Homework 1

Due to 6pm, January 21st 2019
Problem 1. Find all elements $x \in \mathbb{Z}_{14}$, that satisfy the equation

$$
x^{2}+3 x-4=0 .
$$

Be careful, the ring \mathbb{Z}_{14} has zero divisors!
Problem 2. Let $U \subset \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be a set of upper triangular matrices. In other words,

$$
U=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \text { with } a, b, c \in \mathbb{R}\right\} .
$$

a) Is U a subring of $M a t_{2 \times 2}(\mathbb{R})$?
b) Is it a left ideal (i.e. $\left.M a t_{2 \times 2}(\mathbb{R}) \cdot U \subset U\right)$?
c) Is it a right ideal (i.e. $\left.U \cdot M a t_{2 \times 2}(\mathbb{R}) \subset U\right)$?

Justify your answer.
Problem 3. Let us define rings $\mathbb{Z}_{3}[i]$ and $\mathbb{Z}_{3}[\sqrt{2}]$ by

$$
\begin{gathered}
\mathbb{Z}_{3}[i]=\left\{a+b i \text { with } a, b \in \mathbb{Z}_{3} \text { and } i^{2}=-1\right\} ; \\
\mathbb{Z}_{3}[\sqrt{2}]=\left\{a+b \sqrt{2} \text { with } a, b \in \mathbb{Z}_{3}\right\} .
\end{gathered}
$$

Construct an isomorphism between $\mathbb{Z}_{3}[i]$ and $\mathbb{Z}_{3}[\sqrt{2}]$.

