FACULTY OF ARTS AND SCIENCE

University of Toronto
FINAL EXAMINATIONS, APRIL 2013
MAT 133Y1Y
Calculus and Linear Algebra for Commerce

Duration:	3 hours
Examiners:	A. Igelfeld
	P. Kergin
	J. Tate
	P. Walls

FAMILY NAME: \qquad

LEAVE BLANK	
Question	Mark
MC	$/ 45$
B1	$/ 11$
B2	$/ 11$
B3	$/ 10$
B4	$/ 10$
B5	$/ 13$
TOTAL	

NOTE:

1. Aids Allowed: A non-graphing calculator, with empty memory, to be supplied by student.
2. Instructions: Fill in the information on this page, and make sure your test booklet contains 14 pages.
3. This exam consists of 15 multiple choice questions, and 5 written-answer questions. For the multiple choice questions you can do your rough work in the test booklet, but you must record your answer by circling the appropriate letter on the front page with your pencil. Each correct answer is worth 3 marks; a question left blank, or an incorrect answer, or two answers for the same question is worth 0 . For the written-answer questions, present your solutions in the space provided. The value of each written-answer question is indicated beside it.
4. Put your name and student number on each page of this examination.

ANSWER BOX FOR PART A						
Circle	che correct	answer				
1.	A.	B.	C.	D.	E.	
2.	A.	B.	C.	D.	E.	
3.	A.	B.	C.	D.	E.	
4.	A.	B.	C.	D.	E.	
5.	A.	B.	C.	D.	E.	
6.	A.	B.	C.	D.	E.	
7.	A.	B.	C.	D.	E.	
8.	A.	B.	C.	D.	E.	
9.	A.	B.	C.	D.	E.	
10.	A.	B.	C.	D.	E.	
11.	A.	B.	C.	D.	E.	
12.	A.	B.	C.	D.	E.	
13.	A.	B.	C.	D.	E.	
14.	A.	B.	C.	D.	E.	
15.	A.	B.	C.	D.	E.	

ANSWER BOX FOR PART A

Circle the correct answer
\qquad
STUDENT \#:
Record your answers on the front page

PART A. MULTIPLE CHOICE

1. [3 marks]

The slope of the tangent to the curve $f(x)=\frac{\left(x^{2}-3\right)^{3}}{\sqrt{4-3 x}}$ at the point where $x=1$ is:
A. -16
B. -12
C. $25 \frac{1}{2}$
D. 12
E. 16
2. [3 marks]

Given: $y=\frac{3^{x^{2}} e^{-x}}{(x+2)^{3 x}}$, find $\frac{d y}{d x}$ when $x=-1$.
A. $6 e(1-\ln 3)$
B. $3 e$
C. $2-2 \ln 3$
D. $-2 e \ln 3$
E. undefined
\qquad
3. [3 marks]

A horizontal asymptote for the graph of $y=e^{-1 / x^{2}}$ is
A. $x=0$
B. $x=1$
C. $y=0$
D. $y=1$
E. $y=x$
4. [3 marks]

Let $f(x)=\left(x^{2}-1\right)^{2}$ on the interval given by $-1<x<2$. Then f has
A. an absolute minimum at $x=1$ and also at $x=-1$
B. an absolute minimum at $x=1$ and no absolute maximum
C. neither an absolute minimum nor an absolute maximum
D. an absolute minimum at $x=1$ and an absolute maximum at $x=2$
E. an absolute minimum at $x=1$ and an absolute maximum at $x=0$
\qquad STUDENT NO:
Record your answers on the front page
5. [3 marks]
$\lim _{x \rightarrow 0^{+}}(x+1)^{\left(1 / x^{2}\right)}=$
A. 1
B. $e+1$
C. 0
D. ∞
E. e
6. [3 marks]
$\int_{-1}^{1}\left(x^{2}+1\right)\left(1-x^{2}\right) d x=$
A. 0
B. $\frac{2}{5}$
C. $\frac{8}{5}$
D. 2
E. $-\frac{2}{5}$
7. [3 marks]

