FACULTY OF ARTS AND SCIENCE
University of Toronto

FINAL EXAMINATIONS, APRIL/MAY 2003
 MAT 133Y1Y
 Calculus and Linear Algebra for Commerce
 PART A. MULTIPLE CHOICE

1. [3 marks]

A $\$ 100,000$ mortgage is to be repaid over 10 years by equal monthly payments made at the end of each month; that is, the first payment is one month after the loan is made. If interest is 10% compounded semiannually, the amount of each payment is
(A) $\$ 1,264.45$
(B) $\$ 1,310.34$
(C) $\$ 1,273.96$
(D) $\$ 1,299.72$
(E) $\$ 1,335.10$
2. [3 marks]

A $\$ 100$ bond with 10 years until maturity has semiannual coupons at an annual coupon rate of 10%. If its annual yield is 9%, then its market price is
(A) $\$ 108.48$
(B) $\$ 107.76$
(C) $\$ 105.97$
(D) $\$ 109.03$
(E) $\$ 106.50$
3. [3 marks]

If A is a 4×4 matrix and $\operatorname{det}(A)=5$, then $\operatorname{det}\left(3 A^{2}\right)=$
(A) 225
(B) 75
(C) 2025
(D) -75
(E) 300
4. [3 marks]
$f(x)=\left(x^{2}-4\right)^{1 / 3}$ has
(A) an absolute minimum at $x=0$ and no absolute maximum
(B) absolute minimums at $x=2$ and $x=-2$ and a relative maximum at $x=0$
(C) a relative minimum at $x=0$ and absolute maximums at $x=-2$ and $x=2$
(D) a relative maximum at $x=0$ and no relative minimums
(E) no relative maximums or minimums
5. [3 marks]

If the cost function is given by:

$$
c=0.01 q^{2}+6 q+100
$$

Then average cost \bar{c} is minimized when $q=$
(A) 300
(B) 0
(C) 1
(D) 100
(E) 1000
6. [3 marks]
$\lim _{x \rightarrow+\infty} \frac{\ln \left(1+e^{2 x}\right)}{x}$
(A) is 1
(B) is 4
(C) is 0
(D) is 2
(E) does not exist
7. [3 marks]

$$
\int_{e}^{e^{4}} \frac{1}{x(\ln x)^{\frac{1}{2}}} d x=
$$

(A) $\frac{1}{e^{2}}$
(B) $\frac{1}{2 e^{4}}$
(C) $\frac{1}{2 e^{4}}-\frac{1}{2 e}$
(D) $2(e-\sqrt{e})$
(E) 2
8. [3 marks]

If $\int_{1}^{x} f(t) d t=e^{x} \ln x$ when $x>0$, then $f(1)=$
(A) e
(B) 2
(C) 1
(D) 0
(E) $e^{x} \ln x$
9. [3 marks]

$$
\int \frac{x^{2}+1}{x^{2}+x} d x=
$$

(A) $\quad x+\ln |x|-2 \ln |x+1|+C$
(B) $\ln |x|+\ln |x+1|+C$
(C) $x^{-1}+2(x+1)^{-1}+C$
(D) $\quad x-\ln x+2 \ln (x+1)+C$
(E) $\quad \ln \left|\frac{x}{x+1}\right|+C$
10. [3 marks]

Using a subdivision of the interval $[1,3]$ into 4 subintervals of equal length, the trapezoidal rule yields the following approximation for

$$
\int_{1}^{3} \frac{1}{\ln (x+1)} d x
$$

(A) 1.8722
(B) 2.7230
(C) 1.7342
(D) 0.9863
(E) 1.9409
11. [3 marks]

If $a>0, \int_{0}^{\infty} a x e^{-a x} d x$
(A) diverges
(B) equals a
(C) equals $\frac{1}{a}$
(D) equals 1
(E) equals e^{-a}
12. [3 marks]

