FACULTY OF ARTS AND SCIENCE
 University of Toronto
 FINAL EXAMINATIONS, APRIL/MAY 2014
 MAT 133Y1Y
 Calculus and Linear Algebra for Commerce

Duration: 3 hours
Examiners: A. Igelfeld
P. Kergin
L. Shorser
J. Tate

FAMILY NAME: \qquad

GIVEN NAME: \qquad

STUDENT NO: \qquad

SIGNATURE:

LEAVE BLANK	
Question	Mark
MC/45	
B1/11	
B2/11	
B3/13	
B4/8	
B5/12	
TOTAL	

NOTE:

1. Aids Allowed: A non-graphing calculator, with empty memory, to be supplied by student.
2. Instructions: Fill in the information on this page, and make sure your test booklet contains 14 pages.
3. This exam consists of 15 multiple choice questions, and 5 written-answer questions. For the multiple choice questions you can do your rough work in the test booklet, but you must record your answer by circling the appropriate letter on the front page with your pencil. Each correct answer is worth 3 marks; a question left blank, or an incorrect answer or two answers for the same question is worth 0 . For the writtenanswer questions, present your solutions in the space provided. The value of each written-answer question is indicated beside it.
4. Put your name and student number on each page of this examination.

ANSWER BOX FOR PART A						
Circle the correct						answer
1.	A.	B.	C.	D.	E.	
2.	A.	B.	C.	D.	E.	
3.	A.	B.	C.	D.	E.	
4.	A.	B.	C.	D.	E.	
5.	A.	B.	C.	D.	E.	
6.	A.	B.	C.	D.	E.	
7.	A.	B.	C.	D.	E.	
8.	A.	B.	C.	D.	E.	
9.	A.	B.	C.	D.	E.	
10.	A.	B.	C.	D.	E.	
11.	A.	B.	C.	D.	E.	
12.	A.	B.	C.	D.	E.	
13.	A.	B.	C.	D.	E.	
14.	A.	B.	C.	D.	E.	
15.	A.	B.	C.	D.	E.	

Record your answers on the front page

PART A. MULTIPLE CHOICE

1. [3 marks]

If z is used as the parameter in the solution set of the system

$$
\begin{aligned}
& 2 x+3 y+5 z=3 \\
& 3 x+4 y+6 z=5
\end{aligned}
$$

then $x=$
A. $2-3 z$
B. $3+2 z$
C. $-2+z$
D. $1+3 z$
E. $-1-3 z$
2. [3 marks]

If $f(x)=\frac{\sqrt{3 x-5}}{x}$, then $f^{\prime}(2)=$
A. 0
B. $-\frac{1}{2}$
C. 1
D. -1
E. $\frac{1}{2}$

Record your answers on the front page
3. [3 marks]

If $y(x)$ satisfies $y^{4}+1=x y+x^{2}$ and $y=1$ when $x=1$, then when $x=1, y^{\prime}=$
A. $-\frac{1}{2}$
B. $\frac{1}{4}$
C. -1
D. $\frac{1}{2}$
E. 1
4. [3 marks]

If $2 x^{y}=e^{2} y$, then when $(x, y)=(e, 2), \frac{d y}{d x}=$
A. $\frac{e}{4}$
B. $-\frac{e}{2}$
C. $-\frac{4}{e}$
D. $2 e$
E. $-\frac{2}{e}$

Record your answers on the front page

5. [3 marks]

On the interval $[-2,4]$, the function $f(x)=2 x^{3}-9 x^{2}$ has
A. an absolute minimum at $x=3$ and an absolute maximum at $x=4$.
B. an absolute minimum at $x=-2$ and no absolute maximum.
C. an absolute minimum at $x=3$ and an absolute maximum at $x=0$.
D. an absolute minimum at $x=-2$ and an absolute maximum at $x=0$.
E. an absolute minimum at $x=-2$ and an absolute maximum at $x=4$.
6. [3 marks]
$\lim _{x \rightarrow 1} \frac{x-1-\ln x}{x-2 \sqrt{x}+1}=$
A. $\frac{1}{2}$
B. 1
C. 2
D. ∞
E. 0

Record your answers on the front page

7. [3 marks]