If $f^{\prime \prime}(x)=e^{x}-1, \quad f^{\prime}(0)=-1$, and $f(0)=1$, then $f(x)=$
A. $e^{x}-\frac{1}{2} x^{2}-2 x$
B. $e^{x}-\frac{1}{2} x^{2}-x+1$
C. $e^{x}-x^{2}-2 x$
D. $e^{x}-\frac{1}{2} x^{2}$
E. $e^{x}-x^{2}+x$
8. [3 marks]

The average value of $f(x)=x e^{-x^{2}}$ over the interval $[0,2]$ is
A. $\frac{1-e^{-4}}{4}$
B. 1
C. $\frac{1-e^{-2}}{2}$
D. $1-e^{-4}$
E. $\frac{e^{-2}-1}{4}$
9. [3 marks]

If $F^{\prime}(x)=f(x), \quad F(2)=3$, and $F(0)=-2$, then $\int_{0}^{2} f(x) d x=$
A. -5
B. 5
C. 2
D. -2
E. 1
10. [3 marks]

If $f(x)=\int_{e}^{x} \frac{d t}{\ln t}$, then $f^{\prime}\left(e^{3}\right)=$
A. $\frac{1}{3}$
B. $-\frac{1}{3 e^{3}}$
C. $-\frac{1}{9 e^{3}}$
D. $3 e^{2}$
E. 1
\qquad
STUDENT NO:
Record your answers on the front page
11. [3 marks]

If a certain good has demand function $p=15-q^{2}$ and supply function $p=2 q$, what is the consumers' surplus for the good? Note: this good has equilibrium point $q=3, p=6$.
A. 27
B. 24
C. 18
D. 12
E. 30
12. [3 marks]

If $f(x, y)=3 x^{2}-x^{3} y^{2}+x y^{4}-4 x, f_{x y y}(1,1)=$
A. 6
B. 0
C. -1
D. 2
E. 4
13. [3 marks]

Given $z^{3}+x^{2} y-y^{2} x-x z=0$, then at $x=y=z=1, \quad \frac{\partial z}{\partial x}=$
A. 4
B. 2
C. -1
D. 0
E. undefined
14. [3 marks]

If $z=x^{2} e^{y}+y^{2} e^{x}$ where $x=2 r s^{2}$ and $y=2 \ln r+3 \ln s$, then when $r=1$ and $s=1$, $\frac{\partial z}{\partial s}=$
A. 0
B. 1
C. $5 e$
D. $2 e$
E. 28
\qquad
15. [3 marks]

If $A=\left[\begin{array}{rr}1 & 2 \\ -1 & 0\end{array}\right], B=\left[\begin{array}{rr}-1 & 0 \\ 1 & 4\end{array}\right]$, and $A X=B$, then $X=$
A. $\left[\begin{array}{rr}-1 & -3 \\ 0 & 4\end{array}\right]$
B. $\left[\begin{array}{rr}-2 & -8 \\ 0 & 4\end{array}\right]$
C. $\left[\begin{array}{rr}-1 & -4 \\ 0 & 2\end{array}\right]$
D. $\left[\begin{array}{rr}1 & 3 \\ 0 & -2\end{array}\right]$
E. $\left[\begin{array}{rr}-1 & -3 \\ 0 & 2\end{array}\right]$
\qquad
\qquad

PART B. WRITTEN-ANSWER QUESTIONS

B1. [11 marks]
Parts (a) and (b) below concern a 20 year mortgage for $\$ 300,000$ with monthly payments and interest at 4% compounded semiannually. In parts (a), (b), and (c), give answers to the nearest cent.
[4 marks] (a) Find the amount of each payment of the mortgage.
[4 marks] (b) Just after the first 15 years of the mortgage, what is the outstanding principal?
[3 marks] (c) If a $\$ 100$ bond has 9 years to maturity with semiannual coupons at annual coupon rate 4.4% and annual yield rate 4%, what is its market price?

B2. [11 marks]
[1 mark] (a) Find the points of intersection of the the curves $y=x 2^{x}$ and $y=2 x$.
[10 marks] (b) Find the area bounded by the two curves.

