Sn−1 ⊂ Rn). In this case, the moment-angle-complex ZK acquires a
smooth structure, see [PU12]. Let further, Λ: Σ(1)→ N be a characteristic map. Then the (m−n)-dimensional
subtorus HΛ := ker exp Λ ⊂ (S1)m acts freely on ZK and the smooth manifold XΣ,Λ := ZK/HΛ is called a
generalized quasitoric manifold.

Our description for the cohomology of XΣ,Λ goes in three steps:

(i) We give a cell decomposition of XΣ,Λ and show that H∗(XΣ,Λ) is generated by the classes of character-
istic submanifolds of codimension 2;

(ii) We show that the monomial and linear relations between classes of characteristic submanifolds of codi-
mension 2 in XΣ,Λ are satisfied;

(iii) We prove a version of the BKK Theorem for XΣ,Λ and use it to get the Pukhlikov-Khovanskii type
description of H∗(XΣ,Λ).
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It is worth mentioning that the steps (ii) and (iii) above could be used in the much more general setting of
torus manifolds. However, in this more general case the algebra obtained by Pukhlikov-Khovanskii description
might be different from the cohomology ring. Indeed, the algebra computed by the intersection polynomial
is the Poincaré duality quotient of the subalgebra of cohomology ring generated by classes of characteristic
submanifolds of codimension 2.

Acknowledgements. We are grateful to Anton Ayzenberg, Victor Buchstaber, Johannes Hofscheier and Taras
Panov for several helpful and inspiring conversations. The first author is partially supported by the Canadian
Grant No. 156833-17. The second author has been funded within the framework of the HSE University Basic
Research Program. The second author is also a Young Russian Mathematics award winner and would like to
thank its sponsors and jury.

2. Smooth convex bodies and the space of maps f : Sn−1 → Rn

In this section we consider a motivational construction of smooth virtual convex bodies.
Consider a set of smooth maps

f : Sn−1 → Rn.
Such a set forms a vector space under scaling and pointwise addition of functions:

(f1 + f2)(x) = f1(x) + f2(x), (λf)(x) = λf(x).

For a strictly convex smooth body ∆ ⊂ Rn, its boundary ∂∆ can be identified with the image of the unite
sphere under a Gauss map

f∆ : Sn−1 → ∂∆.

In terms of the support function H∆ of ∆, the map f∆ is equal to the restriction of the gradient gradH∆

on the sphere Sn−1. Thus we got an inclusion of the space of strictly convex smooth bodies (and their formal
differences) into the space of smooth mappings from Sn−1 to Rn. This inclusion respects the Minkowski addition
of convex bodies.

We will be interested in integral functionals on the space of convex bodies. First notice, that one can express
the integral

∫
∆
ω in terms of the corresponding map f∆:∫

∆

ω =

∫
Sn−1

f∗α,

where α is any form such that dα = ω.
Let α be a (n− 1)-form on Rn given by

α = P1d̂x1 ∧ · · · ∧ dxn + · · ·+ Pndx1 ∧ · · · ∧ d̂xn.

Here the symbol d̂xi means that the term dxi is missing. The following Theorem is obvious.

Theorem 2.1. If all coefficients Pi of the form α are polynomials of degree ≤ k on Rn then the function∫
Sn−1 f

∗α on the space of smooth mappings f : Sn−1 → Rn is a polynomial of degree ≤ k + n− 1.

If all coefficients Pi of the form α are homogeneous polynomials of degree k, then the function
∫
Sn−1 f

∗α is
a homogeneous polynomial of degree k + n− 1 on the space of smooth mappings.

2.1. Integral functional on the space of maps and winding numbers. For an (n− 1)-form α on Rn and
a smooth map f : Sn−1 → Rn, one can give a different way to compute the integral

∫
Sn−1 f

∗α. Let U ⊂ Rn be

a connected component of Rn \ {f(Sn−1)}.

Definition 2.2. The winding number W (U, f) of U with respect to f is the mapping degree of the map

(1)
f − a
||f − a||

: Sn−1 → Sn−1

where a is any point in U .

The mapping degree is well defined, i.e. is independent of the choice of a ∈ U , since maps (1) for different
a ∈ U are homotopy equivalent.

Proposition 2.3. For any smooth (n − 1)-form α on Rn and for any smooth mapping f : Sn−1 → Rn the
following identity holds: ∫

Sn−1

f∗α =
∑

W (U, f)

∫
U

dα

where the sum is taken over all connected components U of the complement
Rn \ {f(Sn−1)}.

Proof. Follows from the Stokes’s formula. �



GENERALIZED VIRTUAL POLYTOPES AND QUASITORIC MANIFOLDS 5

Theorem 2.4. Let Q be a polynomial of degree ≤ k (homogeneous polynomial of degree k) on Rn and let
ω = dx1 ∧ · · · ∧ dxn be the standard volume form on Rn. Then the function∑

W (U, f)

∫
U

Qω

on the space of smooth mappings is a polynomial of degree ≤ k + n (homogeneous polynomial of degree k + n).

Proof. Consider a (n−1) form α = Pdx2∧· · ·∧dxn, where P is a degree k+1 polynomial such that ∂P/∂x1 = Q.
Clearly, dα = Qω. Thus the statement follows from Theorem 2.1 and Proposition 2.3. �

Let us denote by Cs the cone of strictly convex bodies ∆ ⊂ Rn with smooth boundary. As a corollary, we
obtain the following statement.

Corollary 2.5. Let Q and ω be the same as before. Then the function

(2) F (∆) =

∫
∆

Qω

on the cone Cs is a polynomial of degree ≤ k + n (homogeneous polynomial of degree k + n).

Proof. Indeed, for the map f = gradH∆ : Sn−1 → Rn there are exactly two connected components of Rn \
{f(Sn−1)}: the component U1 = Rn \∆ and the component U2 = int(∆). Moreover, the corresponding winding
numbers are

W (U1, f) = 0; W (U2, f) = 1.

Thus the statement follows from Theorem 2.4. �

We would like to extend the integration functional to the vector space generated by the cone Cs.

Definition 2.6. 1) A virtual convex body is a formal difference of convex bodies (with the usual identification
∆1 −∆2 = ∆3 −∆4 ⇔ ∆1 + ∆4 = ∆2 + ∆3);

2) The support function of virtual convex body ∆ = ∆1 −∆2 is the difference of support functions of ∆1 and
∆2;

3) The chain of virtual convex body with smooth support function H is the set of connected components U of
the complements Rn \ {gradH(Sn−1)} taken with the coefficients W (U, gradH).

The following theorem summarizes the results of this section.

Theorem 2.7. Let L be the space of virtual convex bodies representable as a difference of convex bodies from
the cone Cs. Then function (2) on Cs can be extended as an integral of the form Qω against the chain of virtual
convex bodies. Moreover, such an extension is a polynomial on L.

3. Union of affine subspaces

In this section we study homological properties of the union of affine subspaces in a vector space L ' Rn.
Let I be a finite set of indexes. Consider a set {Li} of affine subspaces of a vector space L indexed by elements
i ∈ I and let X = ∪i∈ILi be their union.

First we define the main combinatorial invariant of the union of affine subspaces. The topological space X
has a natural covering by the affine spaces Li.

Definition 3.1. The nerve KX of the natural covering of X is the simplicial complex with vertex set indexed
by I, i.e. one vertex for each index i ∈ I. A set of vertexes vi1 , . . . , vik defines a simplex in KX if and only if
the intersection Li1 ∩ · · · ∩ Lik is not empty.

