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ANSWER BOX FOR PART A

Circle the correct answer

1. A. B. C. D. E.

2. A. B. C. D. E.

3. A. B. C. D. E.

4. A. B. C. D. E.

5. A. B. C. D. E.

6. A. B. C. D. E.

7. A. B. C. D. E.

8. A. B. C. D. E.

9. A. B. C. D. E.

10. A. B. C. D. E.

11. A. B. C. D. E.

12. A. B. C. D. E.

13. A. B. C. D. E.

14. A. B. C. D. E.

15. A. B. C. D. E.
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NAME: STUDENT #:
Record your answers on the front page

PART A. MULTIPLE CHOICE

1. [3 marks]

The slope of the tangent to the curve f(x) =
(x2 − 3)3√

4− 3x
at the point where x = 1 is:

A. −16

B. −12

C. 25
1

2

D. 12

E. 16

2. [3 marks]

Given: y =
3x

2
e−x

(x+ 2)3x
, find

dy

dx
when x = −1.

A. 6e(1− ln 3)

B. 3e

C. 2− 2 ln 3

D. −2e ln 3

E. undefined

Page 2 of 27



NAME: STUDENT NO:
Record your answers on the front page

3. [3 marks]

A horizontal asymptote for the graph of y = e−1/x
2

is

A. x = 0

B. x = 1

C. y = 0

D. y = 1

E. y = x

4. [3 marks]

Let f(x) = (x2 − 1)2 on the interval given by −1 < x < 2. Then f has

A. an absolute minimum at x = 1 and also at x = −1

B. an absolute minimum at x = 1 and no absolute maximum

C. neither an absolute minimum nor an absolute maximum

D. an absolute minimum at x = 1 and an absolute maximum at x = 2

E. an absolute minimum at x = 1 and an absolute maximum at x = 0
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Record your answers on the front page

5. [3 marks]

lim
x→0+

(x+ 1)(1/x
2) =

A. 1

B. e + 1

C. 0

D. ∞

E. e

6. [3 marks]∫ 1

−1
(x2 + 1)(1− x2)dx =

A. 0

B.
2

5

C.
8

5

D. 2

E. −2

5
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Record your answers on the front page

7. [3 marks]

If f ′′(x) = ex − 1, f ′(0) = −1, and f(0) = 1, then f(x) =

A. ex − 1
2
x2 − 2x

B. ex − 1
2
x2 − x+ 1

C. ex − x2 − 2x

D. ex − 1
2
x2

E. ex − x2 + x

8. [3 marks]

The average value of f(x) = xe−x
2

over the interval [0, 2] is

A.
1− e−4

4

B. 1

C.
1− e−2

2

D. 1− e−4

E.
e−2 − 1

4
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NAME: STUDENT NO:
Record your answers on the front page

9. [3 marks]

If F ′(x) = f(x), F (2) = 3, and F (0) = −2, then

∫ 2

0

f(x)dx =

A. −5

B. 5

C. 2

D. −2

E. 1

10. [3 marks]

If f(x) =

∫ x

e

dt

ln t
, then f ′(e3) =

A.
1

3

B. − 1

3e3

C. − 1

9e3

D. 3e2

E. 1
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NAME: STUDENT NO:
Record your answers on the front page

11. [3 marks]

If a certain good has demand function p = 15−q2 and supply function p = 2q, what is the
consumers’ surplus for the good? Note: this good has equilibrium point q = 3, p = 6.

A. 27

B. 24

C. 18

D. 12

E. 30

12. [3 marks]

If f(x, y) = 3x2 − x3y2 + xy4 − 4x, fxyy(1, 1) =

A. 6

B. 0

C. −1

D. 2

E. 4
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Record your answers on the front page

13. [3 marks]

Given z3 + x2y − y2x− xz = 0, then at x = y = z = 1,
∂z

∂x
=

A. 4

B. 2

C. −1

D. 0

E. undefined

14. [3 marks]

If z = x2ey + y2ex where x = 2rs2 and y = 2 ln r + 3 ln s, then when r = 1 and s = 1,
∂z

∂s
=

A. 0

B. 1

C. 5e

D. 2e

E. 28
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Record your answers on the front page

15. [3 marks]

If A =

[
1 2

−1 0

]
, B =

[
−1 0

1 4

]
, and AX = B, then X =

A.

