
Appendix B
Chebyshev Polynomials and Their Inverses

The Chebyshev polynomial of degree n is defined by the formula

Tn.x/ D cosn arccosx:

These polynomials were discovered by Pafnuty Chebyshev (1821–1894) when he
was considering the problem of the best approximation of a given function by
polynomials of degree � n. They play an important role in approximation theory.
Rather surprising is the fact that these polynomials became useful in algebra: the
problem from which they originally appeared is far from algebra, and even their
definition uses transcendental functions.

Nevertheless, in some algebraic problems, the series Tn of Chebyshev polynomi-
als appears along with the polynomials P.x/ D xn. From a “philosophical” point
of view, these two classes result from the existence of two families of finite groups
of projective transformations of the space �P1: cyclic groups Cn and dihedral
groupsDn.

In complex analysis, the class of polynomials xn extends to the family of mul-
tivalued analytic functions x˛ , ˛ 2 �, which contains, along with the polynomials
xn, their inverses x1=n and satisfies the composition relation .x˛/ˇ D x˛ˇ .

In a similar manner, we extend the class of Chebyshev polynomials Tn to the
family of multivalued analytic functions T˛ , ˛ 2 �, which contains, along with
the polynomials Tn, their inverses T1=n and satisfies the composition relation Tˇ ı
T˛ DT˛ˇ .

A multivalued function can be defined without the notion of analytic continu-
ation, just by giving its set of values at each point. This sometimes helps us in
carrying over the definition of the multivalued function to an arbitrary field (where
the operation of analytic continuation is not defined). For example, for positive
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258 B Chebyshev Polynomials and Their Inverses

integers n, the function x1=n is defined over every field k: it is a multivalued function
that assigns to every x 2 k, the set of elements z from the algebraic closure of k
such that zn D x.

It is easier to work with a germ of a single-valued function than with a
multivalued function. This can be done when all values of a multivalued function
come from the analytic continuation of a single-valued germ.

In Sect. B.1.1, the multivalued Chebyshev function T˛, ˛ 2 �, is defined as a
function of a complex variable x by means of its set of values. In Sect. B.1.2, we
define a series at the point x D 1whose analytic continuation is T˛ (see Sect. B.1.3).

In Sect. B.2.1, we give an algebraic definition of Chebyshev polynomials and
their inverses over an arbitrary field of characteristic not equal to 2. In addition,
if the characteristic of the field is not equal to 3, then these functions are used to
construct solutions in radicals of equations of degree 3 and 4 over this field (see
Sects. B.2.2 and B.2.3).

In Sects. B.3.1–B.3.3, we discuss three classical problems whose solution
involves the families of polynomials xn and Tn. In Sect. B.3.1, we discuss the
problem of describing all complex polynomials that can be inverted in radicals.
This problem was solved by Joseph Ritt. In Sect. B.3.2, we discuss Schur’s problem,
which was solved by Michael Fried, of describing all polynomials P 2 �Œx� for
which the maps P W �p ! �p are invertible for infinitely many prime numbers p.
In Sect. B.3.3, we formulate a result of Julia, Fatou, and Ritt on the affine
classification of integrable polynomial maps from the complex line to itself.

B.1 Chebyshev Functions over the Complex Numbers

B.1.1 Multivalued Chebyshev Functions

The Chebyshev function of degree ˛ 2 � is the multivalued function T˛ of a
complex variable x that is defined by the relation

T˛.x/ D u˛.x/C u�˛.x/
2

; (B.1)

where u is the two-valued function defined by relation

x D u.x/C u�1.x/
2

: (B.2)

In formula (B.1), we mean that every value f .x/ of the multivalued function
u˛.x/ is summed with the value .f .x//�1 of the function u�˛.x/ (and not with
any other of its values). According to formula (B.2), the function u.x/ satisfies the
equation u2.x/ � 2xu.x/ C 1 D 0. Its roots u1.x/, u2.x/ satisfy u1.x/u2.x/ D 1,
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so it doesn’t matter which of the two roots we use in formula (B.1). (Note that these
roots can be explicitly calculated: u1;2.x/ D x ˙ p

x2 � 1.) The choice of the other
root only permutes the summands u˛.x/ and u�˛.x/ and does not change the sum.