Consider another set of affine spaces {Mi} of a linear space M with the same set of indexes I and with the
complex KY corresponding to the natural covering of Y .

Definition 3.2. We will say that the nerve KX of the collection {Li} dominates the nerve KY of the collection
{Mi} if ⋂

j∈J
Lj 6= ∅ implies that

⋂
j∈J

Mj 6= ∅ for any J ⊂ I.

We will write KX ≥ KY in this case.
The nerves KX and KY are equivalent if KX ≥ KY and KY ≥ KX .

Note that if KX ≥ KY then there is a natural inclusion KX → KY . Moreover, if KX and KY are equivalent
then this inclusion provides an isomorphism between these complexes.
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3.1. Maps compatible with coverings. In this subsection we introduce our main tool in the study of union
of affine subspaces. Let as before X = ∪i∈ILi and Y = ∪i∈IMi be two collections of affine subspaces indexed
by a finite set I. First we will need the following definitions.

Definition 3.3. For a point x ∈ X = ∪i∈ILi let I(x) be the subset of indices I such that

x ∈ Li if and only if i ∈ I(x).

For points x ∈ X, y ∈ Y , we will say that x ≥ y if I(x) ⊃ I(y).

In particular, Definition 3.3 yields the following notion.

Definition 3.4. A continuous map f : X → Y is compatible with KX and KY if for any x ∈ X, we have
x ≤ f(x). In other words, if

x ∈ Li1 ∩ . . . ∩ Lik then f(x) ∈Mi1 ∩ . . . ∩Mik .

The following theorem is our main tool in the study of homological properties of the union of affine subspaces.

Theorem 3.5. The following conditions hold

(i) If a map f : X → Y compatible with KX and KY exists, the condition KX ≥ KY holds;
(ii) if a map f : X → Y compatible with KX and KY exists, then it is unique up to a homotopy;

(iii) if KX is isomorphic to KY , then the map f : X → Y compatible with KX and KY provides a homotopy
equivalence between X and Y .

Proof. (i) Assume a map f : X → Y compatible withKX andKY exists, thenKX ≥ KY . Indeed, if Li1∩· · ·∩Lik
is not empty and contains a point x the set Mi1 ∩ · · · ∩Mik contains f(x) and in particular is non-empty.

(ii) if f, g are two maps from X to Y compatible with KX and KY , then for any 0 ≤ t ≤ 1 the map tf+(1−t)g
is also a map compatible with KX and KY . Indeed, for any x ∈ X the set of points y ∈ Y such that I(x) ⊂ I(y)
is convex.

(iii) Assume that KX and KY are isomorphic and there are maps f : X → Y and g : Y → X compatible
with KX and KY .

Then the map g ◦ f : X → X is homotopy equivalence. Indeed the identity map IdX and the map g ◦ f are
compatible with KX and hence are homotopy equivalent by (ii). Similarly, the map f ◦ g : Y → Y is homotopic
to the identity map IdY . �

To prove the existence of the compatible maps we would need the following definition.

Definition 3.6. A good triangulation of the set X = ∪i∈ILi is a triangulation such that the following condition
holds.

The set of vertices of a simplex S in a good triangulation is totally ordered in the sense of Definition 3.3. In
other words, there is an order of the set of vertices {vi1 , . . . , vis} of S such that

I(vi1) ⊂ . . . ⊂ I(vis).

Definition 3.7. Consider the following natural stratification of X =
⋃
i∈I Li by open strata of different dimen-

sions: we say that two points x, y ∈ X belong to one stratum if

x ≥ y and y ≥ x,
or equivalently,

I(x) = I(y).

The stratum containing a point x is the intersection L(x) of the subspaces Li for i ∈ I(x) with removed
union of spaces Li for all i /∈ I(x).

Definition 3.8. A stratum U1 of the natural stratification of X is bigger than stratum U2, U1 ≥ U2, of the
same stratification if the closure of U1 contains U2.

Easy to see that U1 ≥ U2 if and only if for any x ∈ U1, y ∈ U2 the relation x ≥ y holds.

Definition 3.9. A stratum U has a rank k if the longest chain of strictly decreasing strata

U = U1 > · · · > Uk

has the length k.

Theorem 3.10. For any finite union X =
⋃
Li of affine subspaces Li of a linear space L one can construct a

good triangulation.
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Proof. We construct a good triangulation of X in two steps. First, we construct a triangulation compatible with
natural stratification of X, i.e. a triangulation such that any open simplex is contained in some open stratum.

A triangulation compatible with natural stratification of X can be constructed inductively by first triangu-
lating of all strata of rank one (i.e. all closed strata) and then extending it to all strata of one higher at each
step.

One can construct a good triangulation then by taking a barycentric subdivision of any triangulation of
X compatible with standard stratification. Indeed, the set of vertices of each simplex in this subdivision
corresponds to an increasing chain of faces of a simplex in the original triangulation which are contained in an
increasing chain of strata. �

Theorem 3.11. If KX ≥ KY , then there is a map f : X → Y compatible with KX and KY .

Proof. First, let us consider a good triangulation τ of X. Then, for any vertex v of τ , let us define f(v) to be
any point in Y such that I(f(x)) ⊃ I(x). Such point always exists since KX ≥ KY . Then one extends map f
linearly on each simplex of τ .

The constructed map f is compatible with KX and KY . Indeed, for any point x ∈ X there is the smallest
simplex S of the good triangulation such that x ∈ S. Among the vertices V (S) of this simplex there is a biggest
vertex v. One can see that I(x) = I(v). Since f(x) belongs to the linear combination of the points f(vi) for
vi ∈ V (S) the inclusion I(f(x)) ⊃ I(x) holds. �

Lemma 3.12. Let L0 ⊂ L be such a linear space that

L = L0 + L̂,

i.e. L is a direct sum of L̂ and L0. Let L0
i = Li ∩ L0 and X0 = X ∩ L0 = ∪L0

i .

Then X0 is a non-degenerate union of the affine hyperplanes L0
i ⊂ L0. Moreover, X = X0 × L̂, thus X is

homotopy equivalent to a wedge of (n− 1− l)-dimensional spheres, where l = dim L̂.

3.2. Barycentric subdivision and a covering of a simplicial complex. We will need some general facts
related to barycentric subdivision of a simplicial complex.

Let C ′ be the simplicial complex obtained by the barycentric subdivision of a given simplicial complex C.
Each vertex of C ′ is the barycenter of some simplex of C. A set of vertices of C ′ belongs to one simplex of C ′

if and only if the simplices of C corresponding to these vertices are totally ordered with respect to inclusion.
To each vertex v of C let us associate the closed subset Xv of C ′ which is equal to the union of all simplices

of C ′ containing the vertex v.

Lemma 3.13. 1) The nerve of the covering of C ′ by the collection of closed subsets Xv corresponding to all
vertices v of C coincides with the original complex C.

2) All sets Xv and their nonempty intersections are homotopy equivalent to a point.

Proof. 1) By definition the set of vertices v of C can by identified with the set of subsets Xv, which provides a
covering of C ′. If vertices v1, . . . , vk belong to one simplex of C, then the setsXv1 , . . . , Xvk contain the barycenter
of that simplex, and therefore, these sets have a nonempty intersection. Conversely a set Xv intersects a simplex
∆ of the complex C only if v is a vertex of ∆. Thus, if the intersection Xv1

∩ · · · ∩ Xvk is not empty, then
v1, . . . , vk belong to some simplex ∆ of C.

