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4. A. B. C. D. E.
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13. A. B. C. D. E.

14. A. B. C. D. E.

15. A. B. C. D. E.

Page 1 of 14



Name: Student #:

Record your answers on the front page.

PART A. MULTIPLE CHOICE

1. [3 marks]

If A−1 =

(
1 2
3 4

)

and AX =

(
−1 1

0 2

)
then X =

A.

(
2 3
6 8

)

B.

(
−1 5
−3 11

)

C.

(
−2 1
1.5 −0.5

)

D.

(
1 0
0 1

)

E.

(
−1 7
−2 10

)

2. [3 marks]

If the demand function for a product is given by

p = 500e−q/20

then the maximum value of revenue is

A. 500

B. 20

C. 1000/e

D. 10, 000

E. 10, 000/e
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Name: Student #:

Record your answers on the front page.

3. [3 marks]

The function f(x) = x2 +
2

x
on the interval [1

3
, 2] has its maximum value

A. nowhere; there is no maximum

B. at x = 1

C. at x = 2

D. at x = 1
3

E. at x = 2−
1
3

4. [3 marks]

The graph of f(x) = ex + e−x is

A. increasing when x > 0 and always concave upward.

B. increasing when x < 0 and always concave upward.

C. increasing and concave upward everywhere.

D. increasing and concave downward everywhere.

E. increasing everywhere and concave upward when x > 0.
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Name: Student #:

Record your answers on the front page.

5. [3 marks]

If a country’s savings (S) and national income (I) are related by: 2S2 + I2 = 3SI then when
I = 4 and S = 2, the marginal propensity to save is:

A.
3

4

B. −8

5

C.
5

6

D.
1

2

E. 2

6. [3 marks]

lim
x→∞

(x2 + 2)
1

x2+1

A. = e

B. = 0

C. = 1

D. = −1

E. does not exist
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Name: Student #:

Record your answers on the front page.

7. [3 marks]

If the demand for a certain product is determined by q = 300 − 10p and the supply by

q =
20p− 100

3
where p is unit price and q is quantity then producers surplus is

A. 750

B. 500

C. 1250

D. 2000

E. 1000

8. [3 marks]

The average value of f(x) =
lnx

x
on the interval [e, e2] is

A.
1
e

+ 1
e2

e2 − e

B.
1
e2
− 1

e

e2 − e

C.
3

2(e2 − e)

D.
e2 + e

e2 − e

E.
1

2(e2 − e)

Page 5 of 14



Name: Student #:

Record your answers on the front page.

9. [3 marks]

The present value of a continuous annuity at an annual rate of 9% compounded continuously
for 5 years, if the payment at time t is at the annual rate of $30, 000, is closest to

A. $98, 000

B. $117, 000

C. $118, 000

D. $120, 000

E. $121, 000

10. [3 marks]

Let k > 0 be a constant. Then∫ ∞
1

ke−kxdx is

A. e−k

B. −e−k − 1

C. 1

D. −e−k

E. divergent, i.e. the integral diverges.
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Name: Student #:

Record your answers on the front page.

11. [3 marks]

If two goods have unit prices p1 > 0 and p2 > 0, and their respective demands are

q1(p1, p2) = 400− 6p1 + p21 + 4p2 − p22

q2(p1, p2) = 500− p1 − 4p21 − 2p2 − 3p22

For which p1 and p2 are the goods complementary?

A. p2 > 2, any p1

B. for no values of p1 and p2

C. p1 < 3, any p2

D. p2 < 2, any p1

E. p1 > 3, any p2

12. [3 marks]

If f(x, y, z) = e2xy+3z, then fxyz(1, 1, 1) =

A. 15e5

B. 16e5

C. 12e5

D. 18e5

E. 20e5
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Name: Student #:

Record your answers on the front page.

13. [3 marks]

If 3x2yz + 1 = 2x2 + y2 + z2 defines y implicitly as a function of x and z, then when

(x, y, z) = (1, 1, 2),
∂y

∂x
=

A. 1

B. −2

C. 0

D. −1

E. 2

14. [3 marks]

If x = r2 + s2, y = rs and z = f(x, y) has constant partial derivatives
∂z

∂x
= 3 and

∂z

∂y
= −1,

then when r = 2 and s = 5,
∂z

∂r
=

A. 5

B. 8

C. 4

D. 6

E. 7
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Name: Student #:

Record your answers on the front page.