If $x_{1}=0$ is used as a first estimate to approximate a root of $x^{3}+x=1$ by Newton's method, then the third estimate, x_{3}, equals
A. $\frac{3}{4}$
B. $\frac{2}{3}$
C. $\frac{5}{6}$
D. $\frac{1}{2}$
E. $\frac{5}{8}$
8. [3 marks]
$\int_{1}^{e}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x=$
A. $\frac{1}{e}-\frac{1}{e^{2}}$
B. $-\frac{1}{e^{2}}+\frac{2}{e^{3}}$
C. $\frac{1}{e}-1$
D. $\frac{1}{e}$
E. 1
9. [3 marks]
$\int_{0}^{2} x^{2} \sqrt{1+x^{3}} d x=$
A. $\sqrt{35}$
B. $\sqrt{6}$
C. $\frac{26}{3}$
D. $\frac{52}{9}$
E. 36
10. [3 marks]

Let $g(x)=\int_{1}^{x} \sqrt{2^{t}+1} d t$. Then $g^{\prime}(2)=$
A. $\sqrt{5}$
B. $\sqrt{5}-\sqrt{2}$
C. $\frac{2 \ln 2}{\sqrt{5}}$
D. $\sqrt{2^{x}+1}$
E. 0

Record your answers on the front page

11. [3 marks]

Let $f(x, y)=x^{2} y^{3}+e^{x y}$. Then $f_{y}=$
A. $6 x y^{2}+x y e^{x y}$
B. $3 y^{2}+e^{x}$
C. $3 x^{2} y^{2}+e^{x y}$
D. $3 x^{2} y^{2}+y e^{x y}$
E. $3 x^{2} y^{2}+x e^{x y}$
12. [3 marks]

If $y+x z^{2}-x^{2} z^{3}=2$ defines z implicitly as a function of x and y near the point $x=1, y=2, z=1$, then at that point $\frac{\partial z}{\partial y}=$
A. -1
B. 1
C. 0
D. -6
E. 5

Record your answers on the front page

13. [3 marks]

If $f(x, y)=x^{2} e^{y^{2}}$ then $f_{x y}(1,1)=$
A. $4 e$
B. $12 e$
C. $6 e$
D. $8 e$
E. $2 e$
14. [3 marks]

If $z=x^{2}+x y+y^{2}$ where $x=3 t-6$ and $y=t^{2}+2$ then when $t=1 \quad \frac{d z}{d t}=$
A. 9
B. 3
C. -3
D. 15
E. 6

Record your answers on the front page

15. [3 marks]

The joint demand functions for the products A and B are given by:

$$
q_{A}=\frac{200}{p_{A} \sqrt{p_{B}}} \quad q_{B}=\frac{300}{p_{B} \sqrt[3]{p_{A}}}
$$

Which of the following statements is true?
A. $\frac{\partial q_{A}}{\partial p_{A}}>0$
B. $\frac{\partial q_{B}}{\partial p_{B}}>0$
C. Products A and B are complementary
D. Products A and B are competitive
E. Products A and B are neither complementary nor competitive

PART B. WRITTEN-ANSWER QUESTIONS

B1. [11 marks]
(a) [4 marks]

A 20 year mortgage for $\$ 500,000$ has monthly payments with interest at 4% compounded semiannually. Find the amount of each payment (to the nearest cent).
(b) [3 marks]

Find the principal outstanding (to the nearest cent) in the mortgage of question 1.(a), just after the 144th payment has been made.
(c) [4 marks]

What is the market price (to the nearest cent) of a $\$ 100$ bond having 9 years until maturity and semiannual coupons, with annual coupon rate 6% and annual yield rate 5% ?

B2. [11 marks]
Consider the graphs of $x=y^{2}+1$ and $x=4 y+1$
(a) [2 marks]

Find the points where those graphs intersect.
(b) [5 marks]

Express as an integral the finite area bounded by those graphs.
(c) [4 marks]

Find the area from part (b).

B3. [13 marks]
Evaluate the following integrals
(a) [6 marks]
$\int_{0}^{1}(2 x+1) e^{2 x} d x$
(b) [7 marks]
$\int_{1}^{\infty} \frac{1}{x^{2}(x+1)} d x$

B4. [8 marks]
Assuming that $y>0$, find an expression for y in terms of x if y satisfies the differential equation

$$
\frac{d y}{d x}=x y
$$

and $y=3$ when $x=0$. [Hint: This one's easy.]