If $\frac{d y}{d x}=2 x y$ and $y=e$ when $x=0$ then, when $x=1, y=$
(A) 1
(B) e
(C) e^{2}
(D) e^{3}
(E) e^{4}
13. [3 marks]

If $f(x, y)=e^{x y}$, then when $x=2$ and $y=3, \frac{\partial^{3} f}{\partial x \partial y^{2}}=$
(A) $24 e^{6}$
(B) $16 e^{6}$
(C) $30 e^{6}$
(D) $12 e^{6}$
(E) $18 e^{6}$
14. [3 marks]

Let $x(r, s)$ and $\mathrm{y}(\mathrm{r}, \mathrm{s})$ be functions such that:

$$
\begin{array}{lll}
x(2,1)=5 & \frac{\partial x}{\partial r}(2,1)=-7 & \frac{\partial x}{\partial s}(2,1)=-2 \\
y(2,1)=-3 & \frac{\partial y}{\partial r}(2,1)=8 & \frac{\partial y}{\partial s}(2,1)=4
\end{array}
$$

If $z=2 x^{2}+x y+3 y^{2}$, then when $(r, s)=(2,1), \frac{\partial z}{\partial s}=$
(A) 14
(B) -223
(C) 1
(D) -86
(E) $\quad-47$
15. [3 marks]

For $p_{A}>0$ and $p_{B}>0$, products A and B have joint demand functions

$$
q_{A}\left(p_{A}, p_{B}\right)=10-4 p_{A}-2 p_{B}-3 p_{A}^{2}+p_{B}^{2}
$$

and

$$
q_{B}\left(p_{A}, p_{B}\right)=7+4 p_{A}-p_{B}-p_{A}^{2}-5 p_{B}^{2}
$$

For which p_{A} and p_{B} are the two products complementary?
(A) $p_{A}<2$ and $p_{B}>1$
(B) $p_{A}<1$ and $p_{B}>2$
(C) $p_{A}>2$ and $p_{B}<1$
(D) $p_{A}<2$ and $p_{B}<1$
(E) $p_{A}>1$ and $p_{B}<2$

PART B. WRITTEN-ANSWER QUESTIONS

B1.
(a) $[7$ marks]

Use the method of Lagrange multipliers to minimize $f(x, y)=x^{2} y$ subject to the constraint $\frac{1}{x}+\frac{1}{y}=1$.
[No need to justify that you are indeed at a minimum.]
(b) [5] marks

Given that x, y and z satisfy

$$
x y+y z+z^{3} x=14
$$

find $\frac{\partial z}{\partial x}$ when $(x, y, z)=(4,2,1)$
B2.
(a) [7 marks]

Find and classify all critical points of the function

$$
f(x, y)=x^{2}-12 y^{2}+4 y^{3}+3 y^{4}
$$

(b) $[5$ marks]

Evaluate the following integral:

$$
\int_{0}^{1} \int_{z}^{z^{2}} \int_{0}^{2 y} 30 x y z d x d y d z
$$

B3. Consider the function

$$
f(x)=\left\{\begin{array}{cl}
x \ln |x|-x & \text { when } x \neq 0 \\
0 & \text { when } x=0
\end{array}\right.
$$

(a) [2 marks]

Find all points where f is not continuous (if any), showing that your answer is correct. medskip
(b) $[9$ marks]

Sketch the graph of $y=f(x)$. A complete answer includes an explanation of all standard features of the graph.
(c) [6 marks]

Find the area bounded by the graph of $y=f(x)$ and the x axis, where

$$
f(x)=\left\{\begin{array}{cl}
x \ln |x|-x & \text { when } x \neq 0 \\
0 & \text { when } x=0
\end{array}\right.
$$

B4.
(a) $[8$ marks $]$

Mr. Abbott owes Mr. Costello two debts:

- \$300 due in 5 years
- $\$ 100$ plus interest at 7% compounded annually, due in 3 years.

They have agreed that the combined debt is to be settled with 3 payments:

- the first payment to be made now
- the second payment to be twice the amount of the first, to be made in 2 years
- the third payment to be twice the amount of the second, to be made in 4 years.