2) Any nonempty intersection Xv1
∩· · ·∩Xvk can be represented as a union of some simplices of C ′ containing

a common vertex, which is the barycenter of the simplex with the vertices v1, . . . , vk. Such union is a cone,
hence it is homotopy equivalent to a point. �

3.3. Map f : K ′X → Y For KX ≥ KY . A continuous map f : K ′X → Y is compatible with the natural
coverings

BKX = ∪i∈IXvi and Y = ∪i∈IMi

if for any i ∈ I the inclusion

f(Xvi) ⊂Mi

holds.
Assume that KX ≥ KY . Let KX be the nerve of the natural covering of

X = ∪i∈ILi.

The barycentric subdivision K ′X of KX has its own natural covering by the sets L̂i equal to the union of the
simplices in K ′X , which contain the vertex vi corresponding to the spaces Li. By Lemma 3.13 the nerve of the
covering of K ′X is isomorphic to KX . Let us generalize definition of maps between topological spaces compatible
with their coverings. Let I be a finite set of indexes. Consider a set {Xi} of closed subsets of X indexed by
elements i ∈ I.
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Definition 3.14. The nerve KX of the covering X =
⋃
Xi is the simplicial complex whose set of vertices VX

contains one vertex vi for each subset Xi i.e. one vertex for each index i ∈ I. A set of vertexes vi1 , . . . , vik
defines a simplex in KX if and only if the intersection

Xi1 ∩ · · · ∩Xik

is not empty.

The following Theorem can be proved exactly as Theorem 3.5.

Theorem 3.15. 1) A map f : K ′X → Y compatible with KX and KY exists if and only if the condition
KX ≥ KY holds;

2) if a compatible with KX and KY map exists then it is unique up to a homotopy.

4. Homotopy type of a union of affine subspaces

In this section we study the homotopy type of a union of affine subspaces. In particular, we show that a
union of affine subspaces can have a homotopy type of any simplicial complex (Theorem 4.4), whereas a union
of affine hyperplanes is always homotopic to a wedge of spheres (Theorem 4.9)

Consider a finite set {Ai} of affine independent points in a real vector space L. Consider the simplex T ⊂ L
whose set of vertices is the set {Ai}. With each face TJ of T let LTJ

be its affine hull of TJ . We obtain a
collection of affine subspaces in L corresponding to the faces TJ .

Recall that the subspace A of a topological space X is called a strong deformation retract if there is a
homotopy π(x, t) : X × I → X such that

(i) π(x, 0) = x for any x ∈ X;
(ii) π(x, 1) ∈ A for any x ∈ X;

(iii) π(a, t) = a for any a ∈ A and t ∈ I.

Lemma 4.1. The simplex T is a strong deformation retract of the union of hyperplanes L. Moreover, the
deformation retraction πL× I → L can be chosen to preserve the covering of L by affine spaces LTi

, i.e.

π(x, t) ∈ LTi for every x ∈ LTi , t ∈ I.

Proof. Each point x ∈ L is representable in a unique way as

x =
∑

λiAi, where
∑

λi = 1

(the numbers λi are the barycentric coordinates of x with respect to the simplex T ).
Consider the projection π : L→ T which maps a point x with the barycentric coordinates {λi} to the point

π(x) whose i-th barycentric coordinate is equal to max(λi, 0).
It is easy to see that the map π(x, t) defined by

π(x, t) = (1− t)x+ tπ(x)

satisfies the conditions of the Lemma. �

Let {Ti} be an ordered collection of faces of the simplex T of size N . Consider the following two sets equipped
with the covering by N closed convex sets:

• the union
⋃N
i=1 Ti, equipped with the covering by the faces Ti from the set {Ti};

• the union
⋃N
i=1 LTi of affine spans LTi of faces Ti, equipped with the covering by the spaces LTi .

Theorem 4.2. The natural embedding
⋃
Ti →

⋃
LTi

makes
⋃
Ti a strong deformation retract of

⋃
LTi

. More-
over, the deformation retraction can be chosen to preserve the covering of

⋃
LTi

by affine spaces LTi

Proof. Indeed as the required projection and its homotopy one can take the restriction of the homotopy from
Lemma 4.1 to

⋃
LTi

. �

4.1. Barycentric subdivision and corresponding affine subspaces. Let ∆ be a simplicial complex and
let ∆′ be its barycentric subdivision. In particular, any simplex ∆i in ∆ corresponds to a vertex A∆i of ∆′.

Consider a collection of affine independent points in a vector space L identified with the vertices of ∆′. Then
∆′ is naturally embedded to the simplex T generated by this collection.

For a vertex Ai of ∆ let it’s star St(Ai) be the collection of simplices of ∆ having Ai as a vertex. Each star
St(Ai) defines a face Ti of T be taking the convex hull of vertices of T which correspond to simplices in St(Ai).

Let X∆ be the union of all the faces Ti ⊂ T corresponding to the vertices of ∆. The set X = X∆ has a
natural covering by the faces Ti. On the other hand, let Y be the union of affine spans LTi for all the faces Ti
corresponding to the vertices of ∆. The set Y has a natural covering by the subspaces LTi

.
The following statement is an immediate corollary of Theorem 4.2.

Corollary 4.3. The set X ⊂ Y is a deformation retract of Y . Moreover, the deformation retraction respects
the coverings of X by Ti and of Y by LTi

.
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Theorem 4.4. The nerve of the covering of X by Ti can be naturally identified with the nerve of the covering
of Y by LTi

.
Both of these nerves can be naturally identified with the original simplicial complex ∆.

We can consider the barycentric subdivision ∆′ of ∆ as a suC’omplex of the complex of all faces of the
simplex T . Let Z be the union of all simplices in ∆′. The set Z is equipped with the following covering: with
every vertex Ai of ∆ one can associate the union Zi of all (closed) simplices, containing the vertex Ai. In other
words, Zi is the union of all the faces of T containing the vertex Ai and belonging to the simplicial complex ∆′.

Under the embedding Z → X, the sets Zi are equal to Ti ∩ Z.

Theorem 4.5. There is a map π : X → Z such that the following conditions hold:
1) the map π maps each simplex Ti to the set Zi;
2) the map π maps each simplex from Z to itself.

Proof. The set X is stratified by its covering X = ∪Ti in the following way.
Each stratum of this stratification is a nonempty intersection of some collection of the sets Ti without all

nonempty intersections of the bigger collections of sets Ti. In particular this stratification also stratifies the set
Z ⊂ X.

The set of all the strata of the above stratification can be naturally identified with the set of all simplices of
∆. Indeed the intersection ∩Tij is nonempty if and only if there is a simplex in ∆ with the vertices Aij .

In other words, the set of all the strata is in one-to-one correspondence with the set of vertices of ∆′, i.e.
with the set of vertices of T .

The triangulation of X by the faces of T belonging to X is compatible with the above stratification, i.e. each
open simplex of this triangulation is contained in some stratum.

Now one can take the barycentric subdivision of the above triangulation. It provides a good triangulation for
our stratification, i.e. for each simplex from the triangulation is compatible in the following sense: if two strata
contain two vertices of a simplex of the triangulation, then one of the strata belongs to the closure of another.

Now we are ready to defined a map π. A map π is a map from X to Z which is linear on each simplex of
the barycentric subdivision of the natural triangulation of X, which maps each vertex A of the triangulation to
the vertex of ∆′ corresponding to the stratum, containing the vertex A.

