FACULTY OF ARTS AND SCIENCE

University of Toronto
FINAL EXAMINATIONS, APRIL 2011
MAT 133Y1Y
Calculus and Linear Algebra for Commerce

Duration:	3 hours
Examiners:	A. Igelfeld
	P. Kergin
	J. Tate
	O. Yacobi

FAMILY NAME: \qquad
GIVEN NAME: \qquad
STUDENT NO: \qquad
SIGNATURE: \qquad

LEAVE	
BLANK	
Question	Mark
$\mathrm{MC} / 45$	
B1/12	
B2/10	
B3/11	
B4/11	
B5/11	
TOTAL	

NOTE:

1. Aids Allowed: A non-graphing calculator, with empty memory, to be supplied by student.
2. Instructions: Fill in the information on this page, and make sure your test booklet contains 14 pages.
3. This exam consists of 15 multiple choice questions, and 5 written-answer questions. For the mutiple choice questions you can do your rough work in the test booklet, but you must record your answer by circling the appropriate letter on the front page with your pencil. Each correct answer is worth 3 marks; a question left blank, or an incorrect answer or two answers for the same question is worth 0 . For the writtenanswer questions, present your solutions in the space provided. The value of each written-answer question is indicated beside it.
4. Put your name and student number on each page of this examination.

ANSWER Circle						
1.	A.	BOX	B.	C.	D.	E.
2.	A.	B.	C.	D.	E.	
3.	A.	B.	C.	D.	E.	
4.	A.	B.	C.	D.	E.	
5.	A.	B.	C.	D.	E.	
6.	A.	B.	C.	D.	E.	
7.	A.	B.	C.	D.	E.	
8.	A.	B.	C.	D.	E.	
9.	A.	B.	C.	D.	E.	
10.	A.	B.	C.	D.	E.	
11.	A.	B.	C.	D.	E.	
12.	A.	B.	C.	D.	E.	
13.	A.	B.	C.	D.	E.	
14.	A.	B.	C.	D.	E.	
15.	A.	B.	C.	D.	E.	

Name: \qquad Student \#: \qquad

Record your answers on the front page.

PART A. MULTIPLE CHOICE

1. [3 marks]

If $A^{-1}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
and $A X=\left(\begin{array}{rr}-1 & 1 \\ 0 & 2\end{array}\right)$
then $X=$
A. $\left(\begin{array}{ll}2 & 3 \\ 6 & 8\end{array}\right)$
B. $\left(\begin{array}{cc}-1 & 5 \\ -3 & 11\end{array}\right)$
C. $\left(\begin{array}{cc}-2 & 1 \\ 1.5 & -0.5\end{array}\right)$
D. $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
E. $\left(\begin{array}{cc}-1 & 7 \\ -2 & 10\end{array}\right)$
2. [3 marks]

If the demand function for a product is given by

$$
p=500 e^{-q / 20}
$$

then the maximum value of revenue is
A. 500
B. 20
C. $1000 / e$
D. 10,000
E. $10,000 / e$
\qquad Student \#: \qquad
Record your answers on the front page.
3. [3 marks]

The function $f(x)=x^{2}+\frac{2}{x}$ on the interval $\left[\frac{1}{3}, 2\right]$ has its maximum value
A. nowhere; there is no maximum
B. at $x=1$
C. at $x=2$
D. at $x=\frac{1}{3}$
E. at $x=2^{-\frac{1}{3}}$
4. [3 marks]

The graph of $f(x)=e^{x}+e^{-x}$ is
A. increasing when $x>0$ and always concave upward.
B. increasing when $x<0$ and always concave upward.
C. increasing and concave upward everywhere.
D. increasing and concave downward everywhere.
E. increasing everywhere and concave upward when $x>0$.

Name: \qquad Student \#:

Record your answers on the front page.
5. [3 marks]

If a country's savings (S) and national income (I) are related by: $2 S^{2}+I^{2}=3 S I$ then when $I=4$ and $S=2$, the marginal propensity to save is:
A. $\frac{3}{4}$
B. $-\frac{8}{5}$
C. $\frac{5}{6}$
D. $\frac{1}{2}$
E. 2
6. [3 marks]

$$
\lim _{x \rightarrow \infty}\left(x^{2}+2\right)^{\frac{1}{x^{2}+1}}
$$

A. $=e$
B. $=0$
C. $=1$
D. $=-1$
E. does not exist

Name: \qquad Student \#: \qquad

Record your answers on the front page.

