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Abstract. A cosmological polytope is a lattice polytope introduced by Arkani-Hamed, Benincasa, and Post-

nikov in their study of the wavefunction of the universe in a class of cosmological models. More concretely, they
construct a cosmological polytope for any Feynman diagram, i.e. an undirected graph. In this paper, we initiate

a combinatorial study of these polytopes. We give a complete description of their faces, identify minimal faces

that are not simplices and compute the number of faces in specific instances. In particular, we give a recursive
description of the f -vector of cosmological polytopes of trees.

1. Introduction

Arkani-Hamed, Benincasa, and Postnikov defined a cosmological polytope PG for every undirected graph
G = (V,E), that is V = {v1, . . . , vk} is a finite set of vertices and E = {e1, . . . , en} a finite set of edges with
ei = {vj1 , vj2} for some 1 ≤ j1, j2 ≤ k. Throughout this article we work in the space R|V |+|E| with standard
basis vectors xvi , yej for 1 ≤ i ≤ k and 1 ≤ j ≤ n.

Definition 1.1 ([2]). The cosmological polytope PG associated with a graph G = (V,E) is the convex hull of
the following 3|E| vertices

PG = conv

 ⋃
e={v,w}∈E

{ye + xv − xw,ye − xv + xw,−ye + xv + xw} ∪
⋃
v∈V

xv

 .

For an edge e = {v, w} we will denote the above points in Rn+k by

pe = −ye + xv + xw, pe,w = ye − xv + xw, pe,v = ye + xv − xw.

Remark 1.2. Definition 1.1 is slightly different from the standard definition of cosmological polytopes in [2],
where a cosmological polytope is defined as a convex hull of vertices pe, pe,v, pe,w only. The two definitions
coincide in the case of connected graphs with at least one edge since xv ∈ conv(pe, pe,v, pe,w) for any edge
e = {v, w} of G. However, Definition 1.1 works better for disconnected graphs with singleton vertices, which
might appear in the recursion in Section 4.

Example 1.3. The cosmological polytope of a graph consisting of two parallel edges e, e′ between two vertices
v, w is a prism over a triangle which is depicted in Figure 1.

e

e′

v w
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Figure 1. The graph on the left corresponds to the cosmological polytope on the right.

1.1. Physical perspective. In recent years a connection between the physics of scattering amplitudes and a
class of mathematical objects called positive geometries was discovered [1]. Positive geometries can be thought
of as a vast generalization of convex polytopes, they encompass objects such as polytopes, the positive Grass-
mannian, and tree and loop Amplituhedra [4, 5]. The connection of positive geometries to physics is usually via
a top-dimensional form uniquely determined by the condition that it has logarithmic singularities (only) along
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all boundary components of a positive geometry. Thus computing the canonical form is the central goal in the
studies of positive geometries.

There are two standard ways to compute the canonical form of a positive geometry. The first method is to
find a subdivision of a positive geometry X into simpler positive geometries Y1, . . . Yk. In this case, the canonical
form ΩX of X is given as the sum

ΩX = ΩY1 + . . .+ ΩYk
.

This strategy provides a direct way to get an expression for the canonical form and was successfully applied in
a number of situations [7, 11, 14, 17, 19, 20].

The disadvantage of this method is that one doesn’t obtain a closed formula for the canonical form. Thus it
is sometimes more convenient to compute the canonical form directly from its definition. More concretely, let
D1, . . . , Dr be the boundary components of a positive geometry X defined by polynomials f1, . . . , fr respectively.
Then the condition on the singularities of the canonical form guarantees that it can be written as

ΩX =
g

f1 · . . . · fr
ω,

where g is some polynomial and ω is a regular form on X. Thus the problem of computing ΩX boils down to
the computation of the numerator polynomial g. Moreover, the polynomial g is determined by the condition
that it should cancel on the poles of 1/f1 · . . . · fr outside of X, i.e. g should vanish along the intersections of
the Di’s outside of X [3]. This observation leads to explicit formulas for the canonical form. One particular
example is [16] where the numerator of the canonical form of a plane positive geometry was identified as the
adjoint curve to the boundary.