One can easily check that the map we just constructed satisfies all conditions of the Theorem, which finishes
the proof. �

Theorem 4.6. The map π : X → Z is homotopic to the identity map.
Let π̃ be the restriction of π to Z. Then π̃ maps Z to itself and this map is homotopic to the identity map.

Proof. Observe that if x ∈ Ti ⊆ X, then π(x) also belongs to Ti, as well as the entire segment joining these two
points due to the definition of the map π. Therefore one can define a linear homotopy F (x, t) = (1− t)x+ tπ(x)
between the identity map and the map π.

Furthermore, the map π̃ maps any simplex of ∆′ to itself. Hence one can define a linear homotopy G(x, t) =
(1− t)x+ tπ̃(x) between the identity map and the map π. �

4.2. Homotopy type of union of hyperplanes. Let H = {H1, . . . ,Hs} be a collection of affine hyperplanes
in Rn indexed by the set [s] = {1, . . . , s}.

Definition 4.7. The nerve KH of H is the simplicial complex on s vertices v1 . . . , vs such that a set of vertices
vi1 , . . . , vik defines a simplex in KH if and only if the intersection Hi1 ∩ · · · ∩Hik is not empty.

We will say that two hyperplane arrangements H1,H2 are combinatorially equivalent if the corresponding
nerves KH1

,KH2
are isomorphic.

Theorem 4.8. Let H = {H1, . . . ,Hs},H′ = {H ′1, . . . ,H ′s} be two combinatorially equivalent hyperplane ar-
rangements, and let X =

⋃
Hi and Y =

⋃
H ′i be the corresponding unions of hyperplanes. Then there exists a

canonical homotopy equivalence f : X → Y .

Proof. As the canonical homotopy equivalence f : X → Y one can take any map such that

f(x) ∈ H ′j for every x ∈ Hj . �

In particular, there is a canonical isomorphism between homology groups of combinatorially equivalent hy-
perplane arrangements:

f∗ : H∗(X)→ H∗(Y ).

We will say that the collection of hyperplanes {H1, . . . ,Hs} is non-degenerate if it is a non-degenerate
collection of affine subspaces. That is there is no proper linear subspace L ⊂ Rn which is parallel to all Hi’s.

Theorem 4.9. Let H be a non-degenerate arrangement of affine hyperplanes in Rn. Then their union X is
homotopy equivalent to a wedge of (n− 1)-dimensional spheres.

The number of spheres is equal to the number of bounded regions in Rn \X.
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Proof. We will prove a more general result see Theorem 4.12 and Corollary 4.13. �

Corollary 4.10. Let L ⊃ X =
⋃
Li be a non-degenerate union of affine hyperplanes Li. Then, if n > 1, the

group

Hn−1(X,Z)

is a free Abelian group generated by the cycles ∂∆j, where ∆j is a closure of the bounded open polyhedron, which
is a bounded component of L \X. All other groups Hi(X,Z) for i > 0 are equal to zero and H0(X,Z) ∼= Z.

According to the above Corollary 4.10, each cycle Γ ∈ Hn−1(X,Z) is equal to a linear combination

Γ =
∑

λj∂∆j .

Moreover, each coefficient λj is equal to the winding number of the cycle Γ around a point aj ∈ ∆j \ ∂∆j .
Now we are ready to proof Theorem 4.9. Let U ⊂ Rn be a finite union of open convex bodies: U =

⋃
Ui.

We are going to study the homotopy type of the set Rn \ U . First we need the following definition.

Definition 4.11. The tail cone of a convex body U is a set of points v ∈ Rn such that for any a ∈ U and t ≥ 0,
the inclusion a+ tv ∈ U holds.

One can check that for any convex set U ⊂ Rn the set tail(U) satisfies the following conditions.

• The set tail(U) is a convex closed cone in Rn. A convex set U is bounded if and only if tail(U) is the
origin O ∈ Rn.

• If tail(U) is a vector space L, then for any transversal space L1 (i.e. for any L1 such that Rn = L⊕L1)
the set U is representable in the form U = U1 ⊕ L, where U1 = U ∩ L1 is a bounded convex set. That
is, if tail(U) is a vector space, then one has: U = U1 ⊕ tail(U) for a certain bounded convex set U1.

If the set tail(Ui) is a linear space Li, then alongside with Ui we can also consider a shifted space ai+Li ⊂ Ui,
where ai is any point in Ui.

We will prove the following theorem.

Theorem 4.12. The set Rn \ U is homotopy equivalent to the set Rn \
⋃
{ai + Li}, where the summation is

taken over all i such that tail(Ui) is a vector space.

Assume that in Theorem all the linear spaces Li are equal to the same linear space L. Denote by T a
transversal subspace to L, i.e. such a linear subspace of Rn that Rn = T ⊕ L.

Corollary 4.13. Under the above assumptions, the set Rn \ U is homotopy equivalent to T \ {bi}, where
bi = T ∩ {ai + Li}.

Corollary 4.13 totally describes the homotopy type of the set Rn \
⋃
Hi, where {Hi} is any collection of affine

hyperplanes in Rn. Indeed, the complement Rn \
⋃
Hi is a union of open convex sets. Moreover, the maximal

linear subspaces contained in tail(Ui) are the same for each Ui: each of them is equal to the intersection of the

linear spaces H̃i parallel to the affine hyperplanes Hi.
We will need some general facts about convex bodies.

Lemma 4.14. Let U ⊂ Rn be a bounded open convex set, X be the closure of U , ∂X be the boundary of X
(i.e. X = U ∪ ∂X), and let a ∈ U be any point in U . Then ∂X is a retract of X \ {a}.

Proof. Let π : X \ {a} → ∂X be the projection of X \ {a} to ∂X from the point a. The following map provides
a homotopy retraction:

F (x, t) = (1− t)x+ tπ(x),

where x ∈ X \ {a} and 0 ≤ t ≤ 1. �

Corollary 4.15. Let U ⊂ Rn be an open convex set such that tail(U) is a vector space L. Then, by definition,
for any a ∈ U the shifted space a+L belongs to U and the set X is homotopy equivalent to the set X \L where
X is the closure of U .

We will need the following auxiliary lemma. Let us represent Rn as Rn−1 ⊕ R1 and let us use accordingly
the notation (x, y) for points in Rn, where x ∈ Rn−1 and y ∈ R1.

Let y = f(x) be a continuous function on Rn−1. Denote by X ⊂ Rn the set of points (x, y), where y ≥ f(x).
Then ∂X is the graph of the function f (i.e. (x, y) ∈ ∂X if and only if y = f(x)).

Lemma 4.16. The natural projection π : X → ∂X mapping a point (x, y) to (x, f(x)) is homotopic to the
identity map.

Proof. One can consider the following homotopy: G(x, y, t) = (1− t)(x, y) + tπ(x, y). �
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Now, assume that the set tail(U) ⊂ Rn is not a vector space, i.e. assume that there is a vector v ∈ tail(U)
such that the vector −v does not belong to tail(U).

Let a ∈ U be an arbitrary point. Since −v is not in tail(U), there is a positive number τ such that a−τv ∈ ∂X.

Let L̃ be the supporting hyperplane of x at the point a− τv.
Let us make an affine change of variables in Rn in such a way that the hyperplane L̃ becomes the hyperplane

y = 1, the point a− τv becomes the point (0, 1) and the vector v becomes the standard basis vector in R1.
After this change of coordinates, U becomes an open convex set in Rn−1 ⊕ R1 such that U belongs to the

half space y ≥ 1, and alongside with every point a ∈ U our convex set U contains the entire ray a+ τv, where
τ ≥ 0 and v is the vector (0, 1).