[
−1 −3

0 4

]

B.

[
−2 −8

0 4

]

C.

[
−1 −4

0 2

]

D.

[
1 3

0 −2

]

E.

[
−1 −3

0 2

]
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PART B. WRITTEN-ANSWER QUESTIONS

B1. [11 marks]

Parts (a) and (b) below concern a 20 year mortgage for $300, 000 with monthly payments
and interest at 4% compounded semiannually. In parts (a), (b), and (c), give answers
to the nearest cent.

[4 marks] (a) Find the amount of each payment of the mortgage.

[4 marks] (b) Just after the first 15 years of the mortgage, what is the outstanding
principal?

[3 marks] (c) If a $100 bond has 9 years to maturity with semiannual coupons at annual
coupon rate 4.4% and annual yield rate 4%, what is its market price?
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B2. [11 marks]

[1 mark] (a) Find the points of intersection of the the curves y = x 2x and y = 2x.

[10 marks] (b) Find the area bounded by the two curves.
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B3. [10 marks]

Find

∫ ∞
0

1

x2 + 3x+ 2
dx or show that the integral diverges.
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B4. [10 marks]

Find the unique solution to the differential equation xy′ = y2 satisfying y(e) = −1
2
.

What is the value of y when x = e2?
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B5. [13 marks]

[6 marks] (a) Let f(x, y) = x2 + 6xy + 3y2 − 16x− 36y. Find any critical point(s) of f
and classify each one.

[7 marks] (b) If the Acme company charges p dollars per unit for its product, it will sell
q units, provided 3p+ 2q = 60. Use Lagrange multipliers to find the values of p and
q which maximize the Acme company’s revenue.

Note: No marks will be assigned to any alternate method of solution. You don’t need
to verify that your solution actually maximizes revenue, but you do need to find the
value of the Lagrange multiplier.
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NAME: STUDENT #:
SOLUTIONS

PART A. MULTIPLE CHOICE

1. [3 marks]

The slope of the tangent to the curve f(x) =
(x2 − 3)3√

4− 3x
at the point where x = 1 is:

A. −16

B. −12

C. 25
1

2

D. 12

E. 16

y′ =

√
4− 3x · 3(x2 − 3)2 · 2x− (x2 − 3)3 · 1

2
√
4−3x · (−3)

4− 3x
.

At x = 1, y′ = 3(−2)2 · 2− (−2)3(−3
2
) = 24− 12 = 12, D.

2. [3 marks]

Given: y =
3x

2
e−x

(x+ 2)3x
, find

dy

dx
when x = −1.

A. 6e(1− ln 3)

B. 3e

C. 2− 2 ln 3

D. −2e ln 3

E. undefined

ln y = x2 ln 3− x− 3x ln(x+ 2)
1
y
y′ = 2x ln 3− 1− 3 ln(x+ 2)− 3x

x+2

At x = 1, y = 3e
1
3e
y′ = −2 ln 3− 1− 3 ln 1 + 3 = −2 ln 3 + 2

y′ = 6e(− ln 3 + 1), A.
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SOLUTIONS

3. [3 marks]

A horizontal asymptote for the graph of y = e−1/x
2

is

A. x = 0

B. x = 1

C. y = 0

D. y = 1

E. y = x

lim
x→±∞

1

x2
= 0

lim
x→±∞

e−
1
x2 = e0 = 1, D.