In [2], it was noticed that the connection between physics and positive geometries extends further to cos-
mology. More concretely, the cosmological polytope is constructed in [2] as the positive geometric counterpart
to the physics of cosmological time evolution and the wavefunction of the universe. This motivates the study
of subdivisions and the face structure of cosmological polytopes as their facets are the components D1, . . . , Dr

that are relevant for the computation of ΩX as discussed above.

1.2. Combinatorial perspective. There are several constructions of polytopes arising from graphs. The
most relevant to cosmological polytopes are symmetric edge polytopes which recently gained considerable at-
tention [9, 10, 15]. In particular, the symmetric edge polytope is the image of a linear projection of a facet of
the cosmological polytope (the scattering facet) of the same graph. Moreover, this projection sends the vertices
of the scattering facet to the vertices of the symmetric edge polytope. Thus the information on the faces of
cosmological polytopes can be used to study coherent subdivisions of symmetric edge polytopes.

1.3. Our contribution. In this paper, we start a comprehensive study of the faces of cosmological polytopes.
Concretely, we give a criterion for a subset of vertices of PG to form a face in Section 3.1. This criterion can
be checked easily by considering basic properties of the graph G. As explained above, knowledge of the faces
of PG is relevant to determine the numerator of the canonical form of the polytope.

Subsequently, in Section 3.2, we describe two special families of faces of PG, corresponding to the vertices
and cycles of G, respectively. Our general face criterion yields that the faces of these two families are exactly
the minimal faces in PG that are not simplices.

For the special case of a tree T , we present a recursive way to compute the f -vector of the cosmological
polytope PT via the f -vectors of smaller trees in Section 4. Such a recursive relation is based on the geometric
realization of the cosmological polytope PG′ as a pyramid over a bipyramid over a cosmological polytope PG if
G′ obtained from G by adding a leaf. As a byproduct this yields that the normalized volume of the cosmological
polytope of any tree with e edges is 4e. This geometric construction also lies behind the recursive formulae
for the wavefunction of the universe obtained in [2] via the frequency representation of the propagators. For
example, for a path graph Πn on n nodes, we obtain the following recursion for the f -polynomial fΠn

(t) of the
polytope PΠn

fΠn+2
(t) = (1 + t)((1 + 2t)fΠn+1

(t)− t2(1 + t)fΠn
(t)).

We close in Section 5 by applying our methods to counting specific classes of faces of cosmological polytopes.
Theorem 5.1 gives exact formulae for the number of 1- and 2-dimensional faces of cosmological polytopes.
Subsequently, we count simplex faces of cosmological polytopes of graphs with one cycle in Section 5.2. For
example, the total number of simplex faces of the cycle graph on n nodes is 5n − 2n+1.

1.4. Acknowledgments. We would like to thank Bernd Sturmfels for introducing us to the topic of cosmolog-
ical polytopes. Furthermore, we are very grateful to Paolo Benincasa for numerous insightful discussions about
these polytopes and their physical background.
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2. Preliminaries

In this section, we recall standard definitions and previous results on cosmological polytopes. We refer to [21]
for an in-depth introduction to polytopes and to [2, 6] for a detailed introduction to cosmological polytopes.

A polytope P ⊆ Rd is the convex hull of finitely many points in Rd. A face F ⊆ P is the set of points in the
polytope P that maximizes a linear functional φ : Rd → R. The dimension of a face is the dimension of the
affine space spanned by its points. Faces of dimension dim(P )− 1 are called facets. Each polytope has finitely
many faces and their numbers are counted in the f -vector f(P ) of P which is f(P ) = (f−1, f0, . . . , fdim(P ))
where fi is the number i-dimensional faces of P and we set f−1 = fdim(P ) = 1.

Our analysis of the facial structure of cosmological polytopes relies on the following characterization of the
facets of a cosmological polytope proved by Arkani-Hamed, Benincasa and Postnikov.

Theorem 2.1. [[2]] Facets of PG are in bijection with connected subgraphs H = (VH , EH) of G. Under this
bijection, a subgraph H corresponds to the facet FH with all vertices of PG except

• pe for an edge e ∈ EH ;
• pe,v for an edge e = {v, w} of G with v ∈ VH and w /∈ VH .

Moreover, the facet FH is the intersection of PG with the following hyperplane∑
v∈VH

xv +
∑

e={v,w},v∈VH ,w/∈VH

ye = 0.

The facet FG associated with the entire graph is called the scattering facet.