Consider the diffeomorphism g of the open half space y > 0 to itself defined by the following formula:

g(x, y) = (xy, y).

Lemma 4.17. Under g the closure X of U is mapped to the domain Y defined by the following condition
(x, y) ∈ Y if and only if y ≥ f(x), where f is a certain continuous function on Rn.

Proof. First, let us consider the map g̃ : ∂X → Rn−1 ⊕ {0} given by the formula:

g̃(x, y) = (xy, 0).

Let us show that g̃ is a homeomorphism of ∂X and Rn−1. For every vector x ∈ Rn−1 ⊕{0}, consider the set
of points ∂Xx ⊂ ∂X defined by the following condition: a point (x0, y0) ∈ ∂Xx if and only if x0 is proportional
to x. It is easy to see that the set ∂Xx is homeomorphic to a line.

We can parametrize it by an oriented distance from the point (0, 1) (which belongs to ∂Xx for every x) along
this curve with arbitrary chosen orientation.

Now the map g̃ maps the curve ∂Xx to the line of vectors proportional to x. Moreover this map is monotonic
and proper. Hence it provides a homeomorphism between ∂Xx and the line τx, τ ∈ R. This argument implies
that the map g̃ : ∂X → Rn−1 is a homeomorphism.

The image of ∂X under the diffeomorphism g : (x, y) 7→ (xy, y) is a graph of the function f such that f(x)
equals the coordinate y of the point (x, y) := g̃−1(x). Then the set X is mapped by this diffeomorphism to the
domain in Rn consisting of the points (x, y), where y ≥ f(x). �

Corollary 4.18. Let U ⊂ Rn be an open convex set such that the cone tail(U) is not a vector space. Then the
boundary ∂X of the closure X of U is homotopy equivalent to X.

5. generalized virtual polytopes: definitions and results

Let ∆ be a simplicial complex homeomorphic to the (n − 1)-dimensional sphere. Denote by V (∆) =
{v1, . . . , vm} the set of vertices of ∆. In what follows, we will identify simplex S of ∆ with the set of ver-
tices I ⊂ V (∆) which belongs to S.

Definition 5.1. The map λ : V (∆) → (Rn)∗ is called a characteristic map if for any vertices vi1 , . . . , vir
belonging to the same simplex of ∆ the images λ(vi1), . . . , λ(vir ) are independent. In particular, for any
maximal simplex {vi1 , . . . , vin} the images λ(vi1), . . . , λ(vin) form a basis of (Rn)∗.

The map λ : V (∆)→ (Zn)∗ is called an integer characteristic map if for any maximal simplex {vi1 , . . . , vin}
of ∆ the images λ(vi1), . . . , λ(vin) form a basis of the lattice (Zn)∗.

Let us denote by `i the linear function λ(vi) for any i ∈ [r]. The characteristic map λ defines an m-dimensional
family of hyperplane arrangements AP in the following way. For any h = (h1, . . . , hm) ∈ Rm, the arrangement
AP(h) is given as

AP(h) = {H1, . . . ,Hm} with Hi = {`i(x) = hi}.
We denote by Xh the union of hyperplanes from AP(h).

Given a subset I ∈ [s], we will denote by HI the intersection

HI =
⋂
j∈I

Hj .

It follows from the definition of the characteristic map that HI is non-empty whenever the vertices vj with j ∈ I
belong to the same simplex.

Let ∆⊥ be a dual complex to ∆, we define a correspondence between faces of ∆⊥ and the strata HI in the
following way. A face ΓI of ∆⊥ dual to a simplex I of ∆ is associated to the stratum HI .

Definition 5.2. We say that a map f : ∆⊥ → Xh is subordinate to a characteristic map λ, if for any face ΓI
of ∆⊥ we have f(ΓI) ⊂ HI .

Theorem 5.3. The space of maps f : ∆⊥ → Xh subordinate to a characteristic map λ is a non-empty convex
set. In particular, every two such maps are homotopic.
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Proof. First let us show the second part of the lemma assuming that a map f : ∆⊥ → Xh subordinate to
coverings exists. First notice that HI is convex for any I ⊂ [m]. Therefore, for any two maps f, f ′ : ∆⊥ → Xh

subordinate to the coverings, any member of the linear homotopy between them is also subordinate to the
covering:

ft := (1− t)f + tf ′, t ∈ [0, 1].

Thus the space of maps f : ∆⊥ → Xh subordinate to coverings of K ′ and Xh is contractible (assuming it is
non-empty).

To show the existence of such maps we use the following construction. First let us choose any inner product
on Rn. This defines a set of distinguished points xI ∈ HI via taking orthogonal projection of the origin in Rn
to a subspace HI . On the other hand, vertices of the barycentric subdivision ∆⊥ of ∆ are in bijection with
simplices of ∆, hence are labeled by subsets I ⊂ [m].

We construct the map fh : ∆⊥ → Xh subordinate to the coverings in the following way. First we define the
image of vertices vI of ∆⊥ by

fh(vI) = xI ,

and then we extend the map by linearity. A map fh is well defined since (∆,Λ) is a characteristic pair
(indeed, HI is nonempty whenever I indexes a simplex in ∆) and is subordinate to the covering by st(vi), by
construction. �

The family of maps fh : ∆⊥ → Xh satisfies another nice property.

Corollary 5.4. In the situation as before, one has fh+h′ = fh + fh′ .

Proof. The statement follows from the fact that the frame points xI used in the construction depend linearly
on h ∈ Rn:

xI,h+h′ = xI,h + xI,h′ . �

With every hyperplane arrangement AP(h) let us associate a chain ∆(h) =
∑
iW (Ui, f), where Ui are the

connected components of the compliment Rn \ AP(h), and f : ∆⊥ → AP(h) is any map subordinate to the
coverings. Since any two such maps are homotopic, the chain ∆(h) is well-defined.

Definition 5.5. We will call the chain ∆(h) a generalized virtual polytope associated to a simplicial complex
∆, characteristic map Λ and a vector h ∈ Rm. We denote by PK,Λ ' Rm the space of all generalized virtual
polytope associated to a simplicial complex ∆ and characteristic map Λ.

Remark 5.6. Classical virtual polytopes are defined as convex chains and hence, they carry more information
then a chain ∆(h): the chain ∆(h) is only a full-dimensional part of virtual polytope. However, in this paper
we only interested in volumes of generalized virtual polytopes and integrals over them, so it is enough for us
to work with the chain ∆(h). We will study other valuations on the space of generalized virtual polytopes in
future work.

5.1. Integration over generalized virtual polytopes. Let α be a (n− 1)-form on Rn given by

α = P1d̂x1 ∧ · · · ∧ dxn + · · ·+ Pndx1 ∧ · · · ∧ d̂xn.

Here the symbol d̂xi means that the term dxi is missing. The following Theorem is obvious.

Theorem 5.7. If all coefficients Pi of the form α are polynomials of degree k (a polynomial of degree ≤ k)
on Rn then the function

∫
∆⊥

f∗α is a homogeneous polynomial of degree k + n − 1 (a polynomial of degree

≤ k + n− 1) on the space of mappings f : ∆⊥ →
⋃
AP(h)Hi subordinate to the corresponding covering.