If money is worth 8% compounded quarterly, what is the amount (to the nearest cent) of the first payment?
(b) [6 marks]

Assume A is a square matrix such that

$$
A\left[\begin{array}{ccc}
2 & -1 & 0 \\
1 & 0 & 3
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 6 \\
3 & 0 & 9
\end{array}\right]
$$

Find A^{-1}.

Solutions to April 2003 Exam, MAT133Y
 PART A

1. ANSWER: B

$$
\begin{aligned}
(1+i)^{12} & =(1.05)^{2} \\
100,000 & =R a_{\overline{120} i} \\
R=\frac{100,000 i}{1-(1+i)^{-120}} & =\frac{100,000\left[(1.05)^{\frac{1}{6}}-1\right]}{1-(1.05)^{-20}} \\
R= & \$ 1310.34
\end{aligned}
$$

2. ANSWER: ©

$$
P=100(1.045)^{-20}+5 a_{\overline{20} .045}
$$

$$
P=\$ 106.50
$$

3. ANSWER: ©

If A is $n \times n, \operatorname{det}(k A)=k^{n} \operatorname{det} A$

$$
\begin{gathered}
\operatorname{det}\left(3 A^{2}\right)=3^{4} \operatorname{det}\left(A^{2}\right)=3^{4} \times 5^{2} \text { since } \operatorname{det}\left(A^{2}\right)=(\operatorname{det} A)(\operatorname{det} A) \\
\operatorname{det}\left(3 A^{2}\right)=2025
\end{gathered}
$$

4. ANSWER: (A)
$f^{\prime}(x)=\frac{1}{3}\left(x^{2}-4\right)^{\frac{-2}{3}} \cdot 2 x=\frac{2 x}{3\left(x^{2}-4\right)^{\frac{2}{3}}}$ with critical points at $x=-2,0,2 ;$
but $f^{\prime}<0$ when $x<0$
and $f^{\prime}>0$ when $x>0$
so there is an absolute minimum at $x=0$ and no other extrema of any kind.
5. ANSWER: (D)
$\bar{c}=\frac{c}{q}=.01 q+6+\frac{100}{q}$
$\frac{d \bar{c}}{d q}=.01-\frac{100}{q^{2}}=0$ when $q^{2}=10,000$

$$
q=100
$$

and $\frac{d \bar{c}}{d q}=\frac{.01}{q^{2}}\left(q^{2}-10,000\right) \begin{cases}<0 & 0<q<100 \\ >0 & 100<q\end{cases}$
6. ANSWER: (D)

$$
\begin{array}{ll}
\frac{\infty}{\infty}: \lim _{x \rightarrow \infty} \frac{\ln \left(1+e^{2 x}\right)}{x} & =\lim _{x \rightarrow \infty} \frac{2 e^{2 x}}{1+e^{2 x}} \\
\frac{\infty}{\infty}: & \\
& =\lim _{x \rightarrow \infty} \frac{4 e^{2 x}}{2 e^{2 x}}=2
\end{array}
$$

7. ANSWER: ©

Let $u=\ln x ; d u=\frac{d x}{x}$ and $u=1$ when $x=e, u=4$ when $x=e^{4}$.

$$
\begin{aligned}
\int_{e}^{e^{4}} \frac{1}{x(\ln x)^{\frac{1}{2}}} d x=\int_{1}^{4} \frac{d u}{u^{\frac{1}{2}}} & =\left.2 u^{\frac{1}{2}}\right|_{1} ^{4} \\
& =2(2-1)=2
\end{aligned}
$$

8. ANSWER: (A)

By the Fundamental Theorem of Calculus

$$
\begin{aligned}
& f(x)=\left(e^{x} \ln x\right)^{\prime}=e^{x} \ln x+\frac{e^{x}}{x} \\
& f(1)=e \cdot 0+\frac{e}{1}=e
\end{aligned}
$$

