Solutions to Supplementary Questions for HP Chapter 6

1. We have

©) a—b =8
® b+c =1
® 3d+c =7
@ 2a—4d =6

Adding @) and 2 ,weget: 6) a+c=9. By taking 3 —®) , weget (6) a—3d=2.
Now, @ —[2x (® ] givesus @) 2d =2, or d = 1. Substituting back into @ , we get
a =>5. Similarly, c=4and b= —-3. So,a=5,b=-3,c=4,d=1.

M1 M —17 707 0 7 0 7 0 T 0 7
1 0 0 0 —ay —a2 ag
0 1 0 0 —b —b b
2. (a) Qm 0 +Qs1 0 +Qa2 1 +Qs2 | th 01 +P 02 = 00
0 0 1 0 —Qq —Q2 Qo
L0 L 0 L0 L 1] L=/ L—f21  Lfo
1 -1 0 0 0 0 7 Qa1 T 0 7
1 0 0 0 —ap -—ao Qs1 ao
B |01 0 0 <bi b | |Qu| _ |t
00 1 -1 0 0 ||0x 0
0 0 1 0 —-a1 - Py Qo
L0 0 0 1 =B —fl Ll Pl Lpold




0O 0 0
=1 0 0 0] =A2
-5 —6 1

A8 =A% AT =A% A2 = At = A2
AN — A8 A8 — AZ. A2 — A% — 42
AB2 — A16. 416 _ A2 42 — g4 — A2
AG4 — 432 432 — A2, A2 — A4 — A2

6 9 0 0 0 0
AP = A . A% =A.4%2=| -4 —6 0 0 0 0
1 3 1 —5 —6 1

Another method:
From just above, we have seen that A3 = A- A%2 = A2, But now, A* = A.(A- A?) =
A - A? and in fact for any n > 2,

n—3 times
N

A" ="A-(A-(A-(...(A(A-A%))..)

n— 4 times

~< < (A (AY). L)

A-(A- (A (L(A-A%).. )=...=
A(A-(A-A%)=A-(A-A®) = A. A% = A%

I
S)

In particular, when n = 65, A% = A2,

4. (a) The matrix forms are




Z =BY = BAX, so

4 -1 1] Lot _[—1 ~7 11}

-3 5 -1 31— 14 10 —26

c—pa-|
-2 =2 3

and

T
R -1 -7 11 .
7= { } - [14 10 —26} ) =0X

L3
(b) From the above equation,

zZ1 = —I1 —Txeg +1lz3
Z9 = 141‘1 —|—10$2 —261‘3

(¢) Making the substitutions,

21 =4y — Y2+ ys3
=4(x1 — x2 + x3) — (3v1 + 22 — 4x3) + (—221 — 222 + 323)
=4dx1 —4xo + 43 — 311 — 9 + 43 — 221 — 229 + 3273
= —x1 — Txg + 11lz3

72 = =3Y1 + 5Yy2 — Y3
= —3(x1 — 2+ x3) + 5(3x1 + 22 — d3) — (—221 — 229 + 373)
= —3x1 + 3x2 — 3x3 + 1521 + x5 — 2023 + 221 + 225 — 323
= 1421 + 1025 — 2623

Both z; and z; agree with the results in (b).

. _ 0 1||z| |z y| [k _ -

(a) AX = kX = {1 0][y] _k[y] = [x} = [k;y_ =@ y=krand @ z=ky.
By substituting @) into @) , we get y = k(ky) = k2y. Similarly, we see that x = k2.
Since either x or y is non-zero, this forces k? = 1, and hence k=1 or k = —1.

(b) i) k=1. Here AX = kX = AX =X = {Z} = i . In other words, x = y.

So all X of the form X = i] , for any x # 0 satisfies AX = kX when k = 1.

ii) k=—1. Here AX =kX = AX =—-X = {g = {:z] In other words, y = —z.