7. [3 marks]

If the demand for a certain product is determined by $q=300-10 p$ and the supply by $q=\frac{20 p-100}{3}$ where p is unit price and q is quantity then producers surplus is
A. 750
B. 500
C. 1250
D. 2000
E. 1000
8. [3 marks]

The average value of $f(x)=\frac{\ln x}{x}$ on the interval $\left[e, e^{2}\right]$ is
A. $\frac{\frac{1}{e}+\frac{1}{e^{2}}}{e^{2}-e}$
B. $\frac{\frac{1}{e^{2}}-\frac{1}{e}}{e^{2}-e}$
C. $\frac{3}{2\left(e^{2}-e\right)}$
D. $\frac{e^{2}+e}{e^{2}-e}$
E. $\frac{1}{2\left(e^{2}-e\right)}$

Name: \qquad Student \#: \qquad

Record your answers on the front page.

9. [3 marks]

The present value of a continuous annuity at an annual rate of 9% compounded continuously for 5 years, if the payment at time t is at the annual rate of $\$ 30,000$, is closest to
A. $\$ 98,000$
B. $\$ 117,000$
C. $\$ 118,000$
D. $\$ 120,000$
E. $\$ 121,000$
10. [3 marks]

Let $k>0$ be a constant. Then
$\int_{1}^{\infty} k e^{-k x} d x$ is
A. e^{-k}
B. $-e^{-k}-1$
C. 1
D. $-e^{-k}$
E. divergent, i.e. the integral diverges.

Name: \qquad Student \#:

Record your answers on the front page.

11. [3 marks]

If two goods have unit prices $p_{1}>0$ and $p_{2}>0$, and their respective demands are

$$
\begin{aligned}
& q_{1}\left(p_{1}, p_{2}\right)=400-6 p_{1}+p_{1}^{2}+4 p_{2}-p_{2}^{2} \\
& q_{2}\left(p_{1}, p_{2}\right)=500-p_{1}-4 p_{1}^{2}-2 p_{2}-3 p_{2}^{2}
\end{aligned}
$$

For which p_{1} and p_{2} are the goods complementary?
A. $p_{2}>2$, any p_{1}
B. for no values of p_{1} and p_{2}
C. $p_{1}<3$, any p_{2}
D. $p_{2}<2$, any p_{1}
E. $p_{1}>3$, any p_{2}
12. [3 marks]

If $f(x, y, z)=e^{2 x y+3 z}$, then $f_{x y z}(1,1,1)=$
A. $15 e^{5}$
B. $16 e^{5}$
C. $12 e^{5}$
D. $18 e^{5}$
E. $20 e^{5}$

Name: \qquad Student \#: \qquad

Record your answers on the front page.

13. [3 marks]

If $3 x^{2} y z+1=2 x^{2}+y^{2}+z^{2}$ defines y implicitly as a function of x and z, then when $(x, y, z)=(1,1,2), \quad \frac{\partial y}{\partial x}=$
A. 1
B. -2
C. 0
D. -1
E. 2
14. [3 marks]

If $x=r^{2}+s^{2}, y=r s$ and $z=f(x, y)$ has constant partial derivatives $\frac{\partial z}{\partial x}=3$ and $\frac{\partial z}{\partial y}=-1$, then when $r=2$ and $s=5, \quad \frac{\partial z}{\partial r}=$
A. 5
B. 8
C. 4
D. 6
E. 7

Name: \qquad Student \#: \qquad

Record your answers on the front page.

15. [3 marks]

The function $f(x, y)=x y+3 e^{-x}$ has
A. a local minimum and a local maximum
B. a local minimum but no local maximum
C. a local maximum but no local minimum
D. no local maximum and no local minimum
E. 2 local maxima and 1 local minimum

Name: \qquad Student \#: \qquad

PART B. WRITTEN-ANSWER QUESTIONS

B1. [12 marks]
(a) $[6$ marks]

A $\$ 300,000$ mortgage is to be repaid by making equal monthly payments for 15 years, the first payment 1 month after the loan is granted. If interest is 8% per year compounded semiannually find (to within $\$ 0.01$) the amount of each payment.
(b) [6 marks]

A $\$ 40,000$ debt with interest at 6% per year compounded monthly is to be repaid by making payments at the end of each month for 8 years. The payments are all of the same size (X dollars each) with 2 exceptions: the $36^{\text {th }}$ payment is to be $10 X$ dollars and the last payment is to be $\$ 5,000$. To within $\$ 0.01$, find X.