9. ANSWER: (A)

$$
\begin{aligned}
& \frac{x^{2}+1}{x^{2}+x}=1+\frac{-x+1}{x(x+1)} \\
& \frac{-x+1}{x(x+1)}=\frac{A}{x}+\frac{B}{x+1} \quad A(x+1)+B x=-x+1 \\
& x=0 \Rightarrow A=1 \\
& \int \frac{x^{2}+1}{x^{2}+x} d x=\int\left(1+\frac{1}{x}-\frac{2}{x+1}\right) d x \\
&=x=-1 \Rightarrow-B=2 \Rightarrow B=-2
\end{aligned}
$$

10. ANSWER: ©

$$
\begin{aligned}
T_{4} & =\frac{\Delta x}{2}\left(y_{0}+2 y_{1}+2 y_{2}+2 y_{3}+y_{4}\right), \quad \Delta x=\frac{3-1}{4}=\frac{1}{2} \\
& =\frac{1}{4}\left(\frac{1}{\ln 2}+\frac{2}{\ln 2.5}+\frac{2}{\ln 3}+\frac{2}{\ln 3.5}+\frac{1}{\ln 4}\right) \\
& =1.9409
\end{aligned}
$$

11. ANSWER: ©

$$
\int_{0}^{\infty} a x e^{-a x} d x=\lim _{R \rightarrow \infty} \int_{0}^{R} a x e^{-a x} d x
$$

$$
\text { Let } u=x, d v=a e^{-a x} d x
$$

$$
d u=d x, v=-e^{-a x}
$$

$$
\begin{aligned}
& =\lim _{R \rightarrow \infty}\left[-\left.x e^{-a x}\right|_{0} ^{R}+\int_{0}^{R} e^{-a x} d x\right] \\
& =\lim _{R \rightarrow \infty}-R e^{-a R}-\left.\lim _{R \rightarrow \infty} \frac{1}{a} e^{-a x}\right|_{0} ^{R} \\
& =0-\lim _{R \rightarrow \infty} \frac{1}{a}\left(e^{-a R}-1\right) \\
& =\frac{1}{a}
\end{aligned}
$$

12. ANSWER: ©

$$
\begin{aligned}
\frac{d y}{y} & =2 x d x \\
\ln y & =x^{2}+C \quad \ln e=C \text { so } C=1 \\
\ln y & =x^{2}+1 \quad \text { so when } \quad x=1, \ln y=2 \\
y & =e^{2}
\end{aligned}
$$

13. ANSWER: B

$$
\begin{aligned}
f_{y} & =x e^{x y} \\
f_{y y} & =x^{2} e^{x y} \\
f_{y y x} & =2 x e^{x y}+y x^{2} e^{x y}=\left(2 x+x^{2} y\right) e^{x y} \\
& =(4+12) e^{6}=16 e^{6} \quad \text { at } \quad x=2, y=3
\end{aligned}
$$

14. ANSWER: (D)

$$
\begin{aligned}
\frac{\partial z}{\partial s} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}=(4 x+y) \frac{\partial x}{\partial s}+(x+6 y) \frac{\partial y}{\partial s} \\
& =(4 \cdot 5-3)(-2)+(5-6 \cdot 3)(4) \quad \text { when } \quad(r, s)=(2,1) \\
& =-86
\end{aligned}
$$

15. ANSWER: ©

$$
\begin{aligned}
& \frac{\partial q_{A}}{\partial p_{B}}=-2+2 p_{B}=2\left(p_{B}-1\right) ; \quad \frac{\partial q_{B}}{\partial p_{A}}=4-2 p_{A}=2\left(2-p_{A}\right) \\
& \frac{\partial q_{A}}{\partial p_{B}}<0 \quad \text { and } \quad \frac{\partial q_{B}}{\partial p_{A}}<0 \quad \text { when } \quad p_{A}>2 \text { and } p_{B}<1
\end{aligned}
$$