15. [3 marks]

The function f(x, y) = xy + 3e−x has

A. a local minimum and a local maximum

B. a local minimum but no local maximum

C. a local maximum but no local minimum

D. no local maximum and no local minimum

E. 2 local maxima and 1 local minimum
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Name: Student #:

PART B. WRITTEN-ANSWER QUESTIONS

B1. [12 marks]

(a) [6 marks]

A $300, 000 mortgage is to be repaid by making equal monthly payments for 15 years, the
first payment 1 month after the loan is granted. If interest is 8% per year compounded
semiannually find (to within $0.01) the amount of each payment.

(b) [6 marks]

A $40, 000 debt with interest at 6% per year compounded monthly is to be repaid by making
payments at the end of each month for 8 years. The payments are all of the same size (X
dollars each) with 2 exceptions: the 36th payment is to be 10X dollars and the last payment
is to be $5, 000. To within $0.01, find X.
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Name: Student #:

B2. [10 marks] Find the area between the curves y = xex and y = −x from x = −2 to x = 1.
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Name: Student #:

B3. [11 marks]

(a) [7 marks]

[Here, give your final answer to 3 decimal places.]

Find

∫ 4

3

dx

x(x− 1)(x− 2)

(b) [4 marks]

[Here, give your final answer to 3 decimal places, or show that the integral diverges.]

What happens if the limits of integration of the integral in (a) are changed to

∫ ∞
3

dx

x(x− 1)(x− 2)
?
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Name: Student #:

B4. [11 marks]

Solve the following problems showing all your work:

(a) [5 marks]

If
dy

dx
= 3x2ey + 2xey + ey and y(0) = 0, find y explicitly as a function of x.

(b) [6 marks]

If
dp

dq
=
eq
√

1 + p2

p
and p =

√
3 when q = 0, what is p when q = 1? You may assume p is

positive.
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Name: Student #:

B5. [11 marks]

The production function for a certain factory is given by P (l, k) = 200l1/4k3/4 where l is the
number of units of labour and k is the number of units of capital. Labour costs $20/unit and
capital costs $30/unit and the total amout spent on labour and capital is $16,000.

By using the method of Lagrange multipliers find the number of units of labour and capital
that maximize production.

[No marks will be given for any method except Lagrange multipliers.]
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Name: Student #:

Record your answers on the front page.

PART A. MULTIPLE CHOICE

1. [3 marks]

If A−1 =

(
1 2
3 4

)

and AX =

(
−1 1

0 2

)
then X =

A.

(
2 3
6 8

)

B.

(
−1 5
−3 11

)

C.

(
−2 1
1.5 −0.5

)

D.

(
1 0
0 1

)

E.

(
−1 7
−2 10

)

Solution

A−1AX = IX = X

A−1
(
−1 1
0 2

)
= X(

1 2
3 4

)(
−1 1
0 2

)
= X(

−1 5
−3 11

)
= X

2. [3 marks]

If the demand function for a product is given
by

p = 500e−q/20

then the maximum value of revenue is

A. 500

B. 20

C. 1000/e

D. 10, 000

E. 10, 000/e

Solution

R = pq = 500qe−q/20

dR

dq
= 500(e−q/20 − q

20
e−q/20)

= 500e−q/20(1− q

20
)

dR

dq
= 0 when q = 20

dR

dq
< 0 when q > 20

dR

dq
> 0 when q < 20

R max at q = 20

R = 500 · 20e−1 =
10, 000

e
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Name: Student #:

Record your answers on the front page.

3. [3 marks]

The function f(x) = x2 +
2

x
on the interval

[1
3
, 2] has its maximum value

A. nowhere; there is no maximum

B. at x = 1

C. at x = 2

D. at x = 1
3

E. at x = 2−
1
3

Solution f is continuous on [1
3
, 2] so must

have a maximum.

f ′(x) = 2x− 2

x2
=

2

x2
(x3 − 1)

The only critical point is at x = 1.

f(
1

3
) =

1

9
+ 6 max

f(2) = 5

f(1) = 3

4. [3 marks]

The graph of f(x) = ex + e−x is

A. increasing when x > 0 and always concave upward.

B. increasing when x < 0 and always concave upward.

C. increasing and concave upward everywhere.

D. increasing and concave downward everywhere.

E. increasing everywhere and concave upward when x > 0.

Solution

f ′(x) = ex − e−x = e−x(e2x − 1) > 0 when x > 0 only

< 0 when x < 0 only

is already the only possible answer.

f ′′(x) = ex + e−x > 0 for all x

so concave upward.
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Name: Student #:

Record your answers on the front page.