B3. [10 marks]
Find $\int_{0}^{\infty} \frac{1}{x^{2}+3 x+2} d x$ or show that the integral diverges.

B4. [10 marks]
Find the unique solution to the differential equation $x y^{\prime}=y^{2}$ satisfying $y(e)=-\frac{1}{2}$.
What is the value of y when $x=e^{2}$?

NAME:
STUDENT NO:

B5. [13 marks]
[6 marks] (a) Let $f(x, y)=x^{2}+6 x y+3 y^{2}-16 x-36 y$. Find any critical point(s) of f and classify each one.
[7 marks] (b) If the Acme company charges p dollars per unit for its product, it will sell q units, provided $3 p+2 q=60$. Use Lagrange multipliers to find the values of p and q which maximize the Acme company's revenue.
Note: No marks will be assigned to any alternate method of solution. You don't need to verify that your solution actually maximizes revenue, but you do need to find the value of the Lagrange multiplier.
\qquad
\qquad

SOLUTIONS

PART A. MULTIPLE CHOICE

1. [3 marks]

The slope of the tangent to the curve $f(x)=\frac{\left(x^{2}-3\right)^{3}}{\sqrt{4-3 x}}$ at the point where $x=1$ is:
A. -16
B. -12
C. $25 \frac{1}{2}$
D. 12
E. 16
$y^{\prime}=\frac{\sqrt{4-3 x} \cdot 3\left(x^{2}-3\right)^{2} \cdot 2 x-\left(x^{2}-3\right)^{3} \cdot \frac{1}{2 \sqrt{4-3 x}} \cdot(-3)}{4-3 x}$.
At $x=1, y^{\prime}=3(-2)^{2} \cdot 2-(-2)^{3}\left(-\frac{3}{2}\right)=24-12=12, \quad$ D.
2. [3 marks]

Given: $y=\frac{3^{x^{2}} e^{-x}}{(x+2)^{3 x}}$, find $\frac{d y}{d x}$ when $x=-1$.
A. $6 e(1-\ln 3)$
B. $3 e$
C. $2-2 \ln 3$
D. $-2 e \ln 3$
E. undefined
$\ln y=x^{2} \ln 3-x-3 x \ln (x+2)$
$\frac{1}{y} y^{\prime}=2 x \ln 3-1-3 \ln (x+2)-\frac{3 x}{x+2}$
At $x=1, y=3 e$
$\frac{1}{3 e} y^{\prime}=-2 \ln 3-1-3 \ln 1+3=-2 \ln 3+2$
$y^{\prime}=6 e(-\ln 3+1), \quad \mathbf{A}$.
\qquad

SOLUTIONS

3. [3 marks]

A horizontal asymptote for the graph of $y=e^{-1 / x^{2}}$ is
A. $x=0$
B. $x=1$
C. $y=0$
D. $y=1$
E. $y=x$
$\lim _{x \rightarrow \pm \infty} \frac{1}{x^{2}}=0$
$\lim _{x \rightarrow \pm \infty} e^{-\frac{1}{x^{2}}}=e^{0}=1, \quad \mathbf{D}$
4. [3 marks]

Let $f(x)=\left(x^{2}-1\right)^{2}$ on the interval given by $-1<x<2$. Then f has
A. an absolute minimum at $x=1$ and also at $x=-1$
B. an absolute minimum at $x=1$ and no absolute maximum
C. neither an absolute minimum nor an absolute maximum
D. an absolute minimum at $x=1$ and an absolute maximum at $x=2$
E. an absolute minimum at $x=1$ and an absolute maximum at $x=0$
$f^{\prime}(x)=2\left(x^{2}-1\right) \cdot 2 x=0$ at $x=0$ and $x=1$.

	f^{\prime}	f
$(-1,0)$	+	inc
$(0,1)$	-	dec
$(1,2)$	+	inc

$x=0$ is a local max, $x=1$ is a local min.
Since $f(x) \geq 0$ always, the local min at $x=1$ is a global minimum. $x=0$ is a local max, but since near $x=2, f(x)$ is near 9 and $f(0)$ is only 1 , there is no global max. B.