PART B

B1.
(a)

$$
\begin{aligned}
\mathfrak{L} & =x^{2} y-\lambda\left(\frac{1}{x}+\frac{1}{y}-1\right) \\
\mathfrak{L}_{x} & =2 x y+\frac{\lambda}{x^{2}}=0 \quad \mathfrak{L}_{\lambda}=-\left(\frac{1}{x}+\frac{1}{y}-1\right)=0 \\
\mathfrak{L}_{y} & =x^{2}+\frac{\lambda}{y^{2}}=0 \\
x^{2} y^{2} & =-\lambda=2 x^{3} y
\end{aligned}
$$

and because $\frac{1}{x}+\frac{1}{y}=1, x \neq 0$ and $y \neq 0$. Dividing by $x^{2} y$, $y=2 x$.

$$
\begin{aligned}
\frac{1}{x}+\frac{1}{2 x} & =1 \\
\frac{3}{2 x}=1 & \Rightarrow x=\frac{3}{2} \\
\frac{1}{x}+\frac{1}{y}=1 & \Rightarrow \frac{2}{3}+\frac{1}{y}=1 \Rightarrow y=3
\end{aligned}
$$

so $x=\frac{3}{2}, y=3, \lambda=\frac{-81}{4}$.
(b)

$$
\begin{aligned}
& y+y \frac{\partial z}{\partial x}+z^{3}+3 z^{2} x \frac{\partial z}{\partial x}=0 \\
& 2+2 \frac{\partial z}{\partial x}+1+12 \frac{\partial z}{\partial x}=0 . \\
& \text { At } \quad(4,2,1)=(x, y, z) \quad 3+14 \frac{\partial z}{\partial x}=0 \\
& \frac{\partial z}{\partial x}=\frac{-3}{14}
\end{aligned}
$$

Alternatively $\frac{\partial z}{\partial x}=-\frac{y+z^{3}}{y+3 z^{2} x}=\frac{-3}{14}$ at $(4,2,1)$.
B2.
(a)

$$
\begin{aligned}
& f_{x}=2 x \\
& f_{y}=-24 y+12 y^{2}+12 y^{3}=12 y\left(y^{2}+y-2\right)=12 y(y+2)(y-1) \\
& f_{x}=0 \Rightarrow x=0
\end{aligned}
$$

$$
\begin{aligned}
f_{y} & =0 \Rightarrow y=0,1, \text { or }-2 \\
& \text { Crit pts: }(0,0),(0,1),(0,-2) \\
D & =f_{x x} f_{y y}-f_{x y}^{2}=2\left(-24+24 y+36 y^{2}\right)-0^{2} \\
D & =24\left(3 y^{2}+2 y-2\right)
\end{aligned}
$$

$$
\begin{array}{rlrl}
D(0,0) & =-48<0 & \text { no extremum (or saddle pt) } \\
D(0,1) & =72>0 & f_{x x}=2>0 \text { local min } \\
D(0,-2) & =144>0 & & f_{x x}=2>0 \text { local min }
\end{array}
$$

$\left.\begin{array}{c}(0,0) \\ (0,1) \\ (0,-2)\end{array}\right\}$	Saddle
Local Mins	

(b)

$$
\begin{aligned}
\int_{0}^{1} \int_{z}^{z^{2}} \int_{0}^{2 y} 30 x y z d x d y d z & =\left.\int_{0}^{1} \int_{z}^{z^{2}} 15 x^{2}\right|_{x=0} ^{x=2 y} y z d y d z \\
& =\int_{0}^{1} \int_{z}^{z^{2}} 15 \cdot 4 y^{2} \cdot y z d y d z \\
& =\int_{0}^{1} \int_{z}^{z^{2}} 60 y^{3} z d y d z \\
& =\left.\int_{0}^{1} 15 y^{4}\right|_{y=z} ^{y=z^{2}} z d z \\
& =\int_{0}^{1} 15\left(z^{8}-z^{4}\right) z d z \\
& =\int_{0}^{1} 15\left(z^{9}-z^{5}\right) d z \\
& =\left.15\left(\frac{z^{10}}{10}-\frac{z^{6}}{6}\right)\right|_{0} ^{1} \\
& =15\left(\frac{1}{10}-\frac{1}{6}\right)=15\left(\frac{-2}{30}\right)=\square-1
\end{aligned}
$$