4. [3 marks]

Let f(x) = (x2 − 1)2 on the interval given by −1 < x < 2. Then f has

A. an absolute minimum at x = 1 and also at x = −1

B. an absolute minimum at x = 1 and no absolute maximum

C. neither an absolute minimum nor an absolute maximum

D. an absolute minimum at x = 1 and an absolute maximum at x = 2

E. an absolute minimum at x = 1 and an absolute maximum at x = 0

f ′(x) = 2(x2 − 1) · 2x = 0 at x = 0 and x = 1.

f ′ f

(−1, 0) + inc

(0, 1) − dec

(1, 2) + inc

x = 0 is a local max, x = 1 is a local min.

Since f(x) ≥ 0 always, the local min at x = 1 is a global minimum. x = 0 is a local
max, but since near x = 2, f(x) is near 9 and f(0) is only 1, there is no global max.
B.

Note: x = −1 is not a point where f is defined; neither is x = 2.
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SOLUTIONS

5. [3 marks]

lim
x→0+

(x+ 1)(1/x
2) =

A. 1

B. e + 1

C. 0

D. ∞

E. e

Let y = (x+ 1)
1
x2

ln y =
ln(x+ 1)

x2
is of the form

(
0
0

)
near 0.

lim
x→0+

ln y = lim
x→0+

1

2x(x+ 1)
→∞ since x+ 1→ 1 and x→ 0+, D

6. [3 marks]∫ 1

−1
(x2 + 1)(1− x2)dx =

A. 0

B.
2

5

C.
8

5

D. 2

E. −2

5

∫ 1

−1
(1− x4)dx =

(
x− x5

5

) ∣∣∣∣1
−1

=

(
1− 1

5

)
−
(
−1− (−1)5

5

)
=

4

5
−
(
−4

5

)
=

8

5
, C

Or, by symmetry:

= 2

∫ 1

0

(1− x4)dx = 2

(
x− x5

5

) ∣∣∣∣1
0

=
8

5
, C
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SOLUTIONS

7. [3 marks]

If f ′′(x) = ex − 1, f ′(0) = −1, and f(0) = 1, then f(x) =

A. ex − 1
2
x2 − 2x

B. ex − 1
2
x2 − x+ 1

C. ex − x2 − 2x

D. ex − 1
2
x2

E. ex − x2 + x

f ′(x) = ex − x+ C

−1 = f ′(0) = 1 + C, so C = −2.

f ′(x) = e−x − x− 2

f(x) = ex − x2

2
− 2x+ C

1 = f(0) = 1 + C so C = 0.

f(x) = ex − x2

2
− 2x, A

8. [3 marks]

The average value of f(x) = xe−x
2

over the interval [0, 2] is

A.
1− e−4

4

B. 1

C.
1− e−2

2

D. 1− e−4

E.
e−2 − 1

4

1

2

∫ 2

0

xe−x
2

dx

Let u = x2 =⇒ du = 2xdx =⇒ 1
2
du = xdx

=
1

4

∫ 4

0

e−udu

= 1
4
(−e−u)

∣∣∣∣4
0

=
1

4

(
−e−4 − (−1)

)
=

1− e−4

4
, A
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9. [3 marks]

If F ′(x) = f(x), F (2) = 3, and F (0) = −2, then

∫ 2

0

f(x)dx =

A. −5

B. 5

C. 2

D. −2

E. 1

∫ 2

0

f(x)dx =

∫ 2

0

F ′(x)dx = F (2)− F (0) = 3− (−2) = 5, B.

10. [3 marks]

If f(x) =

∫ x

e

dt

ln t
, then f ′(e3) =

A.
1

3

B. − 1

3e3

C. − 1

9e3

D. 3e2

E. 1

f ′(x) = 1
lnx

f ′(e3) = 1
ln e3

= 1
3
, A.
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SOLUTIONS

11. [3 marks]

If a certain good has demand function p = 15−q2 and supply function p = 2q, what is the
consumers’ surplus for the good? Note: this good has equilibrium point q = 3, p = 6.