Note: $x=-1$ is not a point where f is defined; neither is $x=2$.
\qquad
5. [3 marks]
$\lim _{x \rightarrow 0^{+}}(x+1)^{\left(1 / x^{2}\right)}=$
A. 1
B. $e+1$
C. 0
D. ∞
E. e

Let $y=(x+1)^{\frac{1}{x^{2}}}$
$\ln y=\frac{\ln (x+1)}{x^{2}}$ is of the form $\left(\frac{0}{0}\right)$ near 0 .
$\lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \frac{1}{2 x(x+1)} \rightarrow \infty$ since $x+1 \rightarrow 1$ and $x \rightarrow 0^{+}, \quad \mathbf{D}$
6. [3 marks]
$\int_{-1}^{1}\left(x^{2}+1\right)\left(1-x^{2}\right) d x=$
A. 0
B. $\frac{2}{5}$
C. $\frac{8}{5}$
D. 2
E. $-\frac{2}{5}$
$\int_{-1}^{1}\left(1-x^{4}\right) d x=\left.\left(x-\frac{x^{5}}{5}\right)\right|_{-1} ^{1}$
$=\left(1-\frac{1}{5}\right)-\left(-1-\frac{(-1)^{5}}{5}\right)$
$=\frac{4}{5}-\left(-\frac{4}{5}\right)=\frac{8}{5}, \quad \mathrm{C}$
Or, by symmetry:
$=2 \int_{0}^{1}\left(1-x^{4}\right) d x=\left.2\left(x-\frac{x^{5}}{5}\right)\right|_{0} ^{1}=\frac{8}{5}, \quad \mathbf{C}$
\qquad
7. [3 marks]

If $f^{\prime \prime}(x)=e^{x}-1, \quad f^{\prime}(0)=-1$, and $f(0)=1$, then $f(x)=$
A. $e^{x}-\frac{1}{2} x^{2}-2 x$
B. $e^{x}-\frac{1}{2} x^{2}-x+1$
C. $e^{x}-x^{2}-2 x$
D. $e^{x}-\frac{1}{2} x^{2}$
E. $e^{x}-x^{2}+x$
$f^{\prime}(x)=e^{x}-x+C$
$-1=f^{\prime}(0)=1+C$, so $C=-2$.
$f^{\prime}(x)=e^{-x}-x-2$
$f(x)=e^{x}-\frac{x^{2}}{2}-2 x+C$
$1=f(0)=1+C$ so $C=0$.
$f(x)=e^{x}-\frac{x^{2}}{2}-2 x, \quad \mathbf{A}$
8. [3 marks]

The average value of $f(x)=x e^{-x^{2}}$ over the interval $[0,2]$ is
A. $\frac{1-e^{-4}}{4}$
B. 1
C. $\frac{1-e^{-2}}{2}$
D. $1-e^{-4}$
E. $\frac{e^{-2}-1}{4}$
$\frac{1}{2} \int_{0}^{2} x e^{-x^{2}} d x$
Let $u=x^{2} \Longrightarrow d u=2 x d x \Longrightarrow \frac{1}{2} d u=x d x$
$=\frac{1}{4} \int_{0}^{4} e^{-u} d u$
$=\left.\frac{1}{4}\left(-e^{-u}\right)\right|_{0} ^{4}$
$=\frac{1}{4}\left(-e^{-4}-(-1)\right)=\frac{1-e^{-4}}{4}, \quad \mathbf{A}$
\qquad
9. [3 marks]

If $F^{\prime}(x)=f(x), \quad F(2)=3$, and $F(0)=-2$, then $\int_{0}^{2} f(x) d x=$
A. -5
B. 5
C. 2
D. -2
E. 1
$\int_{0}^{2} f(x) d x=\int_{0}^{2} F^{\prime}(x) d x=F(2)-F(0)=3-(-2)=5$,
B.
10. [3 marks]

