Summary of Curve Sketching

July 13, 2018

Follow the following steps when sketching the graph of function $f(x)$.

1. x / y intercepts. Find the location of the x and y intercepts and plot them on the graph. The x-intercepts are the points $(a, f(a))$ such that $f(a)=0$. That is, this is when f intercepts the x-axis. One obtains the value a by solving the equation $f(x)=0$. The y intercept is the point $(0, f(0))$. That is, it is the point where f crosses the y-axis.
2. Symmetry. Look for symmetries of $f(x)$: even or odd? That is, $f(x)=$ $f(-x)$ or $f(-x)=-f(x)$, respectively. Symmetries allow us to draw the graph of the function in the positive (or the negative axis) only. Then, we automatically know the shape of the function in the other part by appropriate reflections.
3. Asymptotes. Does the function have horizontal or vertical asymptotes? Horizonal asymptote can be detected by taking

$$
\lim _{x \rightarrow \pm \infty} f(x) .
$$

If this limit exits, then f has a horizontal asymptote. Vertical asymptotes are usually detected at points where f is discontinuous or blows up.
4. Interval on which $f(x)$ increases or decreases. Use the first derivative test to 1) find intervals on which $f(x)$ is monotone, 2) identify critical points of $f(x)$, and 3) identify local and global extremum. If $f^{\prime}>0$ on an (a, b), then f is increasing. If $f^{\prime}<0$ on (a, b), then f is decreasing. A critical value x_{0} is one such that $f^{\prime}\left(x_{0}\right)=0$ or $f\left(x_{0}\right)$ is not defined at the point. If x_{0} is a critical value, the pair $\left(x_{0}, f\left(x_{0}\right)\right)$ is called a critical point. A critical value x_{0} is a local minimum if f^{\prime} changes sign from negative to positive across x_{0}. Likewise, a critical point x_{0} is a local maximum if f^{\prime} changes sign from positive to negative across x_{0}.
5. Concavity. Use the second derivative test to obtain 1) intervals of concavity and 2) points of inflection. If $f^{\prime \prime}>0$ on (a, b), then f is concaving up on (a, b). Likewise, if $f^{\prime \prime}<0$, then f is concaving down. A point of inflection, x_{0}, is one at which $f^{\prime \prime}$ changes sign and f is continuous at x_{0}. In particular, at that point, $f^{\prime \prime}\left(x_{0}\right)=0$.