Name:
Student \#: \qquad
B2. [10 marks] Find the area between the curves $y=x e^{x}$ and $y=-x$ from $x=-2$ to $x=1$.

Name: \qquad Student \#: \qquad

B3. [11 marks]
(a) [7 marks]
[Here, give your final answer to 3 decimal places.]
Find $\int_{3}^{4} \frac{d x}{x(x-1)(x-2)}$
(b) [4 marks]
[Here, give your final answer to 3 decimal places, or show that the integral diverges.]
What happens if the limits of integration of the integral in (a) are changed to $\int_{3}^{\infty} \frac{d x}{x(x-1)(x-2)}$?

Name: \qquad Student \#: \qquad

B4. [11 marks]
Solve the following problems showing all your work:
(a) [5 marks]

If $\frac{d y}{d x}=3 x^{2} e^{y}+2 x e^{y}+e^{y}$ and $y(0)=0$, find y explicitly as a function of x.
(b) [6 marks]

If $\frac{d p}{d q}=\frac{e^{q} \sqrt{1+p^{2}}}{p}$ and $p=\sqrt{3}$ when $q=0$, what is p when $q=1$? You may assume p is positive.

Name: \qquad Student \#: \qquad
B5. [11 marks]
The production function for a certain factory is given by $P(l, k)=200 l^{1 / 4} k^{3 / 4}$ where l is the number of units of labour and k is the number of units of capital. Labour costs $\$ 20 /$ unit and capital costs $\$ 30$ /unit and the total amout spent on labour and capital is $\$ 16,000$.

By using the method of Lagrange multipliers find the number of units of labour and capital that maximize production.
[No marks will be given for any method except Lagrange multipliers.]

FACULTY OF ARTS AND SCIENCE
 University of Toronto
 FINAL EXAMINATIONS, APRIL 2011
 MAT 133Y1Y
 Calculus and Linear Algebra for Commerce

Duration:	3 hours
Examiners:	A. Igelfeld
	P. Kergin
	J. Tate
	O. Yacobi

FAMILY NAME: \qquad

GIVEN NAME: \qquad
STUDENT NO: \qquad
SIGNATURE: \qquad

LEAVE	
BLANK	
Question	Mark
MC/45	
B1/12	
B2/10	
B3/11	
B4/11	
B5/11	
TOTAL	

NOTE:

1. Aids Allowed: A non-graphing calculator, with empty memory, to be supplied by student.
2. Instructions: Fill in the information on this page, and make sure your test booklet contains 14 pages.
3. This exam consists of 15 multiple choice questions, and 5 written-answer questions. For the mutiple choice questions you can do your rough work in the test booklet, but you must record your answer by circling the appropriate letter on the front page with your pencil. Each correct answer is worth 3 marks; a question left blank, or an incorrect answer or two answers for the same question is worth 0 . For the writtenanswer questions, present your solutions in the space provided. The value of each written-answer question is indicated beside it.
4. Put your name and student number on each page of this examination.

| ANSWER BOX FOR PART A | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circle the correct | answer. | | | | |
| 1. | A. | B. | C. | D. | E. |
| 2. | A. | B. | C. | D. | E. |
| 3. | A. | B. | C. | D. | E. |
| 4. | A. | B. | C. | D. | E. |
| 5. | A. | B. | C. | D. | E. |
| 6. | A. | B. | C. | D. | E. |
| 7. | A. | B. | C. | D. | E. |
| 8. | A. | B. | C. | D. | E. |
| 9. | A. | B. | C. | D. | E. |
| 10. | A. | B. | C. | D. | E. |
| 11. | A. | B. | C. | D. | E. |
| 12. | A. | B. | C. | D. | E. |
| 13. | A. | B. | C. | D. | E. |
| 14. | A. | B. | C. | D. | E. |
| 15. | A. | B. | C. | D. | E. |

Name: \qquad Student \#: \qquad

Record your answers on the front page.