If $f(x)=\int_{e}^{x} \frac{d t}{\ln t}$, then $f^{\prime}\left(e^{3}\right)=$
A. $\frac{1}{3}$
B. $-\frac{1}{3 e^{3}}$
C. $-\frac{1}{9 e^{3}}$
D. $3 e^{2}$
E. 1
$f^{\prime}(x)=\frac{1}{\ln x}$
$f^{\prime}\left(e^{3}\right)=\frac{1}{\ln e^{3}}=\frac{1}{3}, \quad \mathbf{A}$.
\qquad
11. [3 marks]

If a certain good has demand function $p=15-q^{2}$ and supply function $p=2 q$, what is the consumers' surplus for the good? Note: this good has equilibrium point $q=3, p=6$.
A. 27
B. 24
C. 18
D. 12
E. 30
$C S=\int_{0}^{q_{0}}\left[D(q)-p_{0}\right] d q=\int_{0}^{3}\left[\left(15-q^{2}\right)-6\right] d q=\int_{0}^{3}\left(9-q^{3}\right) d q=\left.\left(9 q-\frac{q^{3}}{3}\right)\right|_{0} ^{3}=27-9=$ 18, \mathbf{C}.
12. [3 marks]

If $f(x, y)=3 x^{2}-x^{3} y^{2}+x y^{4}-4 x, f_{x y y}(1,1)=$
A. 6
B. 0
C. -1
D. 2
E. 4

Using the equality of mixed partials to differentiate by y first,
$f_{y}=-2 x^{3} y+4 x y^{3}$
$f_{y y}=-2 x^{3}+12 x y^{2}$
$f_{y y x}=-6 x^{2}+12 y^{2}=6$ at $(1,1), \quad \mathbf{A}$.
\qquad
13. [3 marks]

Given $z^{3}+x^{2} y-y^{2} x-x z=0$, then at $x=y=z=1, \quad \frac{\partial z}{\partial x}=$
A. 4
B. 2
C. -1
D. 0
E. undefined
$3 z^{2} \frac{\partial z}{\partial x}+2 x y-y^{2}-z-x \frac{\partial z}{\partial x}=0$
At $x=y=z=1$,
$3 \frac{\partial z}{\partial x}+2-1-1-\frac{\partial z}{\partial x}=0$
$2 \frac{\partial z}{\partial x}=0$
$\frac{\partial z}{\partial x}=0, \quad \mathbf{D}$
14. [3 marks]

If $z=x^{2} e^{y}+y^{2} e^{x}$ where $x=2 r s^{2}$ and $y=2 \ln r+3 \ln s$, then when $r=1$ and $s=1$,
$\frac{\partial z}{\partial s}=$
A. 0
B. 1
C. $5 e$
D. $2 e$
E. 28
$\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$
$=\left(2 x e^{y}+y^{2} e^{x}\right) 4 r s+\left(x^{2} e^{y}+2 y e^{x}\right) \frac{3}{s}$
At $r=s=1, x=2$ and $y=0$, so $\frac{\partial z}{\partial s}=4 \cdot 4+4 \cdot 3=28, \quad$ E.
\qquad
SOLUTIONS
15. [3 marks]

If $A=\left[\begin{array}{rr}1 & 2 \\ -1 & 0\end{array}\right], B=\left[\begin{array}{rr}-1 & 0 \\ 1 & 4\end{array}\right]$, and $A X=B$, then $X=$
A. $\left[\begin{array}{rr}-1 & -3 \\ 0 & 4\end{array}\right]$
B. $\left[\begin{array}{rr}-2 & -8 \\ 0 & 4\end{array}\right]$
C. $\left[\begin{array}{rr}-1 & -4 \\ 0 & 2\end{array}\right]$
D. $\left[\begin{array}{rr}1 & 3 \\ 0 & -2\end{array}\right]$
E. $\left[\begin{array}{rr}-1 & -3 \\ 0 & 2\end{array}\right]$
$X=A^{-1} B$. To find $A^{-1}:$
$\left[\begin{array}{cc|cc}1 & 2 & 1 & 0 \\ -1 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{ll|ll}1 & 2 & 1 & 0 \\ 0 & 2 & 1 & 1\end{array}\right] \rightarrow\left[\begin{array}{cc|cc}1 & 0 & 0 & -1 \\ 0 & 2 & 1 & 1\end{array}\right] \rightarrow\left[\begin{array}{cc|cc}1 & 0 & 0 & -1 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2}\end{array}\right]$
$A^{-1}=\left[\begin{array}{cc}0 & -1 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$
$A^{-1} B=\left[\begin{array}{cc}0 & -1 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]\left[\begin{array}{cc}-1 & 0 \\ 1 & 4\end{array}\right]=\left[\begin{array}{cc}-1 & -4 \\ 0 & 2\end{array}\right], \quad \mathbf{C}$
\qquad
\qquad

