In-class Term Test 1

January 28, 6:10-7pm
No aids allowed.

Problem 1. (10 points) An element x of a ring R is called idempotent if $x^{2}=x$.
a) Show that any non-trivial idempotent (i.e. $x \neq 0,1$) in an unital ring is a zero divisor.
b) Show that if x is an idempotent then $1-x$ is also an idempotent.

Problem 2. (10 points) Prove that any ring homomorphism $\phi: F \rightarrow R$, where F is a field is either injective or takes each element into 0 .

Problem 3. (10 points) Let $I \subset \mathbb{Z}[x]$ be the ideal generated by a polynomial $x^{2}+1$. Show that the factor ring $\mathbb{Z}[x] / I$ is isomorphic to the ring of Gaussian integers $\mathbb{Z}[i]$. Is the ideal I prime? Is it maximal?