3. Face structure of cosmological polytopes

3.1. General faces. We start by giving a criterion that characterizes the faces of cosmological polytopes.

Theorem 3.1. Let G = (V,E) be an undirected graph. A set of vertices X ⊆ V (PG) defines a face of PG if
and only if X satisfies both of the following two conditions.

(i) If for a node v ∈ V the set X contains the vertices pe and pe,v for an edge e = {v, w} ∈ E then X
contains the vertices pe′ and pe′,v for all edges e′ = {v, w′} ∈ E.

(ii) If X contains a subset {pe1,v1 , pe2,v2 . . . , pek,vk} for a cycle e1 = {v1, v2}, . . . , ek = {vk, v1} in G, then
X also contains the subset {pe1,v2 , pe2,v3 , . . . , pek,v1}.

Proof. First, we show that every set of vertices X satisfying the conditions (i) and (ii) defines a face of PG. We
do this by proving that X is an intersection of facets of PG. Let y be a vertex of PG with y /∈ X. It suffices to
find a facet FH with X ⊆ FH and y /∈ FH . There are two cases: y = pe or y = pe,v for some e ∈ E and v ∈ V .

Case 1: Suppose y = pe. Let us define H = (VH , EH) to be the connected component of the edge induced
subgraph {e | pe /∈ X} containing the edge e. Then the facet FH contains all vertices of PG except the
vertices pe′ with e′ ∈ EH and the vertices pe′′,v′′ with e′′ = {v′′, w′′} such that v′′ ∈ VH but w′′ 6∈ VH .
Since e ∈ H, the facet FH does not contain y. Moreover by construction, FH contains all vertices in X
of the form pe′ for some e′ ∈ E.

Secondly, consider a vertex pe′′,v′′ ∈ X for some e′′ = {v′′, w′′}. Assume for a contradiction that
pe′′,v′′ 6∈ FH . Thus by Theorem 2.1 this means that v′′ ∈ VH but w′′ 6∈ VH and therefore e′′ 6∈ EH .
Thus, pe′′ ∈ X. Since H is connected, there exists an edge f ∈ EH that is adjacent to v′′. By condition
(i) the vertex pf ∈ X which contradicts the construction of H.

Case 2: Let y = pe,v with e = {v, w}. We define a connected subgraph H inductively. Let H0 = {v} be
the vertex v itself. The subgraph Hi+1 is defined from Hi in the following way:

Hi+1 := Hi ∪ {e′ = {v′, w′} | v′ ∈ Hi, w
′ /∈ Hi, and pe′,v′ ∈ X}.

Since Hi ⊆ Hi+1 and G is a finite graph, the sequence (Hi)i∈N stabilizes. We define H to be the limit
of the sequence (Hi)i∈N, by construction H is connected. We need to show the following three things:
(1) Let X1 := {pe′ | pe′ ∈ X}. We need to show X1 ⊆ FH . We inductively show X1 ⊆ FHi for all

i ≥ 0 which implies the claim. The case of FH0 is trivial as this facet contains all vertices of the
form pe′ in PG. Next we show X1 ⊆ FH1

. Consider the edge e′ = {v, w′} ∈ H1 and assume that
pe′ ∈ X. By construction of H1 we have pe′,v ∈ X hence by condition (i) the vertex y = pe,v must
also be in X which contradicts the assumption that y /∈ X. Hence, pe′ 6∈ X and X1 ⊆ FH1

.
So now assume X1 ⊆ FHi for some i ≥ 1. Consider again an edge e′ = {v′, w′} ∈ Hi+1 \Hi with
v′ ∈ Hi. Then there exists an edge e′′ = {v′, w′′} ∈ Hi since Hi is connected and i ≥ 1. By
induction this implies that pe′′ 6∈ X and by construction of Hi+1 the vertex pe′,v′ ∈ X. Hence,
pe′ 6∈ X by condition (i) and thus X1 ⊆ FHi+1

.
(2) Let X2 := X \X1. Secondly, we show that X2 ⊆ FH . This follows from the construction of H as

if there is a vertex pe′,v′ ∈ X \ FH we would add the edge e′ to H which contradicts the definition
of H.
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(3) Lastly, we need to show y /∈ FH . Assume that y = pe,v ∈ FH . This means that e ∈ H. Therefore
there exists a cycle in H of the form e1 = {v1, v2}, e2 = {v2, v3}, . . . , er = {vr, v1} with e = er,
v = v1, and ei ∈ Hi \ Hi−1. Thus, pei,vi ∈ X for all i = 1, . . . , r by construction of Hi. By
condition (ii) this implies that pei,vi+1

∈ X for all i ∈ Z/rZ. In particular y = per,v1 ∈ X which
contradicts the assumption on y. Therefore, y /∈ FH .

