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ANSWER BOX FOR PART A

Circle the correct answer

1. A. B. C. D. E.

2. A. B. C. D. E.

3. A. B. C. D. E.

4. A. B. C. D. E.

5. A. B. C. D. E.

6. A. B. C. D. E.

7. A. B. C. D. E.

8. A. B. C. D. E.

9. A. B. C. D. E.

10. A. B. C. D. E.

11. A. B. C. D. E.

12. A. B. C. D. E.

13. A. B. C. D. E.

14. A. B. C. D. E.

15. A. B. C. D. E.
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Name:

Record your answers on the front page

Student #:

PART A. MULTIPLE CHOICE

1. [3 marks]
If z is used as the parameter in the solution set of the system

2x+ 3y + 5z = 3
3x+ 4y + 6z = 5

then x =

A. 2− 3z

B. 3 + 2z

C. −2 + z

D. 1 + 3z

E. −1− 3z

2. [3 marks]

If f(x) =

√
3x− 5

x
, then f ′(2) =

A. 0

B. −1

2
C. 1

D. −1

E.
1

2
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3. [3 marks]
If y(x) satisfies y4 + 1 = xy + x2 and y = 1 when x = 1, then when x = 1, y′ =

A. −1

2

B.
1

4
C. −1

D.
1

2
E. 1

4. [3 marks]

If 2xy = e2y, then when (x, y) = (e, 2),
dy

dx
=

A.
e

4

B. −e
2

C. −4

e
D. 2e

E. −2

e
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5. [3 marks]
On the interval [−2, 4], the function f(x) = 2x3 − 9x2 has

A. an absolute minimum at x = 3 and an absolute maximum at x = 4.

B. an absolute minimum at x = −2 and no absolute maximum.

C. an absolute minimum at x = 3 and an absolute maximum at x = 0.

D. an absolute minimum at x = −2 and an absolute maximum at x = 0.

E. an absolute minimum at x = −2 and an absolute maximum at x = 4.

6. [3 marks]

lim
x→1

x− 1− lnx

x− 2
√
x+ 1

=

A.
1

2
B. 1

C. 2

D. ∞
E. 0
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Record your answers on the front page

Student #:

7. [3 marks]
If x1 = 0 is used as a first estimate to approximate a root of x3 + x = 1 by Newton’s method, then the
third estimate, x3, equals

A.
3

4

B.
2

3

C.
5

6

D.
1

2

E.
5

8

8. [3 marks]∫ e

1

(
1

x
− 1

x2
) dx =

A.
1

e
− 1

e2

B. − 1

e2
+

2

e3

C.
1

e
− 1

D.
1

e
E. 1
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Record your answers on the front page

Student #:

9. [3 marks]∫ 2

0

x2
√

1 + x3 dx =

A.
√

35

B.
√

6

C.
26

3

D.
52

9
E. 36

10. [3 marks]

Let g(x) =

∫ x

1

√
2t + 1 dt. Then g′(2) =

A.
√

5

B.
√

5−
√

2

C.
2 ln 2√

5

D.
√

2x + 1

E. 0
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Name:

Record your answers on the front page

Student #:

11. [3 marks]
Let f(x, y) = x2y3 + exy. Then fy =

A. 6xy2 + xyexy

B. 3y2 + ex

C. 3x2y2 + exy

D. 3x2y2 + yexy

E. 3x2y2 + xexy

12. [3 marks]
If y+xz2−x2z3 = 2 defines z implicitly as a function of x and y near the point x = 1, y = 2, z = 1, then

at that point
∂z

∂y
=

A. −1

B. 1

C. 0

D. −6

E. 5
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Record your answers on the front page

Student #:

13. [3 marks]

If f(x, y) = x2ey
2

then fxy(1, 1) =

A. 4e

B. 12e

C. 6e

D. 8e

E. 2e

14. [3 marks]

If z = x2 + xy + y2 where x = 3t− 6 and y = t2 + 2 then when t = 1
dz

dt
=

A. 9

B. 3

C. −3

D. 15

E. 6
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Record your answers on the front page

Student #:

15. [3 marks]
The joint demand functions for the products A and B are given by:

qA =
200

pA
√
pB

qB =
300

pB 3
√
pA

Which of the following statements is true?