B5. [12 marks]
(a) [6 marks]

Find and classify the critical point(s) of

$$
f(x, y)=5 x^{2}-2 x y+2 y^{2}-10 x+2 y
$$

(b) [6 marks]

By using the method of Lagrange multipliers only find the critical points of the joint cost function

$$
c\left(q_{A}, q_{B}\right)=q_{A}^{2}-q_{A} q_{B}+\frac{3}{2} q_{B}^{2}+300
$$

subject to the constraint

$$
q_{A}+q_{B}=700
$$

[Show all your work. No marks will be given for any other method.]
\qquad

PART A. MULTIPLE CHOICE

1. [3 marks]

If z is used as the parameter in the solution set of the system

$$
\begin{aligned}
& 2 x+3 y+5 z=3 \\
& 3 x+4 y+6 z=5
\end{aligned}
$$

then $x=$
A. $2-3 z$
B. $3+2 z$
C. $-2+z$
D. $1+3 z$
E. $-1-3 z$

$$
\begin{gathered}
\left.\left.\begin{array}{ccc}
x & y & z \\
2 & 3 & 5 \\
3 \\
3 & 4 & 6
\end{array} \right\rvert\, 5\right) \xrightarrow[R_{3} \rightarrow-3 R_{1}+R_{2}]{R_{1} \rightarrow \frac{1}{2} R_{2}}\left(\begin{array}{rrr|c}
1 & 3 / 2 & 5 / 2 & 3 / 2 \\
0 & -1 / 2 & -3 / 2 & 1 / 2
\end{array}\right) \xrightarrow{R_{1} \rightarrow R_{1}+3 R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & -2 & 3 \\
0 & -1 / 2 & -1 / 2 & 1 / 2
\end{array}\right) \\
\quad x=3+2 z, \quad \mathbf{B}
\end{gathered}
$$

Or eliminate y directly:

$$
\begin{aligned}
8 x+12 y+20 z & =12 \\
9 x+12 y+18 z & =15 \\
\hline x-2 z & =3
\end{aligned} \quad x=3+2 z, \quad \text { B }
$$

2. [3 marks]

If $f(x)=\frac{\sqrt{3 x-5}}{x}$, then $f^{\prime}(2)=$
A. 0
B. $-\frac{1}{2}$
C. 1
D. -1
E. $\frac{1}{2}$

Quotient Rule: $f^{\prime}(x)=\frac{x * \frac{1}{2 \sqrt{3 x-5}} * 3-\sqrt{3 x-5}}{x^{2}}$

$$
f^{\prime}(2)=\frac{\frac{2 * 3}{2 \sqrt{1}}-\sqrt{1}}{4}=\frac{1}{2}, \quad \mathbf{E}
$$

3. [3 marks]

If $y(x)$ satisfies $y^{4}+1=x y+x^{2}$ and $y=1$ when $x=1$, then when $x=1, y^{\prime}=$
A. $-\frac{1}{2}$
B. $\frac{1}{4}$
C. -1
D. $\frac{1}{2}$
E. 1
$4 y^{3} y^{\prime}=y+x y^{\prime}+2 x$. Substituting $x=1, y=1$,
$4 y^{\prime}=1+y^{\prime}+2$
$3 y^{\prime}=3$
$y^{\prime}=1, \quad \mathbf{E}$
4. [3 marks]

If $2 x^{y}=e^{2} y$, then when $(x, y)=(e, 2), \frac{d y}{d x}=$
A. $\frac{e}{4}$
B. $-\frac{e}{2}$
C. $-\frac{4}{e}$
D. $2 e$
E. $-\frac{2}{e}$

Taking \ln of both sides:
$\ln 2+y \ln x=2+\ln y$
$y^{\prime} \ln x+\frac{y}{x}=\frac{1}{y} y^{\prime}$
$y^{\prime} \ln e+\frac{2}{e}=\frac{1}{2} y^{\prime}$
$y^{\prime}-\frac{1}{2} y^{\prime}=-\frac{2}{e}$
$\frac{1}{2} y^{\prime}=-\frac{2}{e}$
$y^{\prime}=-\frac{4}{e}, \quad \mathbf{C}$
5. [3 marks]