So all X of the form X =

T
—X

], for any x # 0 satisfies AX = kX when k£ = —1.
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T +y +z =20
4x +6y +82 = 108
1(4z) +3(6y) +1(82) =46
1 1 1 20
4 6 8 |108
2 3 2 46
[1 1 1207
— |10 2 4|28 | —4R; + R,
[0 1 0|6 | —2R1+ R
1 1 1207
— (0 1 0]6 RQHRQJ,
0 2 4|28 ]
[1 0 1]14]1 Ry —Rs
— 10 1 0|6
|0 0 4|16 | —2R, + Rs3
[1 0 114
— 10 1 0|6
|0 0 1|4 | 3Rs
(1 0 0|10 Ry — R3
— 10 1 0|6
0 0 1|4 |

Therefore x = 10, y = 6, z = 4.

7. (a) The second equation is the negative of the first, so there are really only two distinct
equations
(¢q—1z+py=0
r+y=1

which yield the augmented coefficient matrix

]
1 11
Adding 1 — ¢ times the second row to the first and interchanging the two rows gives the
matrix
3 bl
0 1-g+p|1l—gq
Since p > 0, g < 1, then 1 — g+ p # 0 so we may add —m times the second row to the
first .
{1 0 o Tl ]
0 1—q+p 1—g¢q




and multiplying the second row by 1_(11 > gives
K L+ |
0 1] %
or
oz
1—g+p

D _ _1—g
T=qrp’ ¥~ Toqtp’
(b) The above argument is valid unless 1 — g+ p = 0, or p — ¢ = —1. If that is the case,

so there is the unique solution x =

the augmented matrix (%) becomes

1 1 1
0 0|1—g¢q
If ¢ # 1, this system has no solutions. If ¢ = 1 (and hence p = 0), then the matrix is
1 1|1
0 010

and any x, y such that x +y = 1 is a solution. Therefore the system has no solutions
for any p, q such that p — ¢ = —1 and ¢ # 1.

8. Let x be the number of pennies, y the number of nickels, and z the number of dimes.
Since there are 13 coins, z +y+ 2z = 13, and since their value is 83 cents, x + 5y + 10z = 83.
Therefore the problem is to find non-negative, integer solutions to the system

r vy +z =13
r +by +10z =83°

The augmented coefficient matrix is
1 1 1|13
1 5 10183

which we now reduce

(11 1|13

1 5 1083
_fr 11|18

0 4 9|70 | —R1+ Ry
[t 111

01 3|7 ] iR

(1 0 =3 |-2] -Re+ Ry
— 9 | 10

_O 1 4 4




70—9r

The solution in parametric form is z = r, y = ==, x = #

. We now try non-negative
integer values of r to determine which value(s) of r give non-negative integer values for x
and y. For r < 3, x is negative, and for » > 8 y is negative, so we need only try r = 4,5,6, 7.
A quick check shows r = 6 gives the only integer solution, which is x =3, y = 4, z = 6.

Therefore, there are three pennies, four nickels and six dimes in the box.

9. The augmented coefficient matrix of the system is

13 =2 0 2 0 |0 7
2 6 -5 -2 4 -3|-1
00 5 10 0 15| 5
L2 6 0 8 4 181 6 .
13 =2 0 2 0 |0 7
{00 -1 =2 0 =3|-1| 2R+ Ry
00 5 10 0 15| 5
L0 0O 4 8 0 1816 1 2R+ Ry
1 3 -2 0 2 010
00 1 2 0 3|1
100 0 00 0]0|5R+R, thenTR
L0 O 0 0 0 6121 4R+ Ry
1 3 -2 0 2 010
00 1 2 0 3|1 1
“loo 0 00 1|1|R R, themEls
LOOO 0 0 0 0160
(Note : this matrix is said to be in ‘reduced row echelon form’)
1 3 -2 0 2 010
100 1 20 0|0} =3R3+ Ry
00 0 00 1|2
LOOO 0 0 0 0160
1 3 0 4 2 0107 2R+ Ry
100 120 00
000O0O0 1|3
LO O 0 0 0 010