A.
∂qA
∂pA

> 0

B.
∂qB
∂pB

> 0

C. Products A and B are complementary

D. Products A and B are competitive

E. Products A and B are neither complementary nor competitive
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PART B. WRITTEN-ANSWER QUESTIONS

B1. [11 marks]

(a) [4 marks]
A 20 year mortgage for $500, 000 has monthly payments with interest at 4% compounded
semiannually. Find the amount of each payment (to the nearest cent).

(b) [3 marks]
Find the principal outstanding (to the nearest cent) in the mortgage of question 1.(a), just after the
144th payment has been made.

(c) [4 marks]
What is the market price (to the nearest cent) of a $100 bond having 9 years until maturity and
semiannual coupons, with annual coupon rate 6% and annual yield rate 5%?
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Name: Student #:

B2. [11 marks]
Consider the graphs of x = y2 + 1 and x = 4y + 1

(a) [2 marks]
Find the points where those graphs intersect.

(b) [5 marks]
Express as an integral the finite area bounded by those graphs.

(c) [4 marks]
Find the area from part (b).
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B3. [13 marks]
Evaluate the following integrals

(a) [6 marks]∫ 1

0

(2x+ 1)e2x dx

(b) [7 marks]∫ ∞
1

1

x2(x+ 1)
dx
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Name: Student #:

B4. [8 marks]
Assuming that y > 0, find an expression for y in terms of x if y satisfies the differential equation

dy

dx
= xy

and y = 3 when x = 0. [Hint: This one’s easy. ]
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B5. [12 marks]

(a) [6 marks]
Find and classify the critical point(s) of

f(x, y) = 5x2 − 2xy + 2y2 − 10x+ 2y

(b) [6 marks]
By using the method of Lagrange multipliers only find the critical points of the joint cost function

c(qA, qB) = q2A − qAqB +
3

2
q2B + 300

subject to the constraint

qA + qB = 700.
[Show all your work. No marks will be given for any other method.]
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Name: Student #:

PART A. MULTIPLE CHOICE

1. [3 marks]
If z is used as the parameter in the solution set of the system

2x+ 3y + 5z = 3
3x+ 4y + 6z = 5

then x =

A. 2− 3z

B. 3 + 2z

C. −2 + z

D. 1 + 3z

E. −1− 3z

x y z(
2 3 5 3
3 4 6 5

)
R1→ 1

2
R2−−−−−−−−→

R3→−3R1+R2

(
1 3/2 5/2 3/2
0 −1/2 −3/2 1/2

)
R1→R1+3R2−−−−−−−→

(
1 0 −2 3
0 −1/2 −1/2 1/2

)
x = 3 + 2z, B

Or eliminate y directly:

8x+ 12y + 20z = 12
9x+ 12y + 18z = 15

x− 2z = 3
x = 3 + 2z, B

2. [3 marks]

If f(x) =

√
3x− 5

x
, then f ′(2) =

A. 0

B. −1

2
C. 1

D. −1

E.
1

2

Quotient Rule: f ′(x) =
x ∗ 1

2
√
3x−5 ∗ 3−

√
3x− 5

x2

f ′(2) =

2∗3
2
√
1
−
√

1

4
=

1

2
, E
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3. [3 marks]
If y(x) satisfies y4 + 1 = xy + x2 and y = 1 when x = 1, then when x = 1, y′ =

A. −1

2

B.
1

4
C. −1

D.
1

2
E. 1

4y3y′ = y + xy′ + 2x. Substituting x = 1, y = 1,

4y′ = 1 + y′ + 2

3y′ = 3

y′ = 1, E

4. [3 marks]