PART A. MULTIPLE CHOICE

Solution

1. [3 marks]

If $A^{-1}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
and $A X=\left(\begin{array}{rr}-1 & 1 \\ 0 & 2\end{array}\right)$
then $X=$
A. $\left(\begin{array}{ll}2 & 3 \\ 6 & 8\end{array}\right)$
B. $\left(\begin{array}{cc}-1 & 5 \\ -3 & 11\end{array}\right)$
C. $\left(\begin{array}{cc}-2 & 1 \\ 1.5 & -0.5\end{array}\right)$
D. $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
E. $\left(\begin{array}{cc}-1 & 7 \\ -2 & 10\end{array}\right)$
2. [3 marks]

If the demand function for a product is given by

$$
p=500 e^{-q / 20}
$$

then the maximum value of revenue is
A. 500
B. 20
C. $1000 / e$
D. 10,000

Solution

$$
\begin{aligned}
R & =p q=500 q e^{-q / 20} \\
\frac{d R}{d q} & =500\left(e^{-q / 20}-\frac{q}{20} e^{-q / 20}\right) \\
& =500 e^{-q / 20}\left(1-\frac{q}{20}\right)
\end{aligned}
$$

$\frac{d R}{d q}=0$ when $q=20$
$\frac{d R}{d q}<0$ when $q>20$
$\frac{d R}{d q}>0$ when $q<20$
$R \quad \max$ at $q=20$
$R=500 \cdot 20 e^{-1}=\frac{10,000}{e}$
E. $10,000 / e$

Name: \qquad Student \#: \qquad

Record your answers on the front page.

3. [3 marks]

The function $f(x)=x^{2}+\frac{2}{x}$ on the interval $\left[\frac{1}{3}, 2\right]$ has its maximum value
A. nowhere; there is no maximum
B. at $x=1$
C. at $x=2$
D. at $x=\frac{1}{3}$

Solution f is continuous on $\left[\frac{1}{3}, 2\right]$ so must have a maximum.

$$
f^{\prime}(x)=2 x-\frac{2}{x^{2}}=\frac{2}{x^{2}}\left(x^{3}-1\right)
$$

The only critical point is at $x=1$.

$$
\begin{aligned}
f\left(\frac{1}{3}\right) & =\frac{1}{9}+6 \quad \max \\
f(2) & =5 \\
f(1) & =3
\end{aligned}
$$

E. at $x=2^{-\frac{1}{3}}$
4. [3 marks]

The graph of $f(x)=e^{x}+e^{-x}$ is
A. increasing when $x>0$ and always concave upward.
B. increasing when $x<0$ and always concave upward.
C. increasing and concave upward everywhere.
D. increasing and concave downward everywhere.
E. increasing everywhere and concave upward when $x>0$.

Solution

$$
\begin{aligned}
f^{\prime}(x)=e^{x}-e^{-x}=e^{-x}\left(e^{2 x}-1\right) & >0 \text { when } x>0 \text { only } \\
& <0 \text { when } x<0 \text { only }
\end{aligned}
$$

is already the only possible answer.

$$
f^{\prime \prime}(x)=e^{x}+e^{-x}>0 \text { for all } x
$$

so concave upward.

Name: \qquad Student \#: \qquad

Record your answers on the front page.

5. [3 marks]

If a country's savings (S) and national income (I) are related by: $2 S^{2}+I^{2}=3 S I$ then when $I=4$ and $S=2$, the marginal propensity to save is:
A. $\frac{3}{4}$
B. $-\frac{8}{5}$
C. $\frac{5}{6}$
D. $\frac{1}{2}$
E. 2

Solution

Marginal propensity to save is $\frac{d S}{d I}$.

$$
\text { at } I=4, S=2 \begin{aligned}
4 S \frac{d S}{d I}+2 I & =3 \frac{d S}{d I} I+3 S \\
8 \frac{d S}{d I}+8 & =12 \frac{d S}{d I}+6 \\
2 & =4 \frac{d S}{d I} \\
\frac{d S}{d I} & =\frac{1}{2}
\end{aligned}
$$

Solution

$$
\lim _{x \rightarrow \infty}\left(x^{2}+2\right)^{\frac{1}{x^{2}+1}}
$$

A. $=e$
B. $=0$
C. $=1$
D. $=-1$
E. does not exist

Solu

$$
\ln (y)=\frac{\ln \left(x^{2}+2\right)}{x^{2}+1} \quad \frac{\infty}{\infty}
$$

$\lim _{x \rightarrow \infty} \ln (y)=\lim _{x \rightarrow \infty} \frac{\frac{2 x}{x^{2}+2}}{2 x}$
$=\lim _{x \rightarrow \infty} \frac{1}{x^{2}+2}=0$
$\ln (y) \rightarrow 0$
$y=e^{\ln (y)} \rightarrow e^{0}=1$

Name: \qquad Student \#: \qquad

Record your answers on the front page.