A. 27

B. 24

C. 18

D. 12

E. 30

CS =
∫ q0
0

[D(q)− p0]dq =
∫ 3

0
[(15− q2)− 6]dq =

∫ 3

0
(9− q3)dq = (9q − q3

3
)
∣∣3
0

= 27− 9 =
18, C.

12. [3 marks]

If f(x, y) = 3x2 − x3y2 + xy4 − 4x, fxyy(1, 1) =

A. 6

B. 0

C. −1

D. 2

E. 4

Using the equality of mixed partials to differentiate by y first,

fy = −2x3y + 4xy3

fyy = −2x3 + 12xy2

fyyx = −6x2 + 12y2 = 6 at (1, 1), A.
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SOLUTIONS

13. [3 marks]

Given z3 + x2y − y2x− xz = 0, then at x = y = z = 1,
∂z

∂x
=

A. 4

B. 2

C. −1

D. 0

E. undefined

3z2 ∂z
∂x

+ 2xy − y2 − z − x ∂z
∂x

= 0

At x = y = z = 1,

3 ∂z
∂x

+ 2− 1− 1− ∂z
∂x

= 0

2 ∂z
∂x

= 0
∂z
∂x

= 0, D

14. [3 marks]

If z = x2ey + y2ex where x = 2rs2 and y = 2 ln r + 3 ln s, then when r = 1 and s = 1,
∂z

∂s
=

A. 0

B. 1

C. 5e

D. 2e

E. 28

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s

= (2xey + y2ex)4rs+ (x2ey + 2yex)
3

s

At r = s = 1, x = 2 and y = 0, so
∂z

∂s
= 4 · 4 + 4 · 3 = 28, E.

Page 21 of 27



NAME: STUDENT NO:
SOLUTIONS

15. [3 marks]

If A =

[
1 2

−1 0

]
, B =

[
−1 0

1 4

]
, and AX = B, then X =

A.

[
−1 −3

0 4

]

B.

[
−2 −8

0 4

]

C.

[
−1 −4

0 2

]

D.

[
1 3

0 −2

]

E.

[
−1 −3

0 2

]

X = A−1B. To find A−1 :

[
1 2 1 0

−1 0 0 1

]
→

[
1 2 1 0

0 2 1 1

]
→

[
1 0 0 −1

0 2 1 1

]
→

[
1 0 0 −1

0 1 1
2

1
2

]

A−1 =

[
0 −1
1
2

1
2

]

A−1B =

[
0 −1
1
2

1
2

][
−1 0

1 4

]
=

[
−1 −4

0 2

]
, C
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PART B. WRITTEN-ANSWER QUESTIONS

B1. [11 marks]

Parts (a) and (b) below concern a 20 year mortgage for $300, 000 with monthly payments
and interest at 4% compounded semiannually. In parts (a), (b), and (c), give answers
to the nearest cent.

[4 marks] (a) Find the amount of each payment of the mortgage.

300, 000 = Ra240 i

R =
300, 000i

1− (1 + i)−240

(1 + i)12 = (1.02)2

(1 + i)−240 = (1.02)−40

R =
300, 000((1.02)1/6 − 1)

1− (1.02)−40
≈ $1812.74

[4 marks] (b) Just after the first 15 years of the mortgage, what is the outstanding
principal?

5 years remain.

P.O. = Ra60 i = 1812.74
(1− (1 + i)−60)

i

= 1812.74
(1− (1.02)−10)

(1.02)1/6 − 1

≈ $98,509.57.

Easier is:

P.O. = Ra60 i = 300, 000
a60 i
a240 i

= 300, 000
1− (1.02)−10

1− (1.02)−40
≈ $98,509.53

[3 marks] (c) If a $100 bond has 9 years to maturity with semiannual coupons at annual
coupon rate 4.4% and annual yield rate 4%, what is its market price?