If 2xy = e2y, then when (x, y) = (e, 2),
dy

dx
=

A.
e

4

B. −e
2

C. −4

e
D. 2e

E. −2

e

Taking ln of both sides:

ln 2 + y lnx = 2 + ln y

y′ lnx+
y

x
=

1

y
y′

y′ ln e+
2

e
=

1

2
y′

y′ − 1

2
y′ = −2

e
1

2
y′ = −2

e

y′ = −4

e
, C
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5. [3 marks]
On the interval [−2, 4], the function f(x) = 2x3 − 9x2 has

A. an absolute minimum at x = 3 and an absolute maximum at x = 4.

B. an absolute minimum at x = −2 and no absolute maximum.

C. an absolute minimum at x = 3 and an absolute maximum at x = 0.

D. an absolute minimum at x = −2 and an absolute maximum at x = 0.

E. an absolute minimum at x = −2 and an absolute maximum at x = 4.

f ′(x) = 6x2 − 18x = 6x(x− 3)
Critical points are x = 0 and x = 3
Endpoints of closed intervals are x = −2 and x = 4
The continuous function f must have absolute masx and min among these 4 points.
f(−2) = 2(−8)− 36 = −52 min x = −2
f(0) = 0 max x = 0
f(3) = 54− 9 ∗ 9 = −27
f(4) = 2 ∗ 64− 9 ∗ 16 = −16, D

6. [3 marks]

lim
x→1

x− 1− lnx

x− 2
√
x+ 1

=

A.
1

2
B. 1

C. 2

D. ∞
E. 0

0

0
L’Hopital

= lim
x→1

1− 1
x

1− 1√
x

still
0

0

= lim
x→1

1
x2

1
2
x−3/2

=
1
1
2

= 2, C
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7. [3 marks]
If x1 = 0 is used as a first estimate to approximate a root of x3 + x = 1 by Newton’s method, then the
third estimate, x3, equals

A.
3

4

B.
2

3

C.
5

6

D.
1

2

E.
5

8

xn+1 = xn −
f(xn)

f ′(xn)
f(x) = x3 + x− 1

= xn −
x3n + xn − 1

3x2n + 1
x1 = 0

x2 = 0−
(
−1

1

)
= 1

x3 = 1− 1 + 1− 1

4
= 1− 1

4
=

3

4
, A

8. [3 marks]∫ e

1

(
1

x
− 1

x2
) dx =

A.
1

e
− 1

e2

B. − 1

e2
+

2

e3

C.
1

e
− 1

D.
1

e
E. 1

[
ln |x|+ 1

x

]e
1

= (ln e+
1

e
)− (ln 1 + 1)

= 1 +
1

e
− 1 =

1

e
, D
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9. [3 marks]∫ 2

0

x2
√

1 + x3 dx =

A.
√

35

B.
√

6

C.
26

3

D.
52

9
E. 36

Let u = 1 + x3 x = 0 u = 1
du = 3x2dx x = 2 u = 9
du

3
= x2dx

1

3

∫ 9

1

√
u du =

1

3
∗ 2

3
u3/2

∣∣∣∣9
1

=
2

9
(27− 1)

=
52

9
, D

10. [3 marks]

Let g(x) =

∫ x

1

√
2t + 1 dt. Then g′(2) =

A.
√

5

B.
√

5−
√

2

C.
2 ln 2√

5

D.
√

2x + 1

E. 0

g′(x) =
√

2x + 1
g′(2) =

√
22 + 1

=
√

5, A
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11. [3 marks]
Let f(x, y) = x2y3 + exy. Then fy = 3x2y2 + xexy E

A. 6xy2 + xyexy

B. 3y2 + ex

C. 3x2y2 + exy

D. 3x2y2 + yexy

E. 3x2y2 + xexy

12. [3 marks]
If y+xz2−x2z3 = 2 defines z implicitly as a function of x and y near the point x = 1, y = 2, z = 1, then

at that point
∂z

∂y
=

A. −1

B. 1

C. 0

D. −6

E. 5

1 + 2xz
∂z

∂y
− 3x2z2

∂z

∂y
= 0

∂z

∂y
=

1

3x2z2 − 2xz
= 1 at x = 1, y = 2, z = 1, B
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13. [3 marks]