Theorem B.1 The functions T˛ can be defined by the relations

x D cos z.x/; T˛.x/ D cos˛z.x/:

Proof If x D cos z0, then z.x/ D ˙.z0 C 2k�/ and

cos.˛z.x// D exp.i˛z.x//C exp.�i˛z.x//

2
:

We also have u1;2.x/ D exp.˙iz.x// and u˙˛
1;2 .x/ D exp i˛.˙z.x//. The theorem

follows. ut
Proposition B.2 The function Tn, for positive integers n, is the polynomial of
degree n with integer coefficients that satisfies the following formula:

Tn.x/ D
X

0�k�Œn=2�

 
n

2k

!

xn�2k.x2 � 1/k:

Proof The relation Tn.x/ D .un.x/C u�n.x// =2 combined with the equalities

un.x/ D
�
x C

p
x2 � 1

�n
and u�n.x/ D

�
x �

p
x2 � 1

�n

and Newton’s binomial theorem gives the formula for Tn.x/. ut
Definition B.3 The function Tn is called the Chebyshev polynomial of degree n.

The Chebyshev polynomials satisfy the identity Tn.cos z/ D cosnz (see Theo-
rem B.1). They can be defined using this identity (and that is how Chebyshev defined
them). The polynomial Tn is an even function for even n, and an odd function for
odd n. The leading coefficient of the polynomial Tn is equal to 2n. Later, we will
need the formula T3.x/ D 4x3 � 3x.

Corollary B.4 The equation Tn.x/ D a can be explicitly solved by radicals. Its
roots are the values T1=n.a/ of the multivalued function T1=n at the point a.

Proof If cos z D a and x D cos.z=n/, then x D T1=n.a/ and Tn.x/ D a. ut
This “trigonometric” computation, when carried over to algebra, gives a solution

of the equation Tn.x/ D a, where a is an element of a field with characteristic not
equal to 2 (see Corollary B.9). Note that T1=n is an n-valued function: a choice of a
value of the function u.a/ does not change the values T˛.a/, but the function u1=n.a/
assumes n values.
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B.1.2 Germs of a Chebyshev Function at the Point x D 1

The multivalued function T˛.x/, like the function x˛ , has a special germ at the point
x D 1, with value equal to 1. It is easier to work with single-valued germs than with
their multivalued analytic continuations. From now on, by x˛ we denote the germ

1C
1X

kD1

˛ � � � .˛ � k C 1/

kŠ
.x � 1/k:

Properties of the Germs of Power Functions at the Point x D 1

A power function enjoys the following properties.

1. Composition property: if f D x˛ and g D xˇ , then f ıg D x˛ˇ; in other words,
.xˇ/˛ D x˛ˇ .

2. Multiplicative property: x˛xˇ D x˛Cˇ .
3. Algebraicity property: for ˛ D 1=n, where n is a positive integer, the germ

z D x˛ satisfies the algebraic equation zn D x.

Analytic Germs Invariant Under Involution

The involution � of the complex line �.u/ D u�1 maps the point u D 1 to itself. It
is easy to describe all germs f of analytic functions at this point that are invariant
under the involution � , i.e., such that f D f ı � .

Proposition B.5 The equality f D f ı � holds if and only if f .u/ D '.x/, where
x D .u C u�1/=2 and ' is a germ of an analytic function at the point x D 1.

Proof Let u.x/ be one of the two branches of the function defined by the equation

u.x/C u�1.x/
2

D x:

If f D f .�/, then the function '.x/ D f .u.x// does not depend on the choice
of branch and is analytic in a punctured neighborhood of the point x D 1. By the
theorem on removable singularities, it is analytic at this point as well. ut

Germs of analytic functions of a variable u that are not invariant under the
involution � give two-valued Puiseux germs of the variable x.

The germ of the Chebyshev function T˛ at the point x D 1 is the germ of the
analytic function of the variable x such that the germ of the function .u˛ C u�˛/ =2
(which is invariant under the involution �) is equal to T˛.x.u//, where x.u/ D
.u C u�1/=2. In this section, the germ of the Chebyshev function is denoted by
T˛, the same symbol as was used for the multivalued function itself. The germs T˛
inherit the properties of germs of power functions.
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Properties of the Germs of Chebyshev Functions at the Point x D 1

1. Composition property: T˛ ı Tˇ D Tˇ˛ .
2. Multiplicative property: T˛Tˇ D .T˛Cˇ C T˛�ˇ/=2.
3. Algebraicity property: for ˛ D n, where n is a natural number, the germ T˛ is

the germ of the Chebyshev polynomial Tn. The germ T1=n satisfies the algebraic
equation Tn.T1=n.x// D x.

4. Trigonometric property: T˛.cos z/ D cos˛z, in the sense that the germs of
functions of the variable z at the point z D 0 are equal. The composition T˛.cos z/
is well defined, since cos 0 D 1.

Proposition B.6 The family of germs of Chebyshev functions satisfies properties
1–4 above.