Proof. Analogous to the proof of Theorem 2.1 since by Corollary 5.4 the family of maps fh can by chosen so
that fh1

+ fh2
= fh1+h2

. �

Let U be a bounded region of Rn \
⋃
AP(h)Hi and W (U, f) be a winding number of a map f as before. The

following proposition follows from the Stokes theorem.

Proposition 5.8. Let α be as before and dα = Qω where Q is a polynomial of degree ≤ k (homogeneous
polynomial of degree k) on Rn and ω = dx1 ∧ · · · ∧ dxn is the standard volume form on. Then the following
identity holds ∑

W (U, f)

∫
U

Qω =

∫
∆⊥

f∗α

for f : ∆⊥ →
⋃
AP(h)Hi subordinate to the corresponding covering.

In particular
∑
W (U, f)

∫
U
Qω is a polynomial of degree ≤ k + n − 1 (homogeneous polynomial of degree

k + n− 1) on the space of mappings f : ∆⊥ →
⋃
AP(h)Hi subordinate to the corresponding covering.
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For a polynomial Q on Rn and a generalized virtual polytope f : ∆⊥ →
⋃
AP(h)Hi, let us denote by IQ(f)

the integral ∑
W (U, f)

∫
U

Qω.

The following lemma computes the derivatives of IQ.

Lemma 5.9. Let f : ∆⊥ →
⋃
AP(h)Hi be a generalized virtual polytope given by the simplicial complex ∆ on

s vertices. Let I = {i1, . . . , ir} ⊆ {1, . . . , s} be a subset such that ρi1 , . . . , ρir do not span a simplex in ∆ and
k1, . . . , kr positive integers, then we have

∂k1
i1
· · · ∂krir (IQ) (f) = 0.

However, if r = n and ρi1 , . . . , ρin span a simplex in ∆ dual to the vertex A ∈MR, we have

∂I (IQ) (f) = sign(I)Q(A) · | det(ei1 , . . . , ein)|.

Proof. By linearity of derivation it is enough to compute the partial derivatives for each summandW (U, f)
∫
U
Qω

separately.
In the first case, when ρi1 , . . . , ρir do not span a simplex in ∆, the intersection of corresponding hyperplanes

Hi1 , . . . ,Hir do not correspond to a vertex of U for any bounded region of Rn \
⋃
AP(h)Hi with W (U, f) 6= 0.

Hence ∂k1
i1
· · · ∂krir (IQ) (f) = 0 by [HKM20, Lemma 6.1].

On the other hand, if ρi1 , . . . , ρin span a simplex in ∆, then there is exactly one region Ui of Rn \
⋃
AP(h)Hi

having the intersection

A = Hi1 ∩ . . . ∩Hin

as a vertex. Then by [HKM20, Lemma 6.1] we get

∂I (IQ) (f) = ∂I

∫
Ui

Qω = sign(I)Q(A) · | det(ei1 , . . . , ein)|.

�

As an immediate consequence of Lemma 5.9 we obtain the following corollary.

Corollary 5.10. Let f : ∆⊥ →
⋃
AP(h)Hi be a generalized virtual polytope given by the simplicial complex ∆

on s vertices. Let I = {i1, . . . , ir} ⊆ {1, . . . , s} be a subset such that ρi1 , . . . , ρir do not span a simplex in ∆ and
k1, . . . , kr positive integers, then we have

∂k1
i1
· · · ∂krir Vol(f) = 0.

However, if r = n and ρi1 , . . . , ρin span a simplex in ∆ dual to the vertex A ∈MR, we have

∂IVol(f)(f) = sign(I) · | det(ei1 , . . . , ein)|.

6. Cohomology of generalized quasitoric manifolds

In this section we will describe the cohomology rings of a class of torus manifolds called generalized quasitoric
manifolds. Let T ' (S1)n be a compact torus with character lattice M and N = M∨. Let K be an abstract
simplicial complex of dimension n − 1 on the vertex set [m] = {1, 2, . . . ,m}. Recall that its moment-angle-
complex ZK is defined to be the (m + n)-dimensional cellular subspace in the unitary polydisc (D2)m ⊂ Cm

given by the formula
⋃
I∈K

m∏
i=1

Yi, where Yi = D2, if i ∈ I and Yi = S1, otherwise.

There is a natural (coordinatewise) action of the compact torus (S1)m on ZK and the orbit space ZK/(S1)m

is homeomorphic to the cone over the barycentric subdivision of K.
In what follows we assume that K = KΣ is a starshaped sphere, i.e. an intersection of a complete simplicial

fan Σ in Rn ' N ⊗Z R with the unit sphere Sn−1 ⊂ Rn). In this case, the moment-angle-complex ZK is
homeomorphic to the moment-angle manifold and therefore acquires a smooth structure.

Let further, Λ : Σ(1)→ N be a characteristic map, i.e. such a map that the collection of vectors

Λ(ρ1), . . . ,Λ(ρk)

can be completed to a basis of the cocharacter lattice N , whenever ρ1, . . . , ρk generate a cone in Σ. Then
the (m − n)-dimensional subtorus HΛ := ker exp Λ ⊂ (S1)m acts freely on ZK and the smooth manifold
XΣ,Λ := ZK/HΛ will be called a generalized quasitoric manifold.

Our description of cohomology rings of XΣ,Λ will be given in three steps:

(i) We give a cell decomposition of XΣ,Λ and show that H∗(XΣ,Λ) is generated by the classes of character-
istic submanifolds of codimension 2;

(ii) We show that two sets of relations are satisfied between classes of characteristic submanifolds of codi-
mension 2;
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(iii) We prove a version of BKK theorem for XΣ,Λ and use it to get Pukhlikov-Khovanskii type description
of H∗(XΣ,Λ).

Remark 6.1. Steps (ii) and (iii) above could be used in the much more general situation of torus manifolds.
However, in this more general case the algebra obtained by Pukhlikov-Khovanskii description might be differ-
ent from the cohomology ring. Indeed, the algebra computed by the intersection polynomial is the Poincaré
duality quotient of the subalgebra of cohomology ring generated by classes of characteristic submanifolds of
codimension 2 (see [AM16] for details).

In what follows we will always assume that our generalized quasitoric manifolds are omnioriented ; as in the
case of a quasitoric manifold, we say that XΣ,Λ is omnioriented if an orientation is specified for XΣ,Λ and for
each of the m codimension-2 characteristic submanifolds Di. The choice of this extra data is convenient for two
reasons. First, it allows us to view the circle fixing Di as an element in the lattice N = Hom(S1, Tn) ' Zn.
But even more importantly, the choice of omniorientation defines the fundamental class [XΣ,Λ] of XΣ,Λ as well
as cohomology classes [Di] dual to the characteristic submanifolds.

We further assume that Σ ⊂ Rn and NR are endowed with orientation. This defines a sign for each collection
of rays ρi1 , . . . , ρin forming a maximal cone of Σ in the following way. Let I = {i1, . . . , in} be a set of indices
ordered such that the collection of rays ρi1 , . . . , ρin is positively oriented in Rn. Then

sign(I) = det(Λ(ρi1), . . . ,Λ(ρin)) = ±1.

Finally, as before, with a characteristic pair (Σ,Λ) we associate a space of generalized virtual polytopes
PΣ,Λ ' Rm. For every generalized virtual polytope ∆(h) ∈ PΣ,Λ we associate an element of H2(XΣ,Λ) in the
following way

∆(h) 7→ h1[D1] + . . .+ hm[Dm] ∈ H2(XΣ,Λ),

there D1, . . . , Dm are the codimension 2 characteristic submanifolds with oriented in according to the omniori-
entation of XΣ,Λ.