B3.
(a) The only difficulty is at $x=0$:

$$
\lim _{x \rightarrow 0} x \ln |x|=\lim _{x \rightarrow 0} \frac{\ln |x|}{\frac{1}{x}}=\lim _{x \rightarrow 0} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow 0}-x=0
$$

So $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}(x \ln |x|-x)=0=f(0)$

$$
\begin{array}{|l|}
\hline f \text { is continuous everywhere. } \\
\hline
\end{array}
$$

(b)

$f^{\prime}(x)=\ln \|x\|$			$f^{\prime \prime}(x)=\frac{1}{x}$		
$(-\infty,-1)$	+	inc		$f^{\prime \prime}$	
$(-1,0)$	-	dec	$\frac{(-\infty, 0)}{(0, \infty)}$	-	conc down
$(0,1)$	-	dec	$(0, \infty)$		conc up
$(1, \infty)$	+				
$x=-1$ local max, $x=1$ local min			$x=0 \mathrm{p}$	of	flection

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x \ln |x|-x & =\lim _{x \rightarrow \infty} x[\ln |x|-1]=\infty \\
\lim _{x \rightarrow-\infty} x[\ln |x|-1] & =-\infty
\end{aligned}
$$

B3. cont.
(c)

$$
\begin{aligned}
& \text { Area }=\int_{-e}^{0}(x \ln |x|-x) d x-\int_{0}^{e}(x \ln |x|-x) d x \\
&=-2 \int_{0}^{e}(x \ln |x|-x) d x \\
& \qquad u=\ln |x|-1 \quad d v=x d x \\
& \text { Area }=-2\left[\left.\frac{x^{2}}{2}(\ln |x|-1)\right|_{0} ^{e}-\frac{1}{2} \int_{0}^{e} x d x\right] \quad v=\frac{x^{2}}{2} \\
&=0+\int_{0}^{e} x d x=\frac{e^{2}}{2}
\end{aligned}
$$

Note that we have used $\lim _{x \rightarrow 0^{+}} x^{2} \ln |x|=0$ in evaluating the integral.
B4.
(a)

Let x be the first payment

$$
\begin{gathered}
x+2 x(1.02)^{-8}+4 x(1.02)^{-16}=100(1.07)^{3}(1.02)^{-12}+300(1.02)^{-20} \\
x=\frac{100(1.07)^{3}(1.02)^{-12}+300(1.02)^{-20}}{1+2(1.02)^{-8}+4(1.02)^{-16}} \\
x=\$ 53.10
\end{gathered}
$$

(b) $\left(\begin{array}{ccc}2 & -1 & 0 \\ 1 & 0 & 3\end{array}\right)=A^{-1}\left(\begin{array}{lll}0 & 1 & 6 \\ 3 & 0 & 9\end{array}\right) \quad$ Let $A^{-1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & 0 & 3
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 6 \\
3 & 0 & 9
\end{array}\right)=\left(\begin{array}{ccc}
3 b & a & 6 a+9 b \\
3 d & c & 6 c+9 d
\end{array}\right)
$$

Then $\begin{array}{rr}3 b & =2\end{array} \quad-1=a \quad$ and $\quad \begin{aligned} 6 a+9 b & =0 \\ 3 d & =1\end{aligned} \quad 0=c \quad l \begin{aligned} & 6 c+9 d=3\end{aligned}$

$$
\begin{gathered}
a=-1 \\
c=0
\end{gathered} \begin{gathered}
b=\frac{2}{3} \\
c=\frac{1}{3}
\end{gathered} \quad \begin{gathered}
A^{-1}=\left(\begin{array}{cc}
-1 & \frac{2}{3} \\
0 & \frac{1}{3}
\end{array}\right) \\
\hline
\end{gathered}
$$