Proof Property 4 follows from Theorem B.1. This property completely charac-
terizes the germ T˛. Indeed, the function cos z is even. By the implicit function
theorem, the germ of the function z2 at zero is an analytic function of the germ
at z D 1 of the function cos z. The function cos˛z is an analytic function of z2.
Properties 1–3 are simple properties of the function cos: to prove property 1, if
cos v D cosˇz D Tˇ.cos z/, then cos˛v D T˛.cos v/ and T˛Tˇ cos z D cos˛ˇz.
Property 2 follows from the identity cos˛z cosˇz D Œcos..˛ C ˇ/z/ C cos..˛ �
ˇ/z/�=2. Property 3 is proved for ˛ D n in Proposition B.2; for ˛ D 1=n, it follows
from the composition property. ut

B.1.3 Analytic Continuation of Germs

In this section, we show that the set of values of the multivalued function generated
by the germ T˛ is consistent with the definition from Sect. B.1.1. The compositional
inverse of the germ at 0 of the function cos z is a two-valued Puiseux germ at the
point x D 1. Its values differ by a sign. Let ��1.x/ be one of the two inverses
(differing by sign) of the function cos z D x that has this Puiseux germ at the point
x D 1. Consider the even function ˚˛.z/ D cos˛z of the variable z. By definition,
T˛ D ˚˛ ı ��1.

The function cos z has simple critical points z D k� and two critical values
x D ˙1. We say that the curve x.t/ that goes from point 1 to point x0, i.e., x.0/ D 1,
x.1/ D x0, is admissible if x.t/ ¤ ˙1 for 0 � t � 1. The Puiseux germ of the
function ��1 at the point x D 1 can be continued along the admissible curve x.t/
that goes from x D 1 to x0 in the following sense: either of the two branches of
the germ can be continued analytically along x.t/ up to t D 1 if x0 ¤ ˙1, and
up to any t < 1 if x0 D ˙1. In the second case, the continuation up to t D 1 is a
two-valued Puiseux germ at the point x0 D ˙1 (whose branches at x0 coincide).

In the same sense, the germ T˛ D ˚˛ ı ��1 can be continued along any
admissible curve x.t/. The germ T˛ is regular and single-valued (not two-valued,
like ��1); therefore, it has a unique continuation along an admissible curve. For
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some admissible curves that go from x D 1 to the point x D ˙1, the result of
continuation may also turn out to be an analytic germ (and not a two-valued Puiseux
germ).

Let us show that formulas (B.1) and (B.2) describe all values of the multivalued
function that is obtained by continuation of the germ T˛. Let x0 and a D T˛.x0/ be
any numbers that satisfy (B.1) and (B.2).

Proposition B.7 There exists an admissible curve x.t/ that goes from the point
x D 1 to the point x0 such that the analytic germ (or the Puiseux germ) that is
obtained by continuation of the germ T˛ along x.t/ takes the value a at the point
x0, where a; x0 are as defined above.

Proof Choose z0 such that exp iz0 D u.x0/, exp.˛iz0/ D u˛.x0/. Let z.t/ be a curve
with z.0/ D 0, z.1/ D z0 such that z.t/ does not pass through the points z D k�

for 0 < t < 1. Then the curve x.t/ D cos z.t/ is admissible; it goes from the point
x D 1 to the point x0, and the analytic continuation along this curve of the germ
T˛ D cos˛.cos�1/ gives the germs that take the value a at the point x0. ut

Of special importance to us are the Chebyshev polynomials Tn and their inverses
T.1=n/. Proposition B.7 provides a description of the set of values of the function
T1=n at a point a. Let u1; u2 be the roots of the equation

�
u C u�1� =2 D a (it is

enough to take one of these roots). Let fvi;j g be the roots of the equation vn D ui ,
where i D 1; 2, 1 � j � n. The set T1=n.a/ of all values of the function at the point
a is equal to the set

(
v1;j C v�1

i;j

2

)

and to the set
(

v2;j C v�1
2;j

2

)

:

B.2 Chebyshev Functions over Fields

B.2.1 Algebraic Definition

The Chebyshev polynomials Tn 2 �Œx� are defined over every field k. If the
characteristic of the field is zero, then � � k and Tn 2 kŒx�. If the field has
characteristic p > 0, then �p � k, and the polynomial obtained from Tn by
reduction of the coefficients modulo p (which we denote by the same symbol
Tn) lies in kŒx�. If p ¤ 2, then degTn D n, since the leading coefficient of the
polynomial Tn is equal to 2n�1.
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Proposition B.8 If the characteristic of the field k is not equal to 2, then the
following identity holds in the field of rational functions k.x/:

Tn

�
x C x�1

2

�
D xn C x�n

2
: (B.3)

Proof The result follows from the formulas (B.1) and (B.2). ut
Corollary B.9 If the characteristic p of the field k is not equal to 2, then the
equation Tn.x/ D a with a 2 k is explicitly solvable in radicals over the field k.