For the converse, we need to show that every face of PG satisfies the condition (i) and (ii). First, notice that
if two subsets X and Y satisfy both conditions so does their intersection X ∩ Y . Therefore it suffices to show
conditions (i) and (ii) for the facets of PG.

Let H = (VH , EH) be a connected subgraph of G and FH its associated facet. Consider a node v ∈ V and
assume that pe and pe,v are in FH , hence EH does not contain the edge e as well as any other edge adjacent to
the node v. Hence by definition of FH , the vertices pe′ , pe′,v are in FH for all edges e′ adjacent to the node v.
So FH satisfies the condition (i).

For the condition (ii), let FH contain a subset {pe1,v1 , pe2,v2 . . . , pek,vk} for a cycle e1 = {v1, v2}, . . . , ek =
{vk, v1} in G. First, assume that {e1, . . . , ek} ⊆ EH . In this case, by construction of FH it contains all the
vertices {pe1,v2 , pe2,v3 , . . . , pek,v1} as well, so the condition (ii) is satisfied.

In the case when {e1, . . . , ek} 6⊆ EH , any edge adjacent to the nodes v1, . . . , vk can not be contained in H
as otherwise one of the vertex pei,vi would be excluded from FH . But then, by construction of FH vertices
{pe1,v2 , pe2,v3 , . . . , pek,v1} are contain in the facet FH , so the condition (ii) is satisfied. �

An immediate corollary of this theorem yields a complete description of the edge graph ΓG of PG.

Corollary 3.2. The edge graph ΓG of PG is a complete graph on the vertices of PG with the following edges
removed:

(1) {pe, pe,v} for any edge e and a non-leaf node v of G.
(2) {pe,v1 , pe′,v2} for a pair of parallel edges e, e′ between the nodes v1 and v2.

A more general statement provides a description of all simplex faces of PG.

Theorem 3.3. Let G = (V,E) be an undirected graph. A set of vertices X ⊆ V (PG) defines a simplex face
of PG if and only if

(i) the induced subgraph of the edge graph ΓG to the vertex set X is a complete graph and
(ii) X does not contain a subset {pe1,v1 , . . . pek,vk} for a cycle e1 = {v1, v2}, . . . , ek = {vk, v1} in G.

Proof. By Corollary 3.2 if the subgraph of ΓG induced by the vertices X is a complete graph, X must satisfy
property (i) in Theorem 3.1. Hence a subset X satisfying the properties (i) and (ii) is a face of PG by Theorem 3.1
with a complete edge-graph, i.e. a simplex face.

For the converse, if X defines a simplex face, then the induced subgraph of ΓG to X is a complete graph and
X satisfies (ii) by Theorem 3.1. �

Remark 3.4. The face structure of cosmological polytopes was also studied in [7, 8] from a slightly different
perspective. More concretely, these works study which collections of facets of PG intersect in a face of expected
codimension. The main tool in this analysis is the connection to the residues of the canonical form ΩPG

.

3.2. Special faces. In this subsection, we will discuss two types of special faces appearing in cosmological
polytopes. We call the ones described in Proposition 3.5 vertex faces and the ones described in Proposition 3.6
cycle faces.

Proposition 3.5. Let v ∈ V be a vertex of G of degree d with the adjacent edges e1 = {v, w1}, . . . , {v, wd}.
Then the cosmological polytope PG has a face of dimension d with the 2d vertices given by

pe1 , pe1,v, . . . , ped , ped,v.

We call this face a vertex face Fv.
Moreover, the face Fv is combinatorially equivalent to a d-dimensional cross-polytope.

Proof. The first statement follows directly from Theorem 3.1 as the set of vertices {pe1 , pe1,v, . . . , ped , ped,v}
clearly satisfies conditions (i) and (ii).

For the proof of the second statement notice that a shift of the face Fv by the vector −xv is the convex hull
of the points

ye1 − xw1
,xw1

− ye1 , . . . ,yed − xwd
,xwd

− yed .

