FACULTY OF ARTS AND SCIENCE
University of Toronto

FINAL EXAMINATIONS, APRIL/MAY 2008
 MAT 133Y1Y
 Calculus and Linear Algebra for Commerce

PART A. MULTIPLE CHOICE

1. [3 marks]

The system

$$
\begin{aligned}
x-2 y-z & =1 \\
-x+2 y+5 z & =-1 \\
2 x-4 y-6 z & =2
\end{aligned}
$$

has
(A) a unique solution
(B) no solution
(C) infinitely many solutions with $x=0$
(D) infinitely many solutions with $y=0$
(E) infinitely many solutions with $z=0$
2. [3 marks]

$$
\lim _{x \rightarrow 1}\left(\frac{4 x}{x^{2}-1}-\frac{2}{x-1}\right)
$$

(A) $=-2$
(B) $=1$
(C) $=2$
(D) $=0$
(E) does not exist
3. [3 marks]

If $f(x)=x^{\sqrt{x}}$, then $f^{\prime}(4)=$
(A) $8+4 \ln 4$
(B) $4+4 \ln 4$
(C) $4+8 \ln 4$
(D) $8+8 \ln 4$
(E) $4-8 \ln 4$
4. [3 marks]

If $y^{3}+x y=2 x^{2}$, then when $x=1$ and $y=1, \frac{d y}{d x}=$
(A) $\frac{5}{4}$
(B) 1
(C) $\frac{1}{2}$
(D) $\frac{3}{4}$
(E) $\frac{1}{4}$
5. [3 marks]

The (absolute) maximum value and (absolute) minimum value of

$$
f(x)=\frac{x^{2}-4}{x^{2}+4}
$$

on $[-4,4]$ are
(A) $\max =1, \quad \min =-\frac{5}{3}$
(B) No absolute maximum, $\min =-1$
(C) No absolute minimum, $\max =\frac{3}{5}$
(D) $\quad \max =\frac{3}{5}, \quad \min =-1$
(E) $\quad \max =1, \quad \min =0$
6. [3 marks]

Let $f(x)=x^{\frac{1}{3}}(4+x)$.
The interval(s) on which f is decreasing is (are)
(A) $(-\infty,-1)$ and $(0, \infty)$
(B) $(-\infty,-1)$
(C) no interval
(D) $(-\infty, 0)$
(E) $(-1,0)$ and $(0, \infty)$
7. [3 marks]
$\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{\frac{x}{3}}=$
(A) ∞
(B) 1
(C) $e^{1 / 6}$
(D) $e^{2 / 3}$
(E) $e^{3 / 2}$
8. [3 marks]
$\int_{0}^{1} x^{3}\left(1+x^{4}\right)^{5} d x=$
(A) $\frac{21}{2}$
(B) $\frac{21}{8}$
(C) $\frac{1}{24}$
(D) $\frac{1}{4}$
(E) $\frac{13}{8}$
9. [3 marks]

The area bounded by the y-axis, the straight line $y=e x$ and the curve $y=e^{x}$ is equal to
(A) $\int_{0}^{1}\left(e-e^{x}\right) d x$
(B) $\int_{1}^{e} \ln y d y$
(C) $\int_{0}^{e}\left(e^{x}-e x\right) d x$
(D) $\int_{1}^{e}\left(\ln y-\frac{y}{e}\right) d y$
(E) $\int_{0}^{1} \frac{y}{e} d y+\int_{1}^{e}\left(\frac{y}{e}-\ln y\right) d y$
10. [3 marks]

The average value of $f(x)=\sqrt{x-4}$ over the interval $[5,13]$ is
(A) $\frac{13}{4}$
(B) $\frac{13}{6}$
(C) $\frac{52}{3}$
(D) $\frac{1}{6}$
(E) 2
11. [3 marks]
$\int_{0}^{\infty} \frac{1}{(x+2)^{5}} d x$
(A) diverges
(B) $=0$
(C) $=\frac{1}{16}$
(D) $=-\frac{1}{16}$
(E) $=\frac{1}{64}$
12. [3 marks]