If f(x, y) = x2ey
2

then fxy(1, 1) =

A. 4e

B. 12e

C. 6e

D. 8e

E. 2e

fx = 2xey
2

fxy = 4xyey
2

= 4e at (1, 1), A

14. [3 marks]

If z = x2 + xy + y2 where x = 3t− 6 and y = t2 + 2 then when t = 1
dz

dt
=

A. 9

B. 3

C. −3

D. 15

E. 6

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

= (2x+ y) ∗ 3 + (x+ 2y) ∗ 2t

when t = 1 x = −3, y = 3

dz

dt
= (−6 + 3) ∗ 3 + (−3 + 6) ∗ 2

= −9 + 6 = −3, C

Page 21 of 27



Name: Student #:

15. [3 marks]
The joint demand functions for the products A and B are given by:

qA =
200

pA
√
pB

qB =
300

pB 3
√
pA

Which of the following statements is true?

A.
∂qA
∂pA

> 0

B.
∂qB
∂pB

> 0

C. Products A and B are complementary

D. Products A and B are competitive

E. Products A and B are neither complementary nor competitive

∂qA
∂pA

=
−200

p2A
√
pB

< 0 and
∂qB
∂pB

=
−300

pB 3
√
pA

< 0

so A and B are false.

∂qA
∂pB

=
−100

pA(pB)3/2
< 0 and

∂qB
∂pA

=
−100

pB(pA)4/3
< 0

so the goods are complementary. C
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PART B. WRITTEN-ANSWER QUESTIONS

B1. [11 marks]

(a) [4 marks]
A 20 year mortgage for $500, 000 has monthly payments with interest at 4% compounded
semiannually. Find the amount of each payment (to the nearest cent).

If i is montly rate (1 + i)12 = (1.02)2

500, 000 = Ra240i

R =
500, 000

a240i
=

500, 000i

1− (1 + i)−240
=

500, 000[(1.02)1/6 − 1]

1− (1.02)−40

R=$3021.23

(b) [3 marks]
Find the principal outstanding (to the nearest cent) in the mortgage of question 1.(a), just after the
144th payment has been made.

Principal outstanding is the P.V. of the remaining 240− 144 = 96 payments

P.O.= Ra96i =
500, 000

a240i
a96i = 500, 000

1−(1+i)−96

i
(1−(1+i)−240)

i

= 500, 000
[1− (1.02)−16]

[1− (1.02)−40]
= $248,171.66

(c) [4 marks]
What is the market price (to the nearest cent) of a $100 bond having 9 years until maturity and
semiannual coupons, with annual coupon rate 6% and annual yield rate 5%?

P = V (1 + i)−n + rV ani V = 100 n = 18 r = .03 i = .025

P = 100(1.025)−18 + 3a18.025

= $107.18
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B2. [11 marks]
Consider the graphs of x = y2 + 1 and x = 4y + 1

(a) [2 marks]
Find the points where those graphs intersect.

y2 + 1 = 4y + 1

y2 − 4y = 0

y(y − 4) = 0

y = 0⇒ x = 1 y = 4⇒ x = 17

(1,0) and (17,4) are intersection points

(b) [5 marks]
Express as an integral the finite area bounded by those graphs.

Area=

∫ 4

0

[(4y + 1)− (y2 + 1)] dy

or

upper curve is y =
√
x− 1 lower curve is y =

x− 1

4

Area=

∫ 17

1

[√
x− 1− x− 1

4

]
dx

(c) [4 marks]
Find the area from part (b).