Since the vectors ye1 − xw1
, . . . ,yed − xwd

are linearly independent, the vertex face Fv is affinely (and in
particularly combinatorially) equivalent to a d-dimensional cross-polytope. �

Recall that the d-dimensional cyclic polytope C(n, d) with n vertices is the convex hull of x(t1), . . . , x(tn)
where t1 < t2 < · · · < tn are real numbers and x : R → Rd, t 7→ (t, t2, t3, . . . , td) is a parametrization of the
moment curve. It is known that cyclic polytopes are simplicial, i.e. all its proper faces are simplices (see for
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example [12]). By Gale’s evenness condition ([21, Theorem 0.7]), for a set of indices I ⊂ [n] of size d, the
corresponding set of vertices {x(ti)}i∈I form a facet of C(n, d) if and only if any two elements in [n] \ I are
separated by an even number of elements from [n].

Proposition 3.6. Let e1 = {v1, v2}, . . . , ed = {vd, v1} be a cycle σ of length d in G with vi 6= vj for 1 ≤ i < j ≤ d
and d > 1. Then the cosmological polytope PG has a face of dimension 2d− 2 with the 2d vertices:

pe1,v1 , pe1,v2 , . . . , ped,vd , ped,v1 .

We call this face a cycle face Fσ.
Moreover, the face Fσ is combinatorially equivalent to a cyclic polytope of dimension 2d− 2 with 2d vertices.

Proof. The first statement follows directly from Theorem 3.1 as the set of vertices

X = {pe1,v1 , pe1,v2 , . . . , ped,vd , ped,v1}
clearly satisfies conditions (i) and (ii) of this theorem.

For the second statement, we will show that analogously to C(2d, 2d−2), facets of Fσ are described by Gale’s
evenness condition which implies that the polytopes are combinatorially equivalent.

First notice that if a subset Y ⊆ X defines facet of Fσ, then |Y | ≥ 2d − 2. Moreover, by condition (ii) of
Theorem 3.1, to define a proper face of Fσ, the set Y should not contain at least one of the points of type pei,vi
and pej ,vj+1

for i, j ∈ Z/dZ. Therefore, |Y | = 2d− 2, i.e. every facet of Fσ is a simplex. Finally, notice that the
condition that X \ Y = {pei,vi , pej ,vj+1

} for some i, j ∈ Z/dZ is equivalent to Gale’s evenness condition if we
order the elements of X in the following way:

(pe1,v1 , pe1,v2 , . . . , ped,vd , ped,v1). �

Remark 3.7. Note that the cycle face Fσ of PG coincides with the the scattering facet of Pσ. More generally,
for any subgraph H ⊂ G, the scattering facet of PH appears as a face of PG.

We can now characterize the minimal non-simplex faces of a cosmological polytope, i.e. the faces that are
combinatorially a simplicial polytope but not a simplex.

Corollary 3.8. A minimal non-simplex face F of a cosmological polytope is either a vertex face or a cycle face.

Proof. The above propositions imply that the vertex faces are cross-polytopes and the cycle faces are cyclic
polytopes which are both simplicial polytopes but not simplices.

So assume that F is a simplicial polytope that does not contain the vertices of vertex face or a cycle face.
Condition (i) in Theorem 3.1 together with the assumption that F does not contain a vertex face now implies
that for every nonleaf edge e = {v, w} the face F can contain at most one of the vertices pe, pe,v, and pe,w.
The assumption that F does not contain a cycle face implies that for any pair of parallel edges e, e′ between
the nodes v1, v2 the face F can only contain at most one of the vertices pe,v1 and pe′,v2 . By Corollary 3.2 this
implies that the edge graph of F is a complete graph on its vertices which implies that F is combinatorially a
simplex. �

4. Trees

In this section we investigate the cosmological polytopes associated to the trees. Our main tool is the following
proposition which describes how the cosmological polytope PG changes after adding a leaf to the graph G.

Proposition 4.1. Let G be a graph and let G′ be the graph that arises from G by adding an vertex v and an
edge e = {v, w} for some vertex w of G. Then the following holds:

(i) The cosmological polytope PG′ has a facet F containing all vertices except of pe,v. In particular, PG′ is
a pyramid over F with apex pe,v.