6.1. Cell decomposition of generalized quasitoric manifolds. To provide the cell decomposition of the
generalized quasitoric manifold XΣ,Λ let us first give a slightly different description of the moment-angle complex
ZK for a starshaped sphere K = KΣ. The moment-angle complex is given as a disjoint union of strata
ZK =

⊔
σ∈ΣHσ, where

Hσ = ZK ∩

( ⋂
ρi∈σ
{zi = 0}

)
∩

 ⋂
ρj /∈σ

{zj 6= 0}

 ⊂ Cm.

Our construction of a cell decomposition of XΣ,Λ is a slight generalization of the Morse theoretic argument
introduced in [Kho86] and applied to quasitoric manifolds in [DJ91]. Since we do not assume that Σ is a dual
fan to some polytope, we cannot use the generic linear function as in [Kho86]. Instead, let us choose a vector
v ∈ Rn in a general position with Σ, i.e. a vector v which belongs to the interior of a full dimensional cone of Σ.

Let τ1, . . . , τs be cones of dimension n in Σ. For a maximal cone τ , we will say that a face σ of τ is incoming
with respect to vector v if the intersection τ ∩ (σ + v) is unbounded. Let us further define the index ind(τ) of
a maximal cone τ to be the number of incoming rays of τ .

For each maximal cone τ , we us associate a disjoint union of open cells of ZK via

Ũτ =
⊔
σ

Hσ,

where the union is taken all incoming faces σ of τ . Since each cone σ is incoming for exactly one cone of maximal

dimension τ , we get ZK =
⊔s
i=1 Ũτi . That the cells Uτ are invariant under the action of H ' (S1)m−n and that

Ũτ ' (D2)ind(τ) × (S1)m−n.

Moreover, the action of H is free and transitive on the second component of (D2)indσ× (S1)m−n, hence we get:

XΣ,Λ

s⊔
i=1

Ũτi/H,

where Ũτi/H ' (D2)ind(τ)

Theorem 6.2. Let XΣ,Λ be a generalized quasitoric manifold. Then XΣ,Λ has a cellular decomposition with
only even dimensional cells. The cells in the decomposition are in bijection with maximal cones τ in Σ. The
dimension of the cell corresponding to a cone τ is 2ind(τ).

Corollary 6.3. The Euler characteristics of XΣ,Λ is equal to the number of maximal cones in Σ.
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6.2. Relations between characteristic submanifolds. In this subsection we will show two sets of relations
between classes of codimension 2 characteristic submanifolds in the cohomology ring of XΣ,Λ. In the following
proposition we show the Stanley-Raisner relations in H∗(XΣ,Λ).

Proposition 6.4. For codimension 2 characteristic submanifolds Di1 , . . . , Din in a generalized quasitoric man-
ifold XΣ,Λ, one has:

[Di1 ] · · · [Din ] =

{
sign(I) if ρi1 . . . , ρin form a cone in Σ

0 otherwise

Proof. Indeed, in the intersection ring of the generalized quasitoric manifold XΣ,Λ we have: [Di1 ] · · · [Din ] =
(−1)v, the sign of the fixed point v = Di1 ∩ · · · ∩Din ∈ XΣ,Λ, which compares two orientations on TvXΣ,Λ: the
one induced by coorientations of characteristic submanifolds D′is and the one induced by the representation of
Tn := Tm/H in the tangent space TvXΣ,Λ

∼= Cn.
On the other hand, the weights of the tangential representation of the compact torus Tn at the fixed point v

form a lattice basis dual to (Λ(ρi1), . . . ,Λ(ρin)). Therefore, the sign (−1)v = det(Λ(ρi1), . . . ,Λ(ρin)) = sign(I),
which finishes the proof. �

To obtain linear relations we need to analyze further the construction of generalized quasitoric manifolds.
There are coordinate line bundles. Let L1, . . . , Lm be natural (S1)m-equivariant line bundles on ZK , for an
integer vector k = (k1, . . . , km) ∈ Zm the tensor product

Lk = Lk1
1 ⊗ . . .⊗ Lkmm

descends to a complex line bundle L̃k on XΣ,Λ. Moreover, if k ∈ ZM is such that the corresponding character

acts trivially on HΛ ⊂ (S1)m, the descendant bundle L̃k is topologically trivial. It is easy to see that there is a

smooth section of L̃k with the degenerate locus given by
∑m
i=1 ki[Di]. By exactness of the sequence

0→M
Λ∗−−→ Zm →MHΛ

→ 0,

the characters k acting trivially on HΛ are identified with the character lattice M of T with ki = χ(vi) for
χ ∈M and vi = Λ(ρi). Thus we obtain the following proposition.

Proposition 6.5. For any character χ ∈M , the following linear relation in H2(XΣ,Λ) holds:
m∑
i=1

χ(vi)[Di] = 0,

where vi := Λ(ρi) for 1 ≤ i ≤ m.

Proof. Indeed, the descendant line bundle L̃χ(v1),...,χ(vm) is trivial and hence

c1(L̃χ(v1),...,χ(vm)) =

m∑
i=1

χ(vi)[Di] = 0. �

6.3. BKK theorem and Pukhlikov-Khovanskii description. In particular, Theorem 6.10 means that to
obtain a description of the cohomology ring of quasitoric manifold it is enough to compute the self-intersection
polynomial

h1[D1] + . . .+ hm[Dm] 7→ 〈(h1[D1] + . . .+ hm[Dm])m, [XΣ,Λ]〉
on the space of combination of classes of codimemsion 2 characteristic submanifolds. This is the subject of the
following theorem.

Theorem 6.6. Let XΣ,Λ be a generalized quasitoric manifold with codimension 2 characteristic submanifolds
D1, . . . , Dm. Then the following identity holds

〈(h1[D1] + . . .+ hm[Dm])m, [XΣ,Λ]〉 = n!V ol(fh),

where fh ∈ PΣ,Λ is a generalized virtual polytope given by parameters h = (h1, . . . , hm).

Proof. Let us identify the space of linear combinations h1[D1] + . . . + hm[Dm] with the space of generalized
virtual polytopes PΣ,Λ. Under this identifications both self-intersection and volume functions are homogeneous
polynomials of degree n on PΣ,Λ. Let us denote them by S : PΣ,Λ → R and V ol : PΣ,Λ → R respectively.

To show equality S(h) = n!V ol(h) it is enough to prove equality of any partial derivatives of S and V ol of
degree n:

∂k1
i1
. . . ∂ksis S(h) = n! · ∂k1

i1
. . . ∂ksis V ol(h),

where ∂ij = ∂/∂hij and
∑s
j=1 kij = n.

Let us call the number
∑s
i=1(ki − 1) the multiplicity of the monomial ∂k1

i1
. . . ∂ksis . In particular, a monomial

has multiplicity 0 if and only if it is square free. We will prove the equality by induction in multiplicity of
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differential monomial. For square free monomials, the equality follows from the first part of Corollary 5.10 and
Proposition 6.4. Indeed, for by Corollary 5.10 we have if r = n and ρi1 , . . . , ρin span a simplex in ∆ dual to the
vertex A ∈MR, we have

∂i1 . . . ∂inVol(h) =

{
sign(i1, . . . , in), if ρi1 , . . . , ρin span a cone in Σ;

0, otherwise.