First way:

∫ 4

0

[
(4y + 1)− (y2 + 1)

]
dy =

[
2y2 − y3

3

]4
0

= 2 ∗ 16− 64

3
− 0 =

32

3

Second way:

∫ 17

1

[
√
x− 1− x− 1

4
] dx

=

[
2

3
(x− 1)3/2 − (x− 1)2

8

]17
1

=
2

3
∗ 163/2 − 1

8
∗ 162 − 0

=
2

3
∗ 64− 32 =

32

3
as well
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B3. [13 marks]
Evaluate the following integrals

(a) [6 marks]∫ 1

0

(2x+ 1)e2x dx

By parts u = 2x+ 1 du = 2dx

dv = e2x v =
e2x

2

∫ 1

0

(2x+ 1)e2x dx =
(2x+ 1)e2x

2

∣∣∣∣1
0

−
∫ 1

0

e2x dx

=
3e2

2
− 1

2
− e2x

2

∣∣∣∣1
0

=
3e2

2
− 1

2
−
(
e2

2
− 1

2

)
= e2

(b) [7 marks]∫ ∞
1

1

x2(x+ 1)
dx = lim

R→∞

∫ R

1

dx

x2(x+ 1)

1

x2(x+ 1)
=
A

x
+
B

x2
+

C

x+ 1
Ax(x+ 1) +B(x+ 1) + Cx = 1

x = 0⇒ B = 1

x = −1⇒ C = 1

x = 1⇒ 2A+ 2B + C = 1

2A+ 2 + 1 = 1⇒ A = −1

lim
R→∞

∫ R

1

[
−1

x
+

1

x+ 1
+

1

x2

]
dx

= lim
R→∞

[
− ln |x|+ ln |x+ 1| − 1

x

]R
1

= lim
R→∞

[(
ln
R + 1

R
− 1

R

)
− (ln 2− 1)

]
R + 1

R
→ 1 so ln

(
R + 1

R

)
→ 0 and

1

R
→ 0

= 1− ln 2
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B4. [8 marks]
Assuming that y > 0, find an expression for y in terms of x if y satisfies the differential equation

dy

dx
= xy

and y = 3 when x = 0. [Hint: This one’s easy. ]

dy

y
= xdx∫
dy

y
=

∫
x dx

y > 0 ln y =
x2

2
+ C

y = ex
2/2+C = ex

2/2eC = Aex
2/2

when x = 0 3 = Ae0 = A

so y = 3ex
2/2
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B5. [12 marks]

(a) [6 marks]
Find and classify the critical point(s) of f(x, y) = 5x2 − 2xy + 2y2 − 10x+ 2y

fx = 10x− 2y − 10 = 0 5x− y = 5
fy = −2x + 4y + 2 = 0 − x+ 2y = −1

x− 2y = 1
5x− y = 5(

1 −2 1
5 −1 5

)
→
(

1 −2 1
0 9 0

)
y = 0 and x = 1

fxx = 10 fyy = 4 fxy = −2
D = fxxfyy − (fxy)

2

10 ∗ 4− (−2)2 = 36 > 0
(1, 0) is a local extremum

fxx > 0 so (1,0) is a local min

(b) [6 marks]
By using the method of Lagrange multipliers only find the critical points of the joint cost function

c(qA, qB) = q2A − qAqB +
3

2
q2B + 300

subject to the constraint

qA + qB = 700.
[Show all your work. No marks will be given for any other method.]

L = q2A − qAqB +
3

2
q2B + 300− λ(qA + qB − 700)

∂L

∂qA
= 2qA − qB − λ = 0 and

∂L

∂λ
= −(qA + qB − 700) = 0

∂L

∂qB
= −qA + 3qB − λ = 0 so qA + qB = 700

2qA − qB = λ

−qA + 3qB = λ

2qA − qB = −qA + 3qB

3qA − 4qB = 0

qA + qB = 700

1 1 700

3 −4 0


−→

1 1 700

0 −7 −2100



−→

1 1 700

0 1 300

 qB = 300 qA = 400
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