On the interval $[-2,4]$, the function $f(x)=2 x^{3}-9 x^{2}$ has
A. an absolute minimum at $x=3$ and an absolute maximum at $x=4$.
B. an absolute minimum at $x=-2$ and no absolute maximum.
C. an absolute minimum at $x=3$ and an absolute maximum at $x=0$.
D. an absolute minimum at $x=-2$ and an absolute maximum at $x=0$.
E. an absolute minimum at $x=-2$ and an absolute maximum at $x=4$.
$f^{\prime}(x)=6 x^{2}-18 x=6 x(x-3)$
Critical points are $x=0$ and $x=3$
Endpoints of closed intervals are $x=-2$ and $x=4$
The continuous function f must have absolute masx and min among these 4 points.
$f(-2)=2(-8)-36=-52 \min x=-2$
$f(0)=0 \max x=0$
$f(3)=54-9 * 9=-27$
$f(4)=2 * 64-9 * 16=-16, \quad \mathbf{D}$
6. [3 marks]
$\lim _{x \rightarrow 1} \frac{x-1-\ln x}{x-2 \sqrt{x}+1}=$
A. $\frac{1}{2}$
B. 1
C. 2
D. ∞
E. 0
$\frac{0}{0} \quad$ L'Hopital
$=\lim _{x \rightarrow 1} \frac{1-\frac{1}{x}}{1-\frac{1}{\sqrt{x}}} \quad$ still $\frac{0}{0}$
$=\lim _{x \rightarrow 1} \frac{\frac{1}{x^{2}}}{\frac{1}{2} x^{-3 / 2}}=\frac{1}{\frac{1}{2}}=2$,
7. [3 marks]

If $x_{1}=0$ is used as a first estimate to approximate a root of $x^{3}+x=1$ by Newton's method, then the third estimate, x_{3}, equals
A. $\frac{3}{4}$
B. $\frac{2}{3}$
C. $\frac{5}{6}$
D. $\frac{1}{2}$
E. $\frac{5}{8}$

$$
\begin{array}{rlrl}
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} & f(x)=x^{3}+x-1 \\
& =x_{n}-\frac{x_{n}^{3}+x_{n}-1}{3 x_{n}^{2}+1} & x_{1}=0 \\
x_{2}= & 0-\left(\frac{-1}{1}\right)=1 & \\
x_{3}= & 1-\frac{1+1-1}{4}=1-\frac{1}{4}=\frac{3}{4}, \quad \text { A }
\end{array}
$$

8. [3 marks]
$\int_{1}^{e}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x=$
A. $\frac{1}{e}-\frac{1}{e^{2}}$
B. $-\frac{1}{e^{2}}+\frac{2}{e^{3}}$
C. $\frac{1}{e}-1$
D. $\frac{1}{e}$
E. 1

$$
\begin{align*}
{\left[\ln |x|+\frac{1}{x}\right]_{1}^{e} } & =\left(\ln e+\frac{1}{e}\right)-(\ln 1+1) \\
& =1+\frac{1}{e}-1=\frac{1}{e}, \quad \mathbf{D} \tag{D}
\end{align*}
$$

9. [3 marks]

$$
\begin{gathered}
\int_{0}^{2} x^{2} \sqrt{1+x^{3}} d x= \\
\text { A. } \sqrt{35} \\
\text { B. } \sqrt{6} \\
\text { C. } \frac{26}{3} \\
\text { D. } \frac{52}{9} \\
\text { E. } 36
\end{gathered}
$$

$$
\begin{aligned}
& \text { Let } u=1+x^{3} \\
& \begin{array}{rlrl}
d u=3 x^{2} d x & x & =0 u & =1 \\
\frac{d u}{3}=x^{2} d x & x & =2 u & =9
\end{array} \\
& \begin{aligned}
\frac{1}{3} \int_{1}^{9} \sqrt{u} d u & =\left.\frac{1}{3} * \frac{2}{3} u^{3 / 2}\right|_{1} ^{9} \\
& =\frac{2}{9}(27-1) \\
& =\frac{52}{9},
\end{aligned}
\end{aligned}
$$

10. [3 marks]

Let $g(x)=\int_{1}^{x} \sqrt{2^{t}+1} d t$. Then $g^{\prime}(2)=$
A. $\sqrt{5}$
B. $\sqrt{5}-\sqrt{2}$
C. $\frac{2 \ln 2}{\sqrt{5}}$
D. $\sqrt{2^{x}+1}$
E. 0

$$
\begin{aligned}
g^{\prime}(x) & =\sqrt{2^{x}+1} \\
g^{\prime}(2) & =\sqrt{2^{2}+1} \\
& =\sqrt{5}, \quad \mathbf{A}
\end{aligned}
$$