5. [3 marks]

If a country’s savings (S) and national income (I) are related by: 2S2 + I2 = 3SI then when
I = 4 and S = 2, the marginal propensity to save is:

A.
3

4

B. −8

5

C.
5

6

D.
1

2

E. 2

Solution
Marginal propensity to save is dS

dI
.

4S
dS

dI
+ 2I = 3

dS

dI
I + 3S

at I = 4, S = 2 8
dS

dI
+ 8 = 12

dS

dI
+ 6

2 = 4
dS

dI
dS

dI
=

1

2

6. [3 marks]

lim
x→∞

(x2 + 2)
1

x2+1

A. = e

B. = 0

C. = 1

D. = −1

E. does not exist

Solution

ln(y) =
ln(x2 + 2)

x2 + 1

∞
∞

lim
x→∞

ln(y) = lim
x→∞

2x
x2+2

2x

= lim
x→∞

1

x2 + 2
= 0

ln(y) → 0

y = eln(y) → e0 = 1
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Name: Student #:

Record your answers on the front page.

7. [3 marks]

If the demand for a certain product is determined by q = 300 − 10p and the supply by

q =
20p− 100

3
where p is unit price and q is quantity then producers surplus is

A. 750
B. 500
C. 1250
D. 2000
E. 1000

Solution

0 20 40 60 80 100 120

0

5

10

15

20

25

30

q

p

Figure 1:

Equilibrium:

300− 10p =
20p− 100

3
900− 30p = 20p− 100

1000 = 50p

20 = p

q = 100

When q = 0, p = 5 on the supply curve.

PS =
1

2
· (20− 5) · 100

= 750

by triangle area.

Alternate Solution 1

PS =

∫ 100

0

(
3q + 100

20
− 5

)
dq

=

∫ 100

0

3q

20
dq

=
3q2

40

∣∣∣∣100
0

=
30, 000

40
= 750

Alternate Solution 2

PS =

∫ 20

5

20p− 100

3
dp

=

(
10p2

3
− 100p

3

)∣∣∣∣20
5

= 750

8. [3 marks]

The average value of f(x) =
lnx

x
on the interval [e, e2] is

A.
1
e

+ 1
e2

e2 − e

B.
1
e2
− 1

e

e2 − e

C.
3

2(e2 − e)

D.
e2 + e

e2 − e

E.
1

2(e2 − e)

Solution

Avf =
1

e2 − e

∫ e2

e

lnx

x
dx u = lnx, du =

dx

x

=
1

e2 − e

∫ 2

1

udu

=
1

e2 − e
u2

2

∣∣∣∣2
1

=
1

e2 − e
4− 1

2

=
3

2(e2 − e)

Page 5 of 14
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Record your answers on the front page.

9. [3 marks]

The present value of a continuous annuity at an annual rate of 9% compounded continuously
for 5 years, if the payment at time t is at the annual rate of $30, 000, is closest to

A. $98, 000

B. $117, 000

C. $118, 000

D. $120, 000

E. $121, 000

Solution

PV =

∫ 5

0

30, 000e−0.09tdt

=
30, 000

−0.09
e−0.09t

∣∣∣∣5
0

=
30, 000

0.09
(1− e−0.45)

= 120, 790.62

10. [3 marks]

Let k > 0 be a constant. Then∫ ∞
1

ke−kxdx is

A. e−k

B. −e−k − 1

C. 1

D. −e−k

E. divergent, i.e. the integral diverges.

Solution

∫ ∞
1

ke−kxdx = lim
R→∞

∫ R

1

ke−kxdx

= lim
R→∞

−e−kx
∣∣R
1

= lim
R→∞

(e−k − e−kR)

= e−k
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Name: Student #:

Record your answers on the front page.

11. [3 marks]

If two goods have unit prices p1 > 0 and p2 > 0, and their respective demands are

q1(p1, p2) = 400− 6p1 + p21 + 4p2 − p22

q2(p1, p2) = 500− p1 − 4p21 − 2p2 − 3p22

For which p1 and p2 are the goods complementary?

A. p2 > 2, any p1

B. for no values of p1 and p2

C. p1 < 3, any p2

D. p2 < 2, any p1

E. p1 > 3, any p2

Solution

i.e.
∂q1
∂p2

< 0 and
∂q2
∂p1

< 0.