(ii) The facet F is a bipyramid over PG with apices pe and pe,w with the interval between pe, pe,w intersecting
PG in the interior of the vertex face Fw defined in Proposition 3.5.

Proof.

(i): By Theorem 2.1 the facet F corresponding to the subgraph {v} in G′ contains all vertices of PG′

except pe,v. Thus, PG′ is a pyramid over F with apex pe,v.
(ii): Filtered by the xe coordinate, the vertices of F come in three layers: The layer xe = −1 contains the

vertex pe, the layer xe = 0 the vertices in PG and the layer xe = 1 the vertex pe,w. The interval between
pe and pe,w intersects the xe = 0 layer in the point xw which is in the interior of the face Fw. This
implies the claim. �

One corollary of Proposition 4.1 is the computation of the volume of the cosmological polytopes of trees.

Corollary 4.2. Let G,G′ be as before, then one has Vol(PG′) = 4Vol(PG), where Vol is the normalized volume.
In particular, for any tree T with e edges, the normalized volume of the cosmological polytope PT equals 4e.
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Proof. One can check that the facet F is a union of two pyramids of lattice height 1 over PG which shows that
Vol(F ) = 2Vol(PG). Moreover, the cosmological polytope PG′ is a pyramid of lattice height 2 over F , so the
normalized volume of PG′ is computed as

Vol(PG′) = 2Vol(F ) = 4Vol(PG). �

Proposition 4.3. For a cosmological polytope PG and a vertex w ∈ V (G) it holds that fPG\w(t) equals the
“upper f -vector” of the vertex face Fw in PG, that is the f -vector of faces containing Fw.

Proof. Consider the partition of the vertices of PG by coordinate xw:

Claim 1: There is a bijection φ of facets containing Fw in PG and facets of PG\w. Specifically, the facets
of PG which contain Fw are determined by connected subgraphs H of G which do not contain w. Such
subgraphs are in bijection with the connected subgraphs of G \ w which in turn determines facets of
PG\w. The map φ maps a facet of PG given by a connected subgraph of G that avoids w to the facet
of PG\w given by the corresponding connected subgraph of G \ w.

Claim 2: This bijection extends to a bijection between the faces containing Fw in PG and all faces of
PG\w. Specifically, we consider the following map

φ : {σ ⊇ Fw | σ a face of PG} → {τ | τ a face of PG\w}

σ 7→ τ =
⋂

σ⊂F, F is a facet of PG

φ(F ).

This map respects the dimension of the faces, that is dim(φ(σ)) = dim(σ)− dim(Fw).
Claim 3: This implies that the upper f -vector of Fw in PG equals the (shifted) f -vector of PG\w. �

Definition 4.4. For a polytope P , with f -vector (f−1, . . . , fdimP ) we will define its f -polynomial fP (t) to be

fP (t) =

dimP∑
i=−1

fit
i+1

We can use Proposition 4.1 to get a recursive relation for the f -polynomial of cosmological polytopes of the
graphs G and G′.

Theorem 4.5. The f -polynomials of PG and PG′ are related in the following way:

fF (t) = (1 + 2t)fPG
(t)− tdeg(w)+1(1 + t)fPG\w(t)

fPG′ = (1 + t)fF (t)

Proof. Indeed, it is well known that the f -polynomial of a pyramid with base F is given by fG′ = (1 + t)fP (t).
The f -polynomial of a the generic bipyramid over a polytope PG can be computes as (1 + 2t)fPG

(t). The
description of faces of non-generic bipyramid follows, for example, from [18, Proposition 2.3] as it is a particular
example of subdirect sum: F = (I, I)⊕ (Fv, PG), where I is an interval, and Fv is a vertex face corresponding
to the node v of G. The face count involves the correction of (1 + 2t)fPG

(t) by the generating polynomial of
the number of faces of PG containing Fv. Using Proposition 4.3 we obtain

fF (t) = (1 + 2t)fPG
(t)− tdeg(w)+1(1 + t)fPG\w(t),

which finishes the proof. �

This gives an inductive way of computing the f -vector of cosmological polytopes of trees. In the case of
paths this yields the following recursion for their f -polynomials.