11. [3 marks]

Let $f(x, y)=x^{2} y^{3}+e^{x y}$. Then $f_{y}=3 x^{2} y^{2}+x e^{x y} \quad \mathbf{E}$
A. $6 x y^{2}+x y e^{x y}$
B. $3 y^{2}+e^{x}$
C. $3 x^{2} y^{2}+e^{x y}$
D. $3 x^{2} y^{2}+y e^{x y}$
E. $3 x^{2} y^{2}+x e^{x y}$
12. [3 marks]

If $y+x z^{2}-x^{2} z^{3}=2$ defines z implicitly as a function of x and y near the point $x=1, y=2, z=1$, then at that point $\frac{\partial z}{\partial y}=$
A. -1
B. 1
C. 0
D. -6
E. 5
$1+2 x z \frac{\partial z}{\partial y}-3 x^{2} z^{2} \frac{\partial z}{\partial y}=0$
$\frac{\partial z}{\partial y}=\frac{1}{3 x^{2} z^{2}-2 x z}=1$ at $x=1, y=2, z=1, \quad$ B
13. [3 marks]

$$
\text { If } f(x, y)=x^{2} e^{y^{2}} \text { then } f_{x y}(1,1)=
$$

A. $4 e$
B. $12 e$
C. $6 e$
D. $8 e$
E. $2 e$

$$
\begin{aligned}
f_{x} & =2 x e^{y^{2}} \\
f_{x y} & =4 x y e^{y^{2}} \\
& =4 e \text { at }(1,1), \quad \mathbf{A}
\end{aligned}
$$

14. [3 marks]

If $z=x^{2}+x y+y^{2}$ where $x=3 t-6$ and $y=t^{2}+2$ then when $t=1 \quad \frac{d z}{d t}=$
A. 9
B. 3
C. -3
D. 15
E. 6

$$
\begin{aligned}
& \begin{aligned}
& \frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
&=(2 x+y) * 3+(x+2 y) * 2 t \\
& \text { when } t=1 x=-3, y=3
\end{aligned} \\
& \frac{d z}{d t}=(-6+3) * 3+(-3+6) * 2 \\
& \\
& \quad=-9+6=-3, \quad \text { C }
\end{aligned}
$$

\qquad
15. [3 marks]

The joint demand functions for the products A and B are given by:

$$
q_{A}=\frac{200}{p_{A} \sqrt{p_{B}}} \quad q_{B}=\frac{300}{p_{B} \sqrt[3]{p_{A}}}
$$

Which of the following statements is true?
A. $\frac{\partial q_{A}}{\partial p_{A}}>0$
B. $\frac{\partial q_{B}}{\partial p_{B}}>0$
C. Products A and B are complementary
D. Products A and B are competitive
E. Products A and B are neither complementary nor competitive
$\frac{\partial q_{A}}{\partial p_{A}}=\frac{-200}{p_{A}^{2} \sqrt{p_{B}}}<0$ and $\frac{\partial q_{B}}{\partial p_{B}}=\frac{-300}{p_{B} \sqrt[3]{p_{A}}}<0$
so A and B are false.
$\frac{\partial q_{A}}{\partial p_{B}}=\frac{-100}{p_{A}\left(p_{B}\right)^{3 / 2}}<0$ and $\frac{\partial q_{B}}{\partial p_{A}}=\frac{-100}{p_{B}\left(p_{A}\right)^{4 / 3}}<0$
so the goods are complementary. \mathbf{C}
\qquad

PART B. WRITTEN-ANSWER QUESTIONS

B1. [11 marks]
(a) [4 marks]

A 20 year mortgage for $\$ 500,000$ has monthly payments with interest at 4% compounded semiannually. Find the amount of each payment (to the nearest cent).

If i is montly rate $(1+i)^{12}=(1.02)^{2}$
$500,000=R a_{240 i}$
$R=\frac{500,000}{a_{240 i}}=\frac{500,000 i}{1-(1+i)^{-240}}=\frac{500,000\left[(1.02)^{1 / 6}-1\right]}{1-(1.02)^{-40}}$
$\mathrm{R}=\$ 3021.23$
(b) [3 marks]

Find the principal outstanding (to the nearest cent) in the mortgage of question 1.(a), just after the 144th payment has been made.