Proof Pluggingx D .vCv�1/=2 into the identity (B.3), we obtain .vnCv�n/=2 D a.
Then we solve the quadratic equation u2 � 2au C 1 D 0 for u D vn. Let u1; u2 be its
roots and fv1;j g the set of all roots of u1 of degree n. Then the elements v2;j D v�1

1;j

form the set of all roots of degree n of u2, since u1u2 D 1. All roots of the equation
Tn.x/ D a can be expressed in the form

x D
�

v1;j C v�1
1;j

�

2
or x D

�
v2;j C v�1

2;j

�

2
:

ut
The proof of Corollary B.9 shows that the equation Tn.x/ D a over a field k of

characteristic not equal to 2 is solvable explicitly using the formula x D T1=n.a/,
which makes sense over k.

B.2.2 Equations of Degree Three

Let F be a polynomial of degree n over a field k with characteristic equal to zero
or greater than n. Define Q.y/ D aF.�y C x0/, where a; � ¤ 0, and x0 is an
element of the field k or some finite extension. Under the assumptions about the
characteristic of k, we have

Q.y/ D
X a�kF .k/.x0/

kŠ
yk:

The linear function Q.n�1/ takes the value 0 at some point q. Assume that when
x0 D q, the coefficient of Q at yn�1 vanishes. By varying a and �, we can make
any two nonzero coefficients of Q equal to any two given nonzero numbers.

Using this transformation, we can reduce the polynomialF.x/ D a3x
3Ca2x2C

a1x C a0 to the form y3 C c or to the form 4y3 � 3y C c. Indeed, the polynomial
F 00 vanishes at the point x0 D �a2=3a3. There are two possible cases:

1. F 0.x0/ D 0. In this case, the polynomial F reduces to the form y3 C c via the
transformation aF.y C x0/, where a D a�1

3 , and we obtain c D F.x0/a.
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2. F 0.x0/ ¤ 0. In this case, the polynomial F reduces to the form 4y3 � 3y C c

via the transformation aF.�y C x0/ with � D .�4F 0.x0/=3a3/1=2, a D
�3.�F 0.x0//�1. Here c D F.x0/a. (We choose any sign of �, since we are
looking for one transformation that has the properties we need rather than a
description of all such transformations.)

Corollary B.10 A cubic equation F.x/ D a3x
3 C a2x

2 C a1x C a0 over a field k
of characteristic not equal to 2 or 3 is solvable in radicals in the following way. Let
x0 D �a2=3a3 be the root of the polynomial F 00.

1. If F 0.x0/ D 0, then x D x0 C .�F.x0/=a3/1=3.
2. If F 0.x0/ ¤ 0, then x D x0 C �T1=3.�c/, where � and c are as defined above.

B.2.3 Equations of Degree Four

An equation of degree four can be reduced to an equation of degree three (which is
solvable using the function T1=3) by considering a pencil of planar quadrics [12].

Let Q W V ! k be a quadratic form and dimk V D n. A quadratic form in the
plane or on the line can be decomposed as a product of linear factors (possibly not
over the original field k, but over a quadratic extension K). Let K be an extension
of the field k. Let VK and QK denote the space and the form that correspond to V
andQ under the extension k � K .

Lemma B.11 If QK can be factored, then dimk kerQ 	 n � 2. If this inequality
holds, then we can explicitly find a factorization QK D L1L2 over a quadratic
extensionK of k.

Proof If QK D L1L2, then kerQK � \iD1;2fLi D 0g and dimK kerQK 	 n � 2.
The form Q is defined over k, and therefore, dimk kerQ 	 n � 2. If the inequality
holds, then V can be expressed in the form V D kerQ ˚ W , where dimk W � 2.
Let � W V ! W be the projection along kerQ, and QQ the restriction of the
form Q to W . On W , we have the factorization QQ D QL1 QL2, and therefore
Q D .�� QL1/.�� QL1/. ut
Proposition B.12 Let P;Q be quadratic polynomials of two variables. The coor-
dinates x; y of the points of intersection of two planar quadrics P D 0 and R D 0

can be found by solving one cubic equation and a number of quadratic and linear
equations.

Proof All quadrics of the pencil 0 D Q� D P C�R, where � is a parameter, pass
through the desired points. For some �, some quadric Q� D 0 splits into a union of
two lines, i.e., Q� D L1L2, where L1, L2 are polynomials of degree 1. These �
satisfy the cubic equation det.Q�/ D 0, where Q� D P C �Q is the 3 � 3 matrix
of quadratic forms that corresponds to the equation of the quadric in homogeneous
coordinates. Indeed, for this �, the form Q� has nontrivial kernel, and therefore,
Q� D L1L2, where L1;L2 can be found by solving one quadratic equation and a