7. [3 marks]

If the demand for a certain product is determined by $q=300-10 p$ and the supply by $q=\frac{20 p-100}{3}$ where p is unit price and q is quantity then producers surplus is
A. 750
B. 500
C. 1250
D. 2000
E. 1000

Solution

Figure 1:

Alternate Solution 1

$$
\begin{aligned}
P S & =\int_{0}^{100}\left(\frac{3 q+100}{20}-5\right) d q \\
& =\int_{0}^{100} \frac{3 q}{20} d q \\
& =\left.\frac{3 q^{2}}{40}\right|_{0} ^{100} \\
& =\frac{30,000}{40} \\
& =750
\end{aligned}
$$

Equilibrium:

$$
\begin{aligned}
300-10 p & =\frac{20 p-100}{3} \\
900-30 p & =20 p-100 \\
1000 & =50 p \\
20 & =p \\
q & =100
\end{aligned}
$$

When $q=0, p=5$ on the supply curve.

$$
\begin{aligned}
P S & =\frac{1}{2} \cdot(20-5) \cdot 100 \\
& =750
\end{aligned}
$$

by triangle area.

Alternate Solution 2

$$
\begin{aligned}
P S & =\int_{5}^{20} \frac{20 p-100}{3} d p \\
& =\left.\left(\frac{10 p^{2}}{3}-\frac{100 p}{3}\right)\right|_{5} ^{20} \\
& =750
\end{aligned}
$$

8. [3 marks]

The average value of $f(x)=\frac{\ln x}{x}$ on the interval $\left[e, e^{2}\right]$ is
A. $\frac{\frac{1}{e}+\frac{1}{e^{2}}}{e^{2}-e}$

Solution

B. $\frac{\frac{1}{e^{2}}-\frac{1}{e}}{e^{2}-e}$

$$
\text { C. } \frac{3}{2\left(e^{2}-e\right)}
$$

$$
\begin{aligned}
A v f & =\frac{1}{e^{2}-e} \int_{e}^{e^{2}} \frac{\ln x}{x} d x \quad u=\ln x, d u=\frac{d x}{x} \\
& =\frac{1}{e^{2}-e} \int_{1}^{2} u d u \\
& =\left.\frac{1}{e^{2}-e} \frac{u^{2}}{2}\right|_{1} ^{2} \\
& =\frac{1}{e^{2}-e} \frac{4-1}{2} \\
& =\frac{3}{2\left(e^{2}-e\right)}
\end{aligned}
$$

D. $\frac{e^{2}+e}{e^{2}-e}$
E. $\frac{1}{2\left(e^{2}-e\right)}$

Name: \qquad Student \#: \qquad

Record your answers on the front page.

9. [3 marks]

The present value of a continuous annuity at an annual rate of 9% compounded continuously for 5 years, if the payment at time t is at the annual rate of $\$ 30,000$, is closest to
A. $\$ 98,000$
B. $\$ 117,000$
C. $\$ 118,000$
D. $\$ 120,000$
E. $\$ 121,000$

Solution

$$
\begin{aligned}
P V & =\int_{0}^{5} 30,000 e^{-0.09 t} d t \\
& =\left.\frac{30,000}{-0.09} e^{-0.09 t}\right|_{0} ^{5} \\
& =\frac{30,000}{0.09}\left(1-e^{-0.45}\right) \\
& =120,790.62
\end{aligned}
$$

10. [3 marks]

Let $k>0$ be a constant. Then
$\int_{1}^{\infty} k e^{-k x} d x$ is
A. e^{-k}
B. $-e^{-k}-1$
C. 1
D. $-e^{-k}$
E. divergent, i.e. the integral diverges.

Solution

$$
\begin{aligned}
\int_{1}^{\infty} k e^{-k x} d x & =\lim _{R \rightarrow \infty} \int_{1}^{R} k e^{-k x} d x \\
& =\lim _{R \rightarrow \infty}-\left.e^{-k x}\right|_{1} ^{R} \\
& =\lim _{R \rightarrow \infty}\left(e^{-k}-e^{-k R}\right) \\
& =e^{-k}
\end{aligned}
$$

Name: \qquad Student \#: \qquad

Record your answers on the front page.