Principal outstanding is the P.V. of the remaining $240-144=96$ payments
P.O. $=R a_{96 i i}=\frac{500,000}{a_{240 i}} a_{96 i}=500,000 \frac{\frac{1-(1+i)^{-96}}{i}}{\frac{\left(1-(1+i)^{-240}\right)}{i}}$
$=500,000 \frac{\left[1-(1.02)^{-16}\right]}{\left[1-(1.02)^{-40}\right]}=\$ 248,171.66$
(c) [4 marks]

What is the market price (to the nearest cent) of a $\$ 100$ bond having 9 years until maturity and semiannual coupons, with annual coupon rate 6% and annual yield rate 5% ?
$P=V(1+i)^{-n}+r V a_{\bar{n} i} \quad V=100 \quad n=18 \quad r=.03 \quad i=.025$
$P=100(1.025)^{-18}+3 a_{18.025}$
$=\$ 107.18$
\qquad
B2. [11 marks]
Consider the graphs of $x=y^{2}+1$ and $x=4 y+1$
(a) [2 marks]

Find the points where those graphs intersect.

$$
\begin{aligned}
& y^{2}+1=4 y+1 \\
& y^{2}-4 y=0 \\
& y(y-4)=0 \\
& y=0 \Rightarrow x=1 \quad y=4 \Rightarrow x=17
\end{aligned}
$$

$(1,0)$ and $(17,4)$ are intersection points
(b) [5 marks]

Express as an integral the finite area bounded by those graphs.

Area $=\int_{0}^{4}\left[(4 y+1)-\left(y^{2}+1\right)\right] d y$
or
upper curve is $y=\sqrt{x-1}$ lower curve is $y=\frac{x-1}{4}$
Area $=\int_{1}^{17}\left[\sqrt{x-1}-\frac{x-1}{4}\right] d x$
(c) [4 marks]

Find the area from part (b).
First way: $\int_{0}^{4}\left[(4 y+1)-\left(y^{2}+1\right)\right] d y=\left[2 y^{2}-\frac{y^{3}}{3}\right]_{0}^{4}=2 * 16-\frac{64}{3}-0=\frac{32}{3}$

Second way: $\int_{1}^{17}\left[\sqrt{x-1}-\frac{x-1}{4}\right] d x$

$$
\begin{aligned}
& =\left[\frac{2}{3}(x-1)^{3 / 2}-\frac{(x-1)^{2}}{8}\right]_{1}^{17} \\
& =\frac{2}{3} * 16^{3 / 2}-\frac{1}{8} * 16^{2}-0 \\
& =\frac{2}{3} * 64-32=\frac{32}{3} \text { as well }
\end{aligned}
$$

B3. [13 marks]
Evaluate the following integrals
(a) [6 marks]

$$
\int_{0}^{1}(2 x+1) e^{2 x} d x
$$

By parts $u=2 x+1 \quad d u=2 d x$

$$
\begin{array}{rl}
d v=e^{2 x} & v=\frac{e^{2 x}}{2} \\
\int_{0}^{1}(2 x+1) e^{2 x} d x & =\left.\frac{(2 x+1) e^{2 x}}{2}\right|_{0} ^{1}-\int_{0}^{1} e^{2 x} d x \\
& =\frac{3 e^{2}}{2}-\frac{1}{2}-\left.\frac{e^{2 x}}{2}\right|_{0} ^{1} \\
& =\frac{3 e^{2}}{2}-\frac{1}{2}-\left(\frac{e^{2}}{2}-\frac{1}{2}\right)=e^{2}
\end{array}
$$

(b) [7 marks]