P = V (i+ 1)−n + rV an i

n = 18, V = 100

r = 0.022, i = 0.02

P = 100(1.02)−18 + 2.20a18 .02

= 102.9984 · · · ≈ $103
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B2. [11 marks]

[1 mark] (a) Find the points of intersection of the the curves y = x 2x and y = 2x.

x2x = 2x

x2x − 2x = 0

x(2x − 2) = 0,

so x = 0, y = 0 and x = 1, y = 2 are the points of intersection.

[10 marks] (b) Find the area bounded by the two curves.

The interval is [0, 1]. At x = 1
2
, x2x =

√
2
2

and 2x = 1. Since
√
2
2
< 1, y = 2x lies above

y = x2x on [0, 1] and the area is:

A =

∫ 1

0

(2x− x2x)dx = x2
∣∣∣∣1
0

−
∫ 1

0

x2xdx.

Let u = x, dv = 2xdx =⇒ du = dx, v = 2x

ln 2
.

A = 1− x2x

ln 2

∣∣1
0

+
1

ln 2

∫ 1

0

2xdx

= 1− 2

ln 2
+

2x

(ln 2)2
∣∣1
0

= 1− 2

ln 2
+

2

(ln 2)2
− 1

(ln 2)2

= 1− 2

ln 2
+

1

(ln 2)2
.
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B3. [10 marks]

Find

∫ ∞
0

1

x2 + 3x+ 2
dx or show that the integral diverges.

= lim
R→∞

∫ R

0

1

(x+ 2)(x+ 2)
dx

1

(x+ 2)(x+ 1)
=

A

x+ 2
+

B

x+ 1
=⇒ A(x+ 1) +B(x+ 2) = 1. Plugging in x = −1, we

get B = 1, and from x = −2, we get −A = 1.

lim
R→∞

∫ R

0

(
1

x+ 1
− 1

x+ 2

)
dx = lim

R→∞
(ln |x+ 1| − ln |x+ 2|)

∣∣R
0

= lim
R→∞

ln

(∣∣∣∣R + 1

R + 2

∣∣∣∣)− ln

(
1

2

)
= ln 1 + ln 2 = ln 2
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B4. [10 marks]

Find the unique solution to the differential equation xy′ = y2 satisfying y(e) = −1
2
.

What is the value of y when x = e2?

x
dy

dx
= y2

dy

y2
=
dx

x∫
dy

y2
=

∫
dx

x
−1

y
= ln |x|+ C

At x = e, y = −1
2
, so 2 = 1 + C, and C = 1.

−1

y
= ln |x|+ 1

y = − 1

1 + ln |x|
.

When x = e2, y = − 1

1 + 2
= −1

3
.
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B5. [13 marks]

[6 marks] (a) Let f(x, y) = x2 + 6xy + 3y2 − 16x− 36y. Find any critical point(s) of f
and classify each one.

fx = 2x+ 6y − 16 = 0 =⇒ x+ 3y = 8

fy = 6x+ 6y − 36 = 0 =⇒ x+ y = 6

so 2y = 2, so y = 1, x = 5. The only critical point is x = 5, y = 1 .

fxx = 2, fyy = 6, fxy = 6.

D = fxxfyy − (fxy)
2 = 2 · 6− 62 = −24 < 0,

so (5,1) is a saddle point.

[7 marks] (b) If the Acme company charges p dollars per unit for its product, it will sell
q units, provided 3p+ 2q = 60. Use Lagrange multipliers to find the values of p and
q which maximize the Acme company’s revenue.

Note: No marks will be assigned to any alternate method of solution. You don’t need
to verify that your solution actually maximizes revenue, but you do need to find the
value of the Lagrange multiplier.

R = pq subject to 3p+ 2q = 60.

L = pq − λ(3p+ 2q − 60)

Lp = q − 3λ = 0 =⇒ q = 3λ

Lq = p− 2λ = 0 =⇒ p = 2λ

Lλ = −(3p+ 2q − 60) = 0

60 = 3p+ 2q = 6λ+ 6λ = 12λ,

so λ = 5, p = 10, q = 15.
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