On the other hand ∂i1 . . . ∂inS(h) is equal to the coefficient in front of ti1 . . . , tin in the polynomial S(h +
(t1 . . . , tm). We get

S(h+ (t1 . . . , tn) = 〈((h1 + t1)[D1] + . . .+ (hm + tm)[Dm])m, [XΣ,Λ]〉 = ti1 . . . tin · n! · 〈Di1 . . . Din , [XΣ,Λ]〉+ . . .

Hence by Proposition 6.4 we get

∂i1 . . . ∂inS(h) =

{
n! · sign(i1, . . . , in), if ρi1 , . . . , ρin span a cone in Σ;

0, otherwise.

Now, let us assume that the equality of partial derivatives is true for all differential monomials of multiplicity
r − 1. Let ∂k1

i1
. . . ∂ksis be differential monomial of multiplicity r with k1 ≥ 1. We can assume that ρi1 , . . . , ρik

span a cone in Σ since otherwise

∂k1
i1
. . . ∂ksis S(h) = n! · ∂k1

i1
. . . ∂ksis V ol(h) = 0.

In that case there is a character χ ∈M such that

〈χ,Λ(ρi1)〉 = 1, 〈χ,Λ(ρi2)〉 = 0, . . . , 〈χ,Λ(ρik)〉 = 0.

Therefore, since the volume is invariant under the translation of generalized virtual polytope, we get

∂k1
i1
. . . ∂ksis V ol(h) = −

∑
l 6=ij

〈χ,Λ(ρl)〉∂l∂k1−1
i1

. . . ∂ksis V ol(h)

and similarly by Proposition 6.5:

∂k1
i1
. . . ∂ksis S(h) = −

∑
l 6=ij

〈χ,Λ(ρl)〉∂l∂k1−1
i1

. . . ∂ksis S(h).

Moreover, the differential monomials on the right hand side of the expressions above have multiplicity less then
r, so the equality

∂k1
i1
. . . ∂ksis S(h) = n! · ∂k1

i1
. . . ∂ksis V ol(h)

follows from the induction hypothesis. �

We will finish this subsection with the a different interpretation of Theorem 6.6. Let us first recall the
classical interpretation of the BKK theorem for toric variety. The Newton polyhedron ∆(f) ⊂ Rn of a Laurent
polynomial f =

∑
aix

ki is the convex hull of vectors ki with ai 6= 0. For a fixed polytope ∆ let E∆ be a finite
dimensional vector space of Laurent polynomials f such that ∆(f) ⊂ ∆. BKK theorem computes the number
of solutions of a system f1 = . . . = fn = 0 in (C∗)n of generic Laurent polynomials with fixed Newton polytopes
∆1, . . . ,∆n.

Theorem 6.7 (BKK Theorem). Let f1, . . . , fn be generic Laurent polynomials with ∆(fi) ⊂ ∆i. Then all
solutions of the system f1 = . . . = fn = 0 in (C∗)n are non-degenerate and the number solutions is

n!V ol(∆1, . . . ,∆n),

where V ol is the mixed volume.

One can reformulate Theorem 6.6 in a similar way. Let ∆1, . . . ,∆n be generalized virtual polytopes in PΣ,Λ

associated to a generalized quasitoric manifold XΣ,Λ. Let L∆i be a line bundle associated to the generalized
virtual polytope ∆i and let E∆ = Γ(XΣ,Λ, L∆i

) be the space of smooth sections of L∆i
. Then Theorem 6.6 can

be reformulated in the following way.

Theorem 6.8. Let s1, . . . , sn be generic Laurent polynomials with si ∈ E∆i
. Then all solutions of the system

s1 = . . . = sn = 0 in XΣ,Λ are non-degenerate and the number solutions counted with signs is

n!V ol(∆1, . . . ,∆n),

where V ol is the mixed volume of generalized virtual polytopes.

Remark 6.9. Note that in algebraic case, the multiplicity of each non-degenerate root is 1, however in the case
of smooth sections si ∈ Γ(XΣ,Λ, L∆i

) the multiplicity of a non-degenerate root might be −1. Nevertheless, the
number solutions counted with signs still can be computed as mixed volume.
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6.4. Cohomology ring of a generalized quasitoric manifold. In this subsection we use the approach
introduced by Pukhlikov and the first author for the computation of cohomology rings. The central ingredient
for such a description is an exact computation of Macalaey inverse systems for graded algebras with Poincaré
duality generated in degree 1.

We will call a graded, commutative algebra A =
⊕n

i=0Ai over a field K of characteristic 0 a Poincaré duality
algebra if

• A0 ' An ' K;
• the bilinear map Ai ×An−i → An is non-degenerate for any i = 0, . . . , n (Poincaré duality).

The main example of Poincaré duality algebras comes from the following example. Let X be a smooth manifold
of dimension 2n. Then the algebra of even degree cohomology classes A =

⊕n
i=0H

2i(X) is a Poincaré duality
algebra. In particular, since H2i+1(XΣ,Λ) = 0 for a generalized quasitoric manifold, H∗(XΣ,Λ) is also a Poincaré
duality algebra. The following theorem gives a description Poincaré duality algebras.

Theorem 6.10. Let A be a Poincaré duality algebra which is generated (as an algebra) by the elements A1 =
K〈v1, . . . , vr〉 of degree one. Then

A ' K[t1, . . . , tr]/{p(t1, . . . , tr) ∈ K[t1, . . . , tr] : p(
∂
∂x1

, . . . , ∂
∂xr

)f(x1, . . . , xr) = 0}
where we identify A1 with Kr via a basis v1, . . . , vr and define f : A1 ' Kr → K as the polynomial given by
f(x1, . . . , xr) = (x1v1 + . . .+ xrvr)

n ∈ An ' k.

Theorem 6.10 was used in [PK92a] to give a description of cohomology ring of a smooth projective toric
variety. Later it was used in [Kav11] to provide a description of cohomology ring of full flag varieties G/B. A
more general version of Theorem 6.10 was recently obtained in [KM21] and used in [HKM20, KLM21] to give
a description of cohomology ring of toric and quasitoric bundles.

Theorem 6.10 accepts a coordinate free reformulation. Indeed, the ring K[t1, . . . , tr] in Theorem 6.10 can be
identified with the ring of differential operators with constant coefficients Diff(A1) on A1. Hence the description
of algebra A becomes

A ' Diff(A1)/Ann(f),

where Ann(f) = {D ∈ Diff(A1) |D · f = 0 is the annihilator ideal of f .

Theorem 6.11. Let XΣ,Λ be a generalized quasitoric manifold and let PΣ,Λ be the space of generalized virtual
polytopes associated to it. Then the cohomology ring H∗(XΣ,Λ) can be computed as

H∗(XΣ,Λ) = Diff(PΣ,Λ)/Ann(Vol),

where Diff(PΣ,Λ) is the ring of differential operators with constant coefficients on PΣ,Λ and Ann(Vol) is the
annihilator ideal of the volume polynomial.

Proof. By Theorem 6.2 the cohomology ring H∗(XΣ,Λ) is generated by the classes of codimension 2 charac-
teristic submanifolds of XΣ,Λ. Hence there is a surjection Diff(PΣ,Λ) → H∗(XΣ,Λ) with a kernel given by
Theorem 6.10 as the annihilator ideal of self-intersection polynomial S(h) of classes of codimension 2 charac-
teristic submanifolds. However by Theorem 6.6 S(h) = n!Vol(h) and hence:

H∗(XΣ,Λ) = Diff(PΣ,Λ)/Ann(S) = Diff(PΣ,Λ)/Ann(Vol).

�
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