If $\frac{d y}{d x}=-x y$ and $y=2$ when $x=0$ then when $x=2, y=$
(A) 0
(B) 1
(C) e^{-4}
(D) e^{-2}
(E) $2 e^{-2}$
13. [3 marks]

If $e^{x^{2}}=z \ln y$ then at the point $(1, e, e), \frac{\partial z}{\partial y}=$
(A) $3 e$
(B) $2 e$
(C) e
(D) $2-e$
(E) -1
14. [3 marks]

Let $z=\ln \left(x^{2}+y^{2}\right)$ where

$$
\begin{aligned}
& x=2 s-3 t \\
& y=4 s+t^{2}
\end{aligned}
$$

$\frac{\partial z}{\partial s}=$
(A) $\frac{x s+t y}{x^{2}+y^{2}}$
(B) $\frac{2 t+3 s}{(2 s-3 t)^{2}+\left(t^{2}+4 s\right)^{2}}$
(C) $\frac{4 x+8 y}{x^{2}+y^{2}}$
(D) $\frac{2 t+3 s t^{2}}{(2 s-3 t)^{2}+\left(t^{2}+4 s\right)^{2}}$
(E) $\quad x s \ln \left(x^{2}+y^{2}\right)$
15. [3 marks]

$$
\int_{1}^{3} \int_{-2}^{1}\left(4 x^{3}+6 x y^{2}\right) d y d x=
$$

(A) 312
(B) 280
(C) 292
(D) 336
(E) 372

PART B. WRITTEN-ANSWER QUESTIONS

B1. [11 marks]
Evaluate $\int_{2}^{3} \frac{x+1}{x(x-1)^{2}} d x$

B2. [11 marks]
Over the next 7 years the profits of a business at time t (in years) are estimated to be $40,000 t$ dollars per year. The business is to be sold at a price equal to the present value of these future profits. At what price should the business be sold if interest is compounded continuously at 8% ?

B3. [11 marks]
The production function for a firm is

$$
P(l, k)=18 l+20 k-2 l^{2}-4 k^{2}-l k
$$

where l is the number of labour-hours per week and k is the capital (in thousands of dollars per week). Find values of l and k to maximize production (Use the second derivative test to verify that you have at least a relative maximum).

B4. [11 marks]
Use the method of Lagrange multipliers to find the critical points of $3 x+y+z$ subject to the constraint $x^{2}+y^{2}+z^{2}=1$.

B5. [11 marks]
An $\$ 8,000$ loan is to be repaid with semiannual payments of $\$ 500$ each until outstanding principal is less than $\$ 500$ (just after the last full $\$ 500$ payment). Interest is 6% compounded semiannually and the first $\$ 500$ payment is to be made six months after the loan is taken out.
(a) [6 marks]

How many full $\$ 500$ payments will be made while repaying the loan?
(b) $[5$ marks]

Six months after the last full $\$ 500$ payment, a smaller final payment will be made to repay the remaining outstanding principal plus interest. What will be the amount of the final payment?

Solutions to April 2008 Exam, MAT133Y PART A

1. ANSWER: ©

$$
\begin{gathered}
\left(\begin{array}{rrr|r}
1 & -2 & -1 & 1 \\
-1 & 2 & 5 & -1 \\
2 & -4 & -6 & 2
\end{array}\right) \\
\longrightarrow\left(\begin{array}{rrr|r}
1 & -2 & -1 & 1 \\
0 & 0 & 4 & 0 \\
0 & 0 & -4 & 0
\end{array}\right) \\
z=0 \\
x-2 y-z=0 \Rightarrow x=2 y
\end{gathered}
$$

2. ANSWER: B

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{4 x-2(x+1)}{x^{2}-1} \\
& =\lim _{x \rightarrow 1} \frac{2 x-2}{x^{2}-1} \\
& =\lim _{x \rightarrow 1} \frac{2}{x+1}=1
\end{aligned}
$$