11. [3 marks]

If two goods have unit prices $p_{1}>0$ and $p_{2}>0$, and their respective demands are

$$
\begin{aligned}
& q_{1}\left(p_{1}, p_{2}\right)=400-6 p_{1}+p_{1}^{2}+4 p_{2}-p_{2}^{2} \\
& q_{2}\left(p_{1}, p_{2}\right)=500-p_{1}-4 p_{1}^{2}-2 p_{2}-3 p_{2}^{2}
\end{aligned}
$$

For which p_{1} and p_{2} are the goods complementary?
A. $p_{2}>2$, any p_{1}
B. for no values of p_{1} and p_{2}
C. $p_{1}<3$, any p_{2}
D. $p_{2}<2$, any p_{1}
E. $p_{1}>3$, any p_{2}
12. [3 marks]

If $f(x, y, z)=e^{2 x y+3 z}$, then $f_{x y z}(1,1,1)=$
A. $15 e^{5}$
B. $16 e^{5}$
C. $12 e^{5}$
D. $18 e^{5}$

Solution

Mixed partials are equal, so ok to do $\frac{\partial}{\partial z}$ first.

$$
\begin{aligned}
f_{z} & =3 e^{2 x y+3 z} \\
f_{z x} & =3 e^{2 x y+3 z} 2 y=6 y e^{2 x y+3 z} \\
f_{x y z} & =f_{z x y}=6 e^{2 x y+3 z}+6 y e^{2 x y+3 z} 2 x
\end{aligned}
$$

E. $20 e^{5}$

$$
\text { at }(1,1,1) \text { we get } f_{x y z}=6 e^{5}+12 e^{5}=18 e^{5} .
$$

Name: \qquad Student \#: \qquad

Record your answers on the front page.

13. [3 marks]

If $3 x^{2} y z+1=2 x^{2}+y^{2}+z^{2}$ defines y implicitly as a function of x and z, then when $(x, y, z)=(1,1,2), \quad \frac{\partial y}{\partial x}=$
A. 1
B. -2
C. 0
D. -1
E. 2
14. [3 marks]

If $x=r^{2}+s^{2}, y=r s$ and $z=f(x, y)$ has constant partial derivatives $\frac{\partial z}{\partial x}=3$ and $\frac{\partial z}{\partial y}=-1$, then when $r=2$ and $s=5, \quad \frac{\partial z}{\partial r}=$
A. 5
B. 8
C. 4

Solution

D. 6

At $r=2, s=5 \quad \frac{\partial z}{\partial r}=12-5=7$
E. 7

Solution

$$
\begin{aligned}
6 x y z+3 x^{2} \frac{\partial y}{\partial x} z & =4 x+2 y \frac{\partial y}{\partial x} \\
\text { At }(1,1,2), 12+3 \frac{\partial y}{\partial x} 2 & =4+2 \frac{\partial y}{\partial x} \\
4 \frac{\partial y}{\partial x} & =-8 \\
\frac{\partial y}{\partial x} & =-2
\end{aligned}
$$

.
,

Name: \qquad Student \#: \qquad

Record your answers on the front page.

15. [3 marks]

The function $f(x, y)=x y+3 e^{-x}$ has
A. a local minimum and a local maximum
B. a local minimum but no local maximum
C. a local maximum but no local minimum
D. no local maximum and no local minimum
E. 2 local maxima and 1 local minimum

Solution

$$
\begin{aligned}
& f_{x}=y-3 e^{-x}=0 \\
& f_{y}=x=0
\end{aligned}
$$

Critical point: $x=0$, so $y=3 e^{-0}=3$.

$$
\begin{aligned}
f_{x x} & =3 e^{-x} \\
f_{y y} & =0 \\
f_{x y} & =f_{y x}=1 \\
D & =f_{x x} f_{y y}-f_{x y}^{2}=-1 \text { always }
\end{aligned}
$$

There are no local extrema.

Name: \qquad Student \#: \qquad

PART B. WRITTEN-ANSWER QUESTIONS

B1. [12 marks]
(a) $[6$ marks]

A $\$ 300,000$ mortgage is to be repaid by making equal monthly payments for 15 years, the first payment 1 month after the loan is granted. If interest is 8% per year compounded semiannually find (to within $\$ 0.01$) the amount of each payment.