∂q1
∂p2

= 4− 2p2 < 0 only if p2 > 2

∂q2
∂p1

= −1− 8p1 < 0 always

12. [3 marks]

If f(x, y, z) = e2xy+3z, then fxyz(1, 1, 1) =

A. 15e5

B. 16e5

C. 12e5

D. 18e5

E. 20e5

Solution
Mixed partials are equal, so ok to do ∂

∂z
first.

fz = 3e2xy+3z

fzx = 3e2xy+3z2y = 6ye2xy+3z

fxyz = fzxy = 6e2xy+3z + 6ye2xy+3z2x

at (1, 1, 1) we get fxyz = 6e5 + 12e5 = 18e5.
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Name: Student #:

Record your answers on the front page.

13. [3 marks]

If 3x2yz + 1 = 2x2 + y2 + z2 defines y implicitly as a function of x and z, then when

(x, y, z) = (1, 1, 2),
∂y

∂x
=

A. 1

B. −2

C. 0

D. −1

E. 2

Solution

6xyz + 3x2
∂y

∂x
z = 4x+ 2y

∂y

∂x

At (1, 1, 2), 12 + 3
∂y

∂x
2 = 4 + 2

∂y

∂x

4
∂y

∂x
= −8

∂y

∂x
= −2

14. [3 marks]

If x = r2 + s2, y = rs and z = f(x, y) has constant partial derivatives
∂z

∂x
= 3 and

∂z

∂y
= −1,

then when r = 2 and s = 5,
∂z

∂r
=

A. 5

B. 8

C. 4

D. 6

E. 7

Solution

∂z

∂r
=

∂z

∂x

∂x

∂r
+
∂z

∂y

∂y

∂r

= 3 · 2r + (−1)s

At r = 2, s = 5
∂z

∂r
= 12− 5 = 7
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Record your answers on the front page.

15. [3 marks]

The function f(x, y) = xy + 3e−x has

A. a local minimum and a local maximum

B. a local minimum but no local maximum

C. a local maximum but no local minimum

D. no local maximum and no local minimum

E. 2 local maxima and 1 local minimum

Solution

fx = y − 3e−x = 0

fy = x = 0

Critical point: x = 0, so y = 3e−0 = 3.

fxx = 3e−x

fyy = 0

fxy = fyx = 1

D = fxxfyy − f 2
xy = −1 always

There are no local extrema.

Page 9 of 14



Name: Student #:

PART B. WRITTEN-ANSWER QUESTIONS

B1. [12 marks]

(a) [6 marks]

A $300, 000 mortgage is to be repaid by making equal monthly payments for 15 years, the
first payment 1 month after the loan is granted. If interest is 8% per year compounded
semiannually find (to within $0.01) the amount of each payment.

Solution

(1 + i)12 = 1.042

300, 000 = Ra180|i

R =
300, 000

a180|i
=

300, 000i

1− (1 + i)−180

= 300, 000
1.04

1
6 − 1

1− 1.04−30
= $2844.46

(b) [6 marks]

A $40, 000 debt with interest at 6% per year compounded monthly is to be repaid by making
payments at the end of each month for 8 years. The payments are all of the same size (X
dollars each) with 2 exceptions: the 36th payment is to be 10X dollars and the last payment
is to be $5, 000. To within $0.01, find X.

Solution

i = 0.005 per month

X . . . . . . X
+9X

10X

. . . . . . X 5000

1 36 95 96

40, 000 = Xa95|0.005 + 9X(1.005)−36 + 5000(1.005)−96

X =
40, 000− 5000(1.005)−96

a95|0.005 + 9(1.005)−36

X = $444.63
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B2. [10 marks] Find the area between the curves y = xex and y = −x from x = −2 to x = 1.
Solution
y = xex and y = −x intersect only when

xex = −x
xex + x = 0

x(ex + 1) = 0

x = 0 only

We need to know which functions is above and which is below. Since both functions are
continuous, they can only change places, if at all, at x = 0. On [−2, 0] if we test at x = −1

y = xex = −e−1 = −1

e
and y = −x = 1

so y = −x lies above y = xex. On [0, 1] xex > 0 but −x < 0 so y = xex lies above y = −x
(we could have used this reasoning on [−2, 0] also). Hence:

Area =

∫ 0

−2
(−x− xex)dx+

∫ 1

0

(xex − (−x))dx

Now,

∫
xexdx u = x, dv = exdx, du = dx, v = ex

= xex −
∫
exdx = xex − ex

So Area =

[
−x

2

2
− xex + ex

]0
−2

+

[
xex − ex +

x2

2

]1
0

= [1− (
−4

2
+ 2e−2 + e−2)] + [(e− e+

1

2
)− (−1)]

= 3− 3e−2 +
3

2
=

9

2
− 3

e2

≈ 4.094
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Name: Student #:

B3. [11 marks]

(a) [7 marks]

[Here, give your final answer to 3 decimal places.]