PART B. WRITTEN-ANSWER QUESTIONS

B1. [11 marks]
Parts (a) and (b) below concern a 20 year mortgage for $\$ 300$, 000 with monthly payments and interest at 4% compounded semiannually. In parts (a), (b), and (c), give answers to the nearest cent.
[4 marks] (a) Find the amount of each payment of the mortgage.

$$
\begin{aligned}
& 300,000=R a_{\overline{240} i} \\
& R=\frac{300,000 i}{1-(1+i)^{-240}} \\
& (1+i)^{12}=(1.02)^{2} \\
& (1+i)^{-240}=(1.02)^{-40} \\
& R=\frac{300,000\left((1.02)^{1 / 6}-1\right)}{1-(1.02)^{-40}} \approx \$ 1812.74
\end{aligned}
$$

[4 marks] (b) Just after the first 15 years of the mortgage, what is the outstanding principal?
5 years remain.

$$
\begin{aligned}
\text { P.O. } & =R a_{601 i}=1812.74 \frac{\left(1-(1+i)^{-60}\right)}{i} \\
& =1812.74 \frac{\left(1-(1.02)^{-10}\right)}{(1.02)^{1 / 6}-1} \\
& \approx \$ 98,509.57 .
\end{aligned}
$$

Easier is:

$$
\text { P.O. }=R a_{\overline{601} i}=300,000 \frac{a_{\overline{60} i}}{a_{\overline{240 i} i}}=300,000 \frac{1-(1.02)^{-10}}{1-(1.02)^{-40}} \approx \$ 98,509.53
$$

[3 marks] (c) If a $\$ 100$ bond has 9 years to maturity with semiannual coupons at annual coupon rate 4.4% and annual yield rate 4%, what is its market price?

$$
\begin{aligned}
& P=V(i+1)^{-n}+r V a_{\bar{n} \mid i} \\
& n=18, V=100 \\
& r=0.022, i=0.02 \\
& P=100(1.02)^{-18}+2.20 a_{\overline{18} .02} \\
& =102.9984 \cdots \approx \$ 103
\end{aligned}
$$

\qquad

B2. [11 marks]
[1 mark] (a) Find the points of intersection of the the curves $y=x 2^{x}$ and $y=2 x$.

$$
\begin{aligned}
& x 2^{x}=2 x \\
& x 2^{x}-2 x=0 \\
& x\left(2^{x}-2\right)=0
\end{aligned}
$$

so $x=0, y=0$ and $x=1, y=2$ are the points of intersection.
[10 marks] (b) Find the area bounded by the two curves.
The interval is $[0,1]$. At $x=\frac{1}{2}, x 2^{x}=\frac{\sqrt{2}}{2}$ and $2 x=1$. Since $\frac{\sqrt{2}}{2}<1, y=2 x$ lies above $y=x 2^{x}$ on $[0,1]$ and the area is:

$$
A=\int_{0}^{1}\left(2 x-x 2^{x}\right) d x=\left.x^{2}\right|_{0} ^{1}-\int_{0}^{1} x 2^{x} d x
$$

Let $u=x, d v=2^{x} d x \Longrightarrow d u=d x, v=\frac{2^{x}}{\ln 2}$.