3. ANSWER: (A)

$$
\begin{aligned}
\ln f & =\sqrt{x} \ln x \\
\frac{1}{f} f^{\prime} & =\frac{1}{2 \sqrt{x}} \ln x+\frac{\sqrt{x}}{x} \\
& =\frac{\ln x}{2 \sqrt{x}}+\frac{1}{\sqrt{x}} \\
& =\frac{\ln x+2}{2 \sqrt{x}} \\
\frac{1}{f(4)} f^{\prime}(4) & =\frac{2+\ln 4}{2 \cdot 2} \\
\text { but } f(4)=4^{\sqrt{4}}=16 & \text { so } f^{\prime}(4)=8+4 \ln 4
\end{aligned}
$$

4. ANSWER: (D)

$$
\text { At }(1,1) \quad \begin{aligned}
& 3 y^{2} \frac{d y}{d x}+y+x \frac{d y}{d x}=4 x \\
& 3 \frac{d y}{d x}+1+\frac{d y}{d x}=4 \\
& 4 \frac{d y}{d x}=3 \\
& \frac{d y}{d x}=\frac{3}{4}
\end{aligned}
$$

5. ANSWER: (D)

$$
\begin{aligned}
f(x) & =\frac{x^{2}-4}{x^{2}+4}=\frac{x^{2}+4-8}{x^{2}+4}=1-\frac{8}{x^{2}+4} \\
f^{\prime}(x) & =\frac{16 x}{\left(x^{2}+4\right)^{2}} \\
\text { crit pt at } x & =0 \text { only } \\
f(0) & =-1 \\
f(-4) & =f(4)=\frac{12}{20}=\frac{3}{5}
\end{aligned}
$$

Cont. fcu. on closed interval must have minimum and maximum. Only chances at $x=0,-4,4$. So $\max =\frac{3}{5}, \min =-1$
6. ANSWER: B

$$
\begin{aligned}
f(x) & =4 x^{\frac{1}{3}}+x^{\frac{4}{3}} \\
f^{\prime}(x) & =\frac{4}{3} x^{-\frac{2}{3}}+\frac{4}{3} x^{\frac{1}{3}} \\
f^{\prime}(x) & =\frac{4(1+x)}{3 x^{\frac{2}{3}}}
\end{aligned}
$$

$x^{\frac{2}{3}}>0$ always, so $f^{\prime}<0$ for $x<-1$ only.
f decreasing on $(-\infty,-1)$
7. ANSWER: (D)

$$
\begin{aligned}
y & =\left(1+\frac{2}{x}\right)^{\frac{x}{3}} \\
\ln y & =\frac{x}{3} \ln \left(1+\frac{2}{x}\right) \\
& =\frac{\ln \left(1+\frac{2}{x}\right)}{\frac{3}{x}} \quad \frac{0}{0} \\
\lim _{x \rightarrow \infty} \ln y & =\lim _{x \rightarrow \infty} \frac{\frac{1}{1+\frac{2}{x}} \frac{-2}{x^{2}}}{-\frac{3}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{2}{3} \cdot \frac{1}{1+\frac{2}{x}}=\frac{2}{3} \\
y & =e^{\ln y} \Rightarrow e^{\frac{2}{3}}
\end{aligned}
$$

8. ANSWER: B

$$
\begin{aligned}
u & =1+x^{4} \quad d u=4 x^{3} d x \\
\int & =\int_{1}^{2} \frac{u^{5}}{4} d u \\
& =\left.\frac{u^{6}}{24}\right|_{1} ^{2}=\frac{64-1}{24}=\frac{63}{24} \\
& =\frac{21}{8}
\end{aligned}
$$

9. ANSWER: ©

$$
\begin{aligned}
e^{x}=e x \text { at } x & =1 \\
y & =e \\
x=\frac{y}{e} \quad x & =\ln y
\end{aligned}
$$

are the two curves

$$
\begin{aligned}
& \text { Area } A=\int_{0}^{1} \frac{y}{e} d y \\
& \text { Area } B=\int_{1}^{e}\left(\frac{y}{e}-\ln y\right) d y
\end{aligned}
$$