Find

∫ 4

3

dx

x(x− 1)(x− 2)

Solution

1

x(x− 1)(x− 2)
=

A

x
+

B

x− 1
+

C

x− 2

A(x− 1)(x− 2) +Bx(x− 2) + Cx(x− 1) = 1

x = 0 ⇒ 2A = 1 A =
1

2
x = 1 ⇒ −B = 1 B = −1

x = 2 ⇒ 2C = 1 C =
1

2∫ 4

3

(
1

2x
− 1

x− 1
+

1

2(x− 2)

)
dx

=

[
1

2
lnx− ln |x− 1|+ 1

2
ln |x− 2|

]4
3

=
1

2

[
ln

∣∣∣∣x(x− 2)

(x− 1)2

∣∣∣∣]4
3

=
1

2

[
ln

8

9
− ln

3

4

]
=

1

2
ln

32

27
≈ 0.085

(b) [4 marks]

[Here, give your final answer to 3 decimal places, or show that the integral diverges.]

What happens if the limits of integration of the integral in (a) are changed to

∫ ∞
3

dx

x(x− 1)(x− 2)
?

Solution

lim
R→∞

∫ R

3

= lim
R→∞

1

2
ln

(
R(R− 2)

(R− 1)2

)
− 1

2
ln

3

4

But
R(R− 2)

(R− 1)2
→ 1 as R→∞

so ln
R(R− 2)

(R− 1)2
→ 0∫
= −1

2
ln

3

4
≈ 0.144
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B4. [11 marks]

Solve the following problems showing all your work:

(a) [5 marks]

If
dy

dx
= 3x2ey + 2xey + ey and y(0) = 0, find y explicitly as a function of x.

Solution

e−ydy = (3x2 + 2x+ 1)dx

Integrating − e−y = x3 + x2 + x+ C

At x = 0, y = 0 : −e0 = C ⇒ C = −1

−e−y = x3 + x2 + x− 1

e−y = 1− x− x2 − x3

−y = ln(1− x− x2 − x3)
y = − ln(1− x− x2 − x3)

(b) [6 marks]

If
dp

dq
=
eq
√

1 + p2

p
and p =

√
3 when q = 0, what is p when q = 1? You may assume p is

positive.
Solution ∫

pdp√
1 + p2

=

∫
eqdq = eq + C

(1 + p2)
1
2 = eq + C At p =

√
3, q = 0

4
1
2 = e0 + C so C = 1

(1 + p2)
1
2 = eq + 1

when q = 1

(1 + p2)
1
2 = e+ 1

1 + p2 = (e+ 1)2

p2 = e2 + 2e

p =
√
e2 + 2e because p > 0

p ≈ 3.58
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B5. [11 marks]

The production function for a certain factory is given by P (l, k) = 200l1/4k3/4 where l is the
number of units of labour and k is the number of units of capital. Labour costs $20/unit and
capital costs $30/unit and the total amout spent on labour and capital is $16,000.

By using the method of Lagrange multipliers find the number of units of labour and capital
that maximize production.

[No marks will be given for any method except Lagrange multipliers.]

Solution

L = 200l
1
4k

3
4 − λ(20l + 30k − 16, 000)

∂L

∂l
= 50l−

3
4k

3
4 − 20λ = 0

∂L

∂k
= 150l

1
4k−

1
4 − 30λ = 0

∂L

∂λ
= 20l + 30k − 16, 000 = 0

5

(
k

l

) 3
4

= 2λ from the 1st equation

10

(
l

k

) 1
4

= 2λ from the 2nd equation

Dividing the 2nd equation by the first

2
l

k
= 1 so k = 2l

subbing into the ∂L
∂λ

equation (or the constraint)

20l + 60l = 16, 000

80l = 16, 000

l = 200

k = 400
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