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{x^{2}(x+1)} d x=\lim _{R \rightarrow \infty} \int_{1}^{R} \frac{d x}{x^{2}(x+1)} \\
& \frac{1}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1} \quad \begin{array}{l}
A x(x+1)+B(x+1)+C x=1 \\
x= \\
x
\end{array} \\
& x=-1 \Rightarrow C=1 \\
& x=1 \Rightarrow 2 A+2 B+C=1
\end{aligned} \quad \begin{aligned}
& 2 A+2 \quad+1=1 \Rightarrow A=-1
\end{aligned} \begin{aligned}
& \lim _{R \rightarrow \infty} \int_{1}^{R}\left[\frac{-1}{x}+\frac{1}{x+1}+\frac{1}{x^{2}}\right] d x \\
& =\lim _{R \rightarrow \infty}\left[-\ln |x|+\ln |x+1|-\frac{1}{x}\right]_{1}^{R} \\
& =\lim _{R \rightarrow \infty}\left[\left(\ln \frac{R+1}{R}-\frac{1}{R}\right)-(\ln 2-1)\right] \quad \frac{R+1}{R} \rightarrow 1 \text { so } \ln \left(\frac{R+1}{R}\right) \rightarrow 0 \text { and } \frac{1}{R} \rightarrow 0 \\
& =1-\ln 2
\end{aligned}
$$

B4. [8 marks]
Assuming that $y>0$, find an expression for y in terms of x if y satisfies the differential equation

$$
\frac{d y}{d x}=x y
$$

and $y=3$ when $x=0$. [Hint: This one's easy.]

$$
\begin{array}{cl}
& \frac{d y}{y}=x d x \\
& \int \frac{d y}{y}=\int x d x \\
y>0 \quad & \ln y=\frac{x^{2}}{2}+C \\
& y=e^{x^{2} / 2+C}=e^{x^{2} / 2} e^{C}=A e^{x^{2} / 2}
\end{array}
$$

when $x=0 \quad 3=A e^{0}=A$
so $y=3 e^{x^{2} / 2}$
\qquad
B5. [12 marks]
(a) [6 marks]

Find and classify the critical point(s) of $f(x, y)=5 x^{2}-2 x y+2 y^{2}-10 x+2 y$
$f_{x}=10 x-2 y-10=0 \quad 5 x-y=5$
$\begin{aligned} f_{y}=-2 x+4 y+2=0 & -x+2 y \\ = & -1 \\ x-2 y & =1\end{aligned}$ $5 x-y=5$
$\left(\begin{array}{rr|r}1 & -2 & 1 \\ 5 & -1 & 5\end{array}\right) \rightarrow\left(\begin{array}{rr|r}1 & -2 & 1 \\ 0 & 9 & 0\end{array}\right)$
$y=0$ and $x=1$
$f_{x x}=10 \quad f_{y y}=4 \quad f_{x y}=-2$
$D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$
$10 * 4-(-2)^{2}=36>0$
$(1,0)$ is a local extremum
$f_{x x}>0$ so $(1,0)$ is a local min
(b) [6 marks]

By using the method of Lagrange multipliers only find the critical points of the joint cost function

$$
c\left(q_{A}, q_{B}\right)=q_{A}^{2}-q_{A} q_{B}+\frac{3}{2} q_{B}^{2}+300
$$

subject to the constraint

$$
q_{A}+q_{B}=700
$$

[Show all your work. No marks will be given for any other method.]

$$
\begin{array}{lc}
\mathscr{L}=q_{A}^{2}-q_{A} q_{B}+\frac{3}{2} q_{B}^{2}+300-\lambda\left(q_{A}+q_{B}-700\right) \\
\frac{\partial \mathscr{L}}{\partial q_{A}}=2 q_{A}-q_{B}-\lambda=0 & \text { and } \\
\frac{\partial \mathscr{L}}{\partial q_{B}}=-q_{A}+3 q_{B}-\lambda=0 & \frac{\partial \mathscr{L}}{\partial \lambda}=-\left(q_{A}+q_{B}-700\right)=0 \\
\end{array}
$$

$$
2 q_{A}-q_{B}=\lambda
$$

$$
-q_{A}+3 q_{B}=\lambda
$$

$$
2 q_{A}-q_{B}=-q_{A}+3 q_{B}
$$

$$
\left.\begin{array}{rl}
3 q_{A}-4 q_{B}=0 \\
q_{A}+q_{B}=700
\end{array}\right\} \quad\left(\begin{array}{cc|c}
1 & 1 & 700 \\
3 & -4 & 0
\end{array}\right) \quad \begin{array}{ll}
& \longrightarrow\left(\begin{array}{cc|c}
1 & 1 & 700 \\
0 & -7 & -2100
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{cc|c}
1 & 1 & 700 \\
0 & 1 & 300
\end{array}\right)
\end{array}
$$