Corollary 4.6. Let Πn be the path graph on n vertices. Then we have the following recursion for the f -vector
fΠn

(t) of the cosmological polytopes PΠn
:

fΠn+2
(t) = (1 + t)((1 + 2t)fΠn+1

(t)− t2(1 + t)fΠn
(t)),

and fΠ1(t) = t+ 1, fΠ2(t) = t3 + 3t2 + 3t+ 1. The number of all faces of PΠn is the evaluation of this recursion
at t = 1 which is the sequence A154626 in the Online Encyclopedia of Integer Sequences (OEIS).

5. Counting faces

In this section we use our general description of faces of cosmological polytopes to compute their number
in certain examples. To simplify the exposition, we assume that graph G doesn’t have loops throughout this
section.

https://oeis.org/A154626
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5.1. Low-dimensional faces. The main result of this subsection are formulas for the number of edges and
2-dimensional faces of cosmological polytopes.

Theorem 5.1. Let G = (V,E) be an undirected graph where e is the number of edges, l the number of leaves,
v2 the number of vertices of degree 2, and ∆i the number of cycles of length i in G. The characterization of
faces then yields:

(1) The number of edges of the cosmological polytope PG is

f1(PG) =

(
3e

2

)
− 2e+ l − 2∆2,

(2) For a simple graph G, the number of 2-dimensional faces of the cosmological polytope PG is:

f2(PG) = 27

(
e

3

)
+ 3(e+ l)(e− 1) + v2 − 2∆3,

Proof. The first part follows directly from Corollary 3.2. Indeed, the number of edges of the complete graph
on 3e vertices is

(
3e
2

)
; the number of removed edges of type {pe,v, pe} for each non-leaf node v is 2e− l and the

number of edges pe,v1 , pe′,v2 for a pair of parallel edges e, e′ between the nodes v1 and v2 is 2∆2.
The second part is deduced similarly. By Theorem 3.1 there are only two types of faces of dimension 2:

triangles and quadrilaterals. First let’s count the number of triangular faces of PG. For this we first count the
number of complete subgraphs of size 3 of the edge graph ΓG of PG. Since G is simple, from the description of
Corollary 3.2 it follows that the number of complete subgraphs of size 3 of ΓG is 27

(
e
3

)
+ 3(e+ l)(e−1). Now for

every cycle of length 3 in G, there are exactly 2 complete subgraphs in ΓG which do not satisfy condition (ii) of
Theorem 3.3. So the final count of triangles in a simple graph is given by 27

(
e
3

)
+ 3(e+ l)(e− 1)− 2∆3. On the

other hand, each quadrilateral is either a vertex face of a node of degree 2, or a cycle face for a cycle of length
2. However, in a simple graph there is no cycle of length 2, hence the total number of 2-dimensional faces is
given by

27

(
e

3

)
+ 3(e+ l)(e− 1)− 2∆3 + v2. �

It is possible to deduce a formula for the number of 2-dimensional faces of PG for a general graph G. For this
one has to take into account contributions coming from the banana subgraphs (the graph on two vertices with
multiple parallel edges). In particular, one has to compute the number of 2-dimensional faces of banana graphs
which we do in Example 5.2. It amounts to careful bookkeeping to deduce the general formula for the number
of 2-faces of PG from the general description of simplex faces in Theorem 3.3 and the count in Example 5.2.

Example 5.2. Let Bk be the banana graph consisting of two vertices and k parallel edges between them for
k ≥ 1. The cosmological polytopes PB1

and PB2
have one and five 2-dimensional faces, respectively. In general,

for k ≥ 3 we have

f2(PBk
) = 15

(
k

3

)
+ 3

(
k

2

)
.

One way to prove this formula is as follows. Using for example polymake [13] one can compute that PB2
has

two triangles and PB3
has 21 triangles. Since every triangle can involve vertices corresponding to at most three

edges of Bk this immediately yields that PBk
has 15

(
k
3

)
+ 2
(
k
2

)
many triangles for k ≥ 2. By Theorem 3.1 we

obtain that every quadrilateral of PBk
for k ≥ 3 is a cycle face stemming from a cycle of length two in Bk. The

general formula now follows from the fact that there are
(
k
2

)
many such cycles in Bk.

5.2. Simplex faces. In this subsection we count simplex faces in particular graphs. For a polytope P we
denote by f∆

k (P ) the number of k-dimensional simplex faces of P .

