Homework 2

Due to 6pm, January 28, 2019

Problem 1. (15 points) Find all ideals $I \subset \mathbb{Z}_{12}$, so that the factor ring \mathbb{Z}_{12}/I is a field.

Problem 2. (15 points) Let $I \subset \mathbb{R}[x]$ be an ideal generated by a polynomial $x^2 + 1$. Show that the factor ring $\mathbb{R}[x]/I$ is isomorphic to the field of complex numbers \mathbb{C} .

Hint: Notice that the map $\phi:\mathbb{R}[x]\to\mathbb{C}$ given by

$$\phi(a_0 + a_1x + \ldots + a_kx^k) = a_0 + a_1i + \ldots + a_ki^k$$

is a ring homomorphism. What is the kernel of ϕ ?