Note: C would be correct if it said \int_{0}^{1}.
10. ANSWER: B

$$
\begin{aligned}
\bar{f} & =\frac{1}{8} \int_{5}^{13} \sqrt{x-4} d x \\
& =\left.\frac{1}{8}(x-4)^{3 / 2} \cdot \frac{2}{3}\right|_{5} ^{13} \\
& =\frac{1}{12}\left(9^{3 / 2}-1^{3 / 2}\right) \\
& =\frac{1}{12}(27-1)=\frac{13}{6}
\end{aligned}
$$

11. ANSWER: ©

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1}{(x+2)^{5}} d x & =\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{1}{(x+2)^{5}} d x \\
& =\lim _{R \rightarrow \infty}-\left.\frac{1}{(x+2)^{4} \cdot 4}\right|_{0} ^{R} \\
& =\lim _{R \rightarrow \infty}-\frac{1}{4(R+2)^{4}}+\frac{1}{4 \cdot 2^{4}} \\
& =\frac{1}{64}
\end{aligned}
$$

12. ANSWER: ©

$$
\begin{aligned}
\frac{d y}{y} & =-x d x \\
\ln y & =-\frac{x^{2}}{2}+C \quad(y>0) \\
y & =A e^{-\frac{x^{2}}{2}} \\
2 & =A e^{0} \\
y & =2 e^{-\frac{x^{2}}{2}} \\
\text { at } x & =2 \\
y & =2 e^{-4 / 2}=2 e^{-2}
\end{aligned}
$$

13. ANSWER: (E)

$$
\begin{aligned}
0 & =\frac{\partial z}{\partial y} \ln y+\frac{z}{y} \\
\frac{\partial z}{\partial y} & =-\frac{z}{y \ln y} \\
& =-\frac{e}{e \ln e}=-1
\end{aligned}
$$

14. ANSWER: ©

$$
\begin{aligned}
\frac{\partial z}{\partial s} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& =\frac{2 x}{x^{2}+y^{2}} \cdot 2+\frac{2 y}{x^{2}+y^{2}} \cdot 4 \\
& =\frac{4 x+8 y}{x^{2}+y^{2}}
\end{aligned}
$$

15. ANSWER: (A)

$$
\begin{aligned}
\int_{1}^{3} \int_{-2}^{1}\left(4 x^{3}+6 x y^{2}\right) d y d x & =\int_{1}^{3}\left[4 x^{3} y+2 x y^{3}\right]_{y=-2}^{1} d x \\
& =\int_{1}^{3}\left[\left(4 x^{3}+2 x\right)-\left(-8 x^{3}-16 x\right)\right] d x \\
& =\int_{1}^{3}\left(12 x^{3}+18 x\right) d x \\
& =\left[3 x^{4}+9 x^{2}\right]_{1}^{3} \\
& =(3 \cdot 81+81)-(3+9) \\
& =324-12 \\
& =312
\end{aligned}
$$

PART B

B1.

$$
\begin{aligned}
& \frac{x+1}{x(x-1)^{2}}=\frac{A}{x}+\frac{B}{(x-1)}+\frac{C}{(x-1)^{2}} \\
& A(x-1)^{2}+B x(x-1)+C x=x+1 \\
& C=2 \\
& A=1 \\
& x=0 \\
& x=2 \text { for example } \begin{aligned}
A
\end{aligned} \\
& x=2 B+2 C=3 \\
& 1+2 B+4=3 \\
& 2 B=-2 \\
& B=-1
\end{aligned} \quad \begin{aligned}
\int_{2}^{3} \frac{x+1}{x(x-1)^{2}} d x & =\int_{2}^{3}\left[\frac{1}{x}-\frac{1}{x-1}+\frac{2}{(x-1)^{2}}\right] d x \\
& =\left[\ln |x|-\ln |x-1|-\frac{2}{x-1}\right]_{2}^{3} \\
& =\ln \frac{3}{2}-\ln 2-(1-2) \\
& =1+\ln \frac{3}{4} \\
& \approx
\end{aligned}
$$

B2.