Proposition 5.3. Let Cn be the cycle graph on n nodes. Then for 1 ≤ k ≤ 2n the cosmological polytope PCn

has

(1) f∆
k−1(PCn

) = −2

(
n

k − n

)
+

b k2 c∑
i=0

(
n

i

)(
n− i
k − 2i

)
3k−2i.

In total, PCn has 5n − 2n+1 many simplex faces.

Proof. Say the cycle graph Cn has nodes v1, . . . , vn and edges e1, . . . , en where ei = {vi, vi+1} for i ∈ Z/nZ.
The edge graph ΓPCn

of PCn
consists of n triples of vertices pei , pei,vi , and pei,vi+1

where within a cluster only
the last two vertices are joined by an edge in ΓPCn

and all pairs of vertices between different clusters are joined

by an edge. Therefore,
(
n
i

)(
n−i
k−2i

)
3k−2i is the number of complete subgraphs of ΓPCn

on k vertices with exactly i

edges within an edge cluster as described above for 0 ≤ i ≤ bk2 c. Hence, the sum in Equation (1) is the number
of all complete subgraphs of ΓPCn

on k vertices.
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By Theorem 3.3 we need to exclude the complete subgraphs of ΓPCn
that contain either all vertices pei,vi or

all vertices pei,vi+1 for i ∈ Z/nZ. For n ≤ k ≤ 2n there are exactly 2
(
n

k−n
)

such complete subgraphs which is

the term we subtract in Equation (1).
For the last statement, note that when we want to count all complete subgraphs of ΓPCn

we have five choices
for each of the n vertex clusters: no vertex, one of the vertices pei , pei,vi , and pei,vi+1

or both of the vertices pei,vi
and pei,vi+1

. We just need to exclude the choice of no vertices at all, which yields 5n − 1 complete subgraphs
in total. We claim that for the complete subgraphs we need to exclude by the cycle condition exactly 2n+1 − 1
choices. Indeed, once a complete subgraphs contains all vertices pei,vi for i ∈ Z/nZ then there are two choices
in every cluster: the complete subgraph can contain the vertex pei,vi+1 or not. After counting the analogous
possibilities for the subgraphs containing all vertices pei,vi+1

for i ∈ Z/nZ we obtain the term 2n+1− 1 we need
to subtract since there is one configuration that appears in both of these versions. �

A similar argument yields the following generalization.

Proposition 5.4. Let G = (V,E) be a graph with exactly one cycle. Say this cycle is of length d and assume
d > 2. Let e = |E| and l be the number of leaves of G. Then the number simplex faces of PG is

6l · 5e−l−d · (5d − 2d+1 + 1)− 1.

References

1. Nima Arkani-Hamed, Yuntao Bai, and Thomas Lam, Positive geometries and canonical forms, Journal of High Energy Physics
2017 (2017), no. 11, 1–124.

2. Nima Arkani-Hamed, Paolo Benincasa, and Alexander Postnikov, Cosmological polytopes and the wavefunction of the universe,

arXiv preprint arXiv:1709.02813 (2017).
3. Nima Arkani-Hamed, Andrew Hodges, and Jaroslav Trnka, Positive amplitudes in the amplituhedron, Journal of High Energy

Physics 2015 (2015), no. 8, 1–25.

4. Nima Arkani-Hamed and Jaroslav Trnka, The amplituhedron, Journal of High Energy Physics 2014 (2014), no. 10, 30.
5. Yuntao Bai, Song He, and Thomas Lam, The amplituhedron and the one-loop grassmannian measure, Journal of High Energy

Physics 2016 (2016), no. 1, 1–42.

6. Paolo Benincasa, Amplitudes meet cosmology: A (scalar) primer, International Journal of Modern Physics A (2022).
7. Paolo Benincasa and William J. Torres Bobadilla, Physical representations for scattering amplitudes and the wavefunction of

the universe, SciPost Phys. 12 (2022), 192.

8. Paolo Benincasa, Andrew J McLeod, and Cristian Vergu, Steinmann relations and the wavefunction of the universe, Physical
Review D 102 (2020), no. 12, 125004.

9. Benjamin Braun, Kaitlin Bruegge, and Matthew Kahle, Facets of random symmetric edge polytopes, degree sequences, and
clustering, arXiv preprint arXiv:2204.07239 (2022).
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