Solution

$$
\begin{aligned}
(1+i)^{12} & =1.04^{2} \\
300,000 & =R a_{\overline{180} \mid i} \\
R & =\frac{300,000}{a_{\overline{180} \mid i}}=\frac{300,000 i}{1-(1+i)^{-180}} \\
& =300,000 \frac{1.04^{\frac{1}{6}}-1}{1-1.04^{-30}}=\$ 2844.46
\end{aligned}
$$

(b) [6 marks]

A $\$ 40,000$ debt with interest at 6% per year compounded monthly is to be repaid by making payments at the end of each month for 8 years. The payments are all of the same size (X dollars each) with 2 exceptions: the $36^{t h}$ payment is to be $10 X$ dollars and the last payment is to be $\$ 5,000$. To within $\$ 0.01$, find X.

Solution

$$
i=0.005 \text { per month }
$$

Name: \qquad Student \#: \qquad
B2. [10 marks] Find the area between the curves $y=x e^{x}$ and $y=-x$ from $x=-2$ to $x=1$. Solution
$y=x e^{x}$ and $y=-x$ intersect only when

$$
\begin{aligned}
x e^{x} & =-x \\
x e^{x}+x & =0 \\
x\left(e^{x}+1\right) & =0 \\
x & =0 \text { only }
\end{aligned}
$$

We need to know which functions is above and which is below. Since both functions are continuous, they can only change places, if at all, at $x=0$. On $[-2,0]$ if we test at $x=-1$

$$
y=x e^{x}=-e^{-1}=-\frac{1}{e} \text { and } y=-x=1
$$

so $y=-x$ lies above $y=x e^{x}$. On $[0,1] x e^{x}>0$ but $-x<0$ so $y=x e^{x}$ lies above $y=-x$ (we could have used this reasoning on $[-2,0]$ also). Hence:

$$
\begin{aligned}
\text { Area }= & \int_{-2}^{0}\left(-x-x e^{x}\right) d x+\int_{0}^{1}\left(x e^{x}-(-x)\right) d x \\
\text { Now, } & \int x e^{x} d x \quad u=x, d v=e^{x} d x, d u=d x, v=e^{x} \\
= & x e^{x}-\int e^{x} d x=x e^{x}-e^{x} \\
\text { So Area } & =\left[-\frac{x^{2}}{2}-x e^{x}+e^{x}\right]_{-2}^{0}+\left[x e^{x}-e^{x}+\frac{x^{2}}{2}\right]_{0}^{1} \\
= & {\left[1-\left(\frac{-4}{2}+2 e^{-2}+e^{-2}\right)\right]+\left[\left(e-e+\frac{1}{2}\right)-(-1)\right] } \\
& =3-3 e^{-2}+\frac{3}{2}=\frac{9}{2}-\frac{3}{e^{2}} \\
& \approx 4.094
\end{aligned}
$$

Name: \qquad Student \#: \qquad
B3. [11 marks]
(a) [7 marks]
[Here, give your final answer to 3 decimal places.]
Find $\int_{3}^{4} \frac{d x}{x(x-1)(x-2)}$

Solution

$$
\begin{aligned}
\frac{1}{x(x-1)(x-2)} & =\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x-2} \\
A(x-1)(x-2)+B x(x-2)+C x(x-1) & =1 \\
x=0 & \Rightarrow 2 A=1 \quad A=\frac{1}{2} \\
x=1 & \Rightarrow-B=1 \quad B=-1 \\
x=2 & \Rightarrow 2 C=1 \quad C=\frac{1}{2} \\
& =\left[\frac{1}{2} \ln x-\ln |x-1|+\frac{1}{2 x}-\frac{1}{x-1}+\frac{1}{2(x-2)}\right) d x \\
& =\frac{1}{2}\left[\ln \left|\frac{x(x-2)}{(x-1)^{2}}\right|\right]_{3}^{4} \\
& =\frac{1}{2}\left[\ln \frac{8}{9}-\ln \frac{3}{4}\right]=\frac{1}{2} \ln \frac{32}{27} \\
& \approx 0.085
\end{aligned}
$$

(b) [4 marks]
[Here, give your final answer to 3 decimal places, or show that the integral diverges.]
What happens if the limits of integration of the integral in (a) are changed to $\int_{3}^{\infty} \frac{d x}{x(x-1)(x-2)}$?