$$
\begin{aligned}
\text { P.V. }= & \int_{0}^{7} 40,000 t e^{-.08 t} d t \\
& \begin{aligned}
u=t \quad d v=e^{-.08 t} \\
d u=d t \quad v=-\frac{-e^{-.08 t}}{.08}
\end{aligned} \\
= & 40,000\left[\left.\frac{-t e^{-.08 t}}{.08}\right|_{0} ^{7}+\frac{1}{.08} \int_{0}^{7} e^{-.08 t} d t\right] \\
= & 40,000\left[\frac{-7}{.08} e^{-.56}-\left.\frac{1}{(.08)^{2}} e^{-.08 t}\right|_{0} ^{7}\right] \\
= & 500,000\left[-7 e^{-.56}-\frac{1}{(.08)} e^{-.56}+\frac{1}{0.8}\right] \\
= & \$ 680,711.63
\end{aligned}
$$

B3.

$$
\begin{aligned}
\frac{\partial P}{\partial l}=18-4 l-k & =0 \\
\frac{\partial P}{\partial k}=20-8 k-l & =0 \\
4 l+k & =18 \\
l+8 k & =20 \\
31 l & =124 \Rightarrow l=4 \Rightarrow k=2
\end{aligned}
$$

So only critical value is

$$
\begin{aligned}
& l=4, k=2 \\
& \frac{\partial^{2} P}{\partial l^{2}}=-4 \quad \frac{\partial^{2} P}{\partial k^{2}}=-8 \\
& \frac{\partial^{2} P}{\partial l \partial k}=-1 \\
& D=P_{l l} P_{k k}-\left(P_{l k}\right)^{2}=32-1=31>0
\end{aligned}
$$

The critical point is a local extremum and since $P_{l l}($ for example $)=-4<0$ this crit pt is a local maximum.

B4.

$$
\begin{gathered}
\mathcal{L}=3 x+y+z-\lambda\left(x^{2}+y^{2}+z^{2}-1\right) \\
\mathcal{L}_{x}=3-2 \lambda x=0 \\
\mathcal{L}_{y}=1-2 \lambda y=0 \quad \text { at critical point(s) } \\
\mathcal{L}_{z}=1-2 \lambda z=0 \\
x=\frac{3}{2 \lambda} \quad y=\frac{1}{2 \lambda} \quad z=\frac{1}{2 \lambda} \\
\text { and } \quad \mathcal{L}_{\lambda}=0 \Rightarrow x^{2}+y^{2}+z^{2}=1 \\
\text { so } \frac{9}{4 \lambda^{2}}+\frac{1}{4 \lambda^{2}}+\frac{1}{4 \lambda^{2}}=1 \\
4 \lambda^{2}=11 \quad 2 \lambda= \pm \sqrt{11} \\
\hline(x, y, z)=\left(\frac{3}{\sqrt{11}}, \quad \frac{1}{\sqrt{11}}, \quad \frac{1}{\sqrt{11}} \text { when } 2 \lambda=+\sqrt{11}\right. \\
(x, y, z)=\left(-\frac{3}{\sqrt{11}}, \quad-\frac{1}{\sqrt{11}}, \quad-\frac{1}{\sqrt{11}} \text { when } 2 \lambda=-\sqrt{11}\right.
\end{gathered}
$$

B5.
(a)

$$
\begin{aligned}
8000 & =500 a_{\bar{n} \mid .03} \\
16 & =\frac{1-(1.03)^{-n}}{.03} \\
(1.03)^{-n} & =1-.48=.52 \\
-n \ln (1.30) & =\ln .52 \\
n & =-\frac{\ln .52}{\ln (1.03)} \approx 22.12 \ldots
\end{aligned}
$$

22 full payments
(b)

Let x be the last payment

$$
\begin{aligned}
8000 & =500 a_{\overline{22} \mid .03}+x(1.03)^{-23} \\
& =(1.03)^{23}\left[8000-500\left(\frac{1-(1.03)^{-22}}{.03}\right)\right] \\
x & =\$ 62.25
\end{aligned}
$$