$$
\begin{aligned}
A & =1-\left.\frac{x 2^{x}}{\ln 2}\right|_{0} ^{1}+\frac{1}{\ln 2} \int_{0}^{1} 2^{x} d x \\
& =1-\frac{2}{\ln 2}+\left.\frac{2^{x}}{(\ln 2)^{2}}\right|_{0} ^{1} \\
& =1-\frac{2}{\ln 2}+\frac{2}{(\ln 2)^{2}}-\frac{1}{(\ln 2)^{2}} \\
& =1-\frac{2}{\ln 2}+\frac{1}{(\ln 2)^{2}} .
\end{aligned}
$$

\qquad

B3. [10 marks]
Find $\int_{0}^{\infty} \frac{1}{x^{2}+3 x+2} d x$ or show that the integral diverges.
$=\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{1}{(x+2)(x+2)} d x$
$\frac{1}{(x+2)(x+1)}=\frac{A}{x+2}+\frac{B}{x+1} \Longrightarrow A(x+1)+B(x+2)=1$. Plugging in $x=-1$, we get $B=1$, and from $x=-2$, we get $-A=1$.

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \int_{0}^{R}\left(\frac{1}{x+1}-\frac{1}{x+2}\right) d x & =\left.\lim _{R \rightarrow \infty}(\ln |x+1|-\ln |x+2|)\right|_{0} ^{R} \\
& =\lim _{R \rightarrow \infty} \ln \left(\left|\frac{R+1}{R+2}\right|\right)-\ln \left(\frac{1}{2}\right) \\
& =\ln 1+\ln 2=\ln 2
\end{aligned}
$$

B4. [10 marks]
Find the unique solution to the differential equation $x y^{\prime}=y^{2}$ satisfying $y(e)=-\frac{1}{2}$. What is the value of y when $x=e^{2}$?

$$
\begin{aligned}
x \frac{d y}{d x} & =y^{2} \\
\frac{d y}{y^{2}} & =\frac{d x}{x} \\
\int \frac{d y}{y^{2}} & =\int \frac{d x}{x} \\
\frac{-1}{y} & =\ln |x|+C \\
\text { At } x=e, y & =-\frac{1}{2}, \text { so } 2=1+C, \text { and } C=1 . \\
-\frac{1}{y} & =\ln |x|+1 \\
y & =-\frac{1}{1+\ln |x|} .
\end{aligned}
$$

When $x=e^{2}, y=-\frac{1}{1+2}=-\frac{1}{3}$.

NAME: \qquad

B5. [13 marks]
[6 marks] (a) Let $f(x, y)=x^{2}+6 x y+3 y^{2}-16 x-36 y$. Find any critical point(s) of f and classify each one.

$$
\begin{aligned}
& f_{x}=2 x+6 y-16=0 \Longrightarrow x+3 y=8 \\
& f_{y}=6 x+6 y-36=0 \Longrightarrow x+y=6
\end{aligned}
$$

so $2 y=2$, so $y=1, x=5$. The only critical point is $x=5, y=1$.

$$
\begin{aligned}
f_{x x} & =2, f_{y y}=6, f_{x y}=6 \\
D & =f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=2 \cdot 6-6^{2}=-24<0
\end{aligned}
$$

so $(5,1)$ is a saddle point.
[7 marks] (b) If the Acme company charges p dollars per unit for its product, it will sell q units, provided $3 p+2 q=60$. Use Lagrange multipliers to find the values of p and q which maximize the Acme company's revenue.
Note: No marks will be assigned to any alternate method of solution. You don't need to verify that your solution actually maximizes revenue, but you do need to find the value of the Lagrange multiplier.
$R=p q$ subject to $3 p+2 q=60$.

$$
\mathcal{L}=p q-\lambda(3 p+2 q-60)
$$

$$
\mathcal{L}_{p}=q-3 \lambda=0 \Longrightarrow q=3 \lambda
$$

$$
\mathcal{L}_{q}=p-2 \lambda=0 \Longrightarrow p=2 \lambda
$$

$$
\mathcal{L}_{\lambda}=-(3 p+2 q-60)=0
$$

$$
60=3 p+2 q=6 \lambda+6 \lambda=12 \lambda,
$$

so $\lambda=5, p=10, q=15$.