Solution

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \int_{3}^{R} & =\lim _{R \rightarrow \infty} \frac{1}{2} \ln \left(\frac{R(R-2)}{(R-1)^{2}}\right)-\frac{1}{2} \ln \frac{3}{4} \\
\text { But } \frac{R(R-2)}{(R-1)^{2}} & \rightarrow 1 \text { as } R \rightarrow \infty \\
\text { so } \quad \ln \frac{R(R-2)}{(R-1)^{2}} & \rightarrow 0 \\
\int & =-\frac{1}{2} \ln \frac{3}{4} \approx 0.144
\end{aligned}
$$

Name: \qquad Student \#: \qquad
B4. [11 marks]
Solve the following problems showing all your work:
(a) [5 marks]

If $\frac{d y}{d x}=3 x^{2} e^{y}+2 x e^{y}+e^{y}$ and $y(0)=0$, find y explicitly as a function of x.

$$
\begin{aligned}
e^{-y} d y & =\left(3 x^{2}+2 x+1\right) d x \\
\text { Integrating }-e^{-y} & =x^{3}+x^{2}+x+C \\
\text { At } x=0, y=0:-e^{0} & =C \Rightarrow C=-1 \\
-e^{-y} & =x^{3}+x^{2}+x-1 \\
e^{-y} & =1-x-x^{2}-x^{3} \\
-y & =\ln \left(1-x-x^{2}-x^{3}\right) \\
y & =-\ln \left(1-x-x^{2}-x^{3}\right)
\end{aligned}
$$

(b) [6 marks]

If $\frac{d p}{d q}=\frac{e^{q} \sqrt{1+p^{2}}}{p}$ and $p=\sqrt{3}$ when $q=0$, what is p when $q=1$? You may assume p is positive.

Solution

$$
\begin{aligned}
\int \frac{p d p}{\sqrt{1+p^{2}}} & =\int e^{q} d q=e^{q}+C \\
\left(1+p^{2}\right)^{\frac{1}{2}} & =e^{q}+C \quad \text { At } p=\sqrt{3}, q=0 \\
4^{\frac{1}{2}} & =e^{0}+C \quad \text { so } \mathrm{C}=1 \\
\left(1+p^{2}\right)^{\frac{1}{2}} & =e^{q}+1 \\
\text { when } q=1 & \\
\left(1+p^{2}\right)^{\frac{1}{2}} & =e+1 \\
1+p^{2} & =(e+1)^{2} \\
p^{2} & =e^{2}+2 e \\
p & =\sqrt{e^{2}+2 e} \quad \text { because } p>0 \\
p & \approx 3.58
\end{aligned}
$$

Name: \qquad Student \#: \qquad
B5. [11 marks]
The production function for a certain factory is given by $P(l, k)=200 l^{1 / 4} k^{3 / 4}$ where l is the number of units of labour and k is the number of units of capital. Labour costs $\$ 20 /$ unit and capital costs $\$ 30 /$ unit and the total amout spent on labour and capital is $\$ 16,000$.

By using the method of Lagrange multipliers find the number of units of labour and capital that maximize production.
[No marks will be given for any method except Lagrange multipliers.]

Solution

$$
\begin{aligned}
L & =200 l^{\frac{1}{4}} k^{\frac{3}{4}}-\lambda(20 l+30 k-16,000) \\
\frac{\partial L}{\partial l} & =50 l^{-\frac{3}{4}} k^{\frac{3}{4}}-20 \lambda=0 \\
\frac{\partial L}{\partial k} & =150 l^{\frac{1}{4}} k^{-\frac{1}{4}}-30 \lambda=0 \\
\frac{\partial L}{\partial \lambda} & =20 l+30 k-16,000=0 \\
5\left(\frac{k}{l}\right)^{\frac{3}{4}} & =2 \lambda \quad \text { from the 1st equation } \\
10\left(\frac{l}{k}\right)^{\frac{1}{4}} & =2 \lambda \quad \text { from the 2nd equation }
\end{aligned}
$$

Dividing the 2 nd equation by the first

$$
2 \frac{l}{k}=1 \text { so } k=2 l
$$

subbing into the $\frac{\partial L}{\partial \lambda}$ equation (or the constraint)

$$
\begin{array}{r}
20 l+60 l=16,000 \\
80 l=16,000 \\
l=200 \\
k=400
\end{array}
$$