Discarding the last unnecessary row of zeros, the corresponding system of equations is

1+ 3x9 +4x4 + 225 =0

3+ 224 =0
1
IL'G:g



from which,

r1 = —3wg — 4x4 — 275
r3 = —2$4

1
Tg = g

There is no restriction placed on xs, x4, or x5, so we get as a solution set

1 = —3r —4s — 2t

To =T
T3 = —28
rg = S
{135:t
1
376—5

where r, s and t are any real numbers.

10. Since this is a homogeneous system, we find the reduced coefficient matrix of this

system
(1 3 2
1 ¢
_0 2 c
(1 3 2]
— 10 ¢c—3 2| —R1+ Rs
_0 2 c |
(1 3 2]
— |0 2 & R2<—>R3
_0 c—3 2_
[1 0 4_236 —%Rz-ﬁ-Rl
— |0 1 g Also, 1R, @
[0 0 2=led) | 3Ry 4+ Ry

At this point, we note that if the last row is non-zero (i.e., if w # 0) then we can
continue as follows

_1 0 4—236
— |0 1 5
2
_0 0 1 mRZ’)
(1 0 0] -“39Ry+ Ry
0 0 1



So if w # 0 then the number of non-zero rows is equal to the number of unknowns
in this reduced matrix and hence the trivial solution is the only solution. However, if at
@ w =0,ie,c2—3c—4=0,0r (c—4)(c+1) =0, whence ¢ =4 or ¢ = —1, then
the matrix at (4 looks as follows

4—3c

1 0
0 1
0 0

[@n) V] )

and this is a reduced matrix with fewer non-zero rows than unknowns.
Thus, if ¢ = —1 or ¢ = 4, the system has infinitely many solutions. And if ¢ # —1, 4,
then the system has only the trivial solution.

11. (a) Here, the associated homogeneous system is

201 +x2 —-3x3 4714 =0
5[1)2 —|—4$‘3 —|—3{I34 =0

T3 +2x4 =0

3584 =0

®EO®O

From @ ,24=0
From 3 , 3+ 2(0) =0, hence z3 =0
From @ , bxy + 4(0) + 3(0) = 0, hence 92 =0
From @ , 2z; +0—3(0)4+0 =0, hence z; =0
Hence, there is only one unique (trivial) solution and by the hint, A is invertible.
(b) The associated homogeneous system is

5.’1?1 —|—.’1?2 —|—4{I?3 —|—.’E4 = @
2583 —T4 = 0 @

T3 +x4 = ®

Txy =0 @

From @ ,24=0
From 3) , 3+ 0 =0, hence 3 =0
From (2@ ,0=0
From @ 521 + 22 +4(0) + 0 = 0, hence 5z1 + x2 = 0. In other words, z; = 2.
Now, for any real r,

r
Ir1T = ——

5)
To =T
1‘3:0
.’13420
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is a solution. But from the text, (HP, p. 281), if B were an invertible matrix, then the
above system would have a unique solution, which it does not. Thus B cannot be an
invertible matrix.

12. (a) (i) If the inverse of I — A exists, it must be unique, so we need only show that
(I—AI+A+A2+ A% =1 if A*=0
From the properties of matrix multiplication and addition

(I—AI+A+ A2+ AP =T+A+ A2+ A° - A A% - A% - A*

(ii) As in (i), we have

(I-A)I+A+A% 4. A"
=([+A+ A+ AT — (A+ A% AT
=T+ (A—A)+(A2—AY) 4+ (A g g
=1—-A"
=1 if A" =0

(b) If the inverse of I — J, exists, it must be unique, so we need to show

(I—J,) (I—(ni1>Jn) =1

1

n—1

We have

n—1"

(I—Jn)(l— Jn):I—LJn—JnJrLJ?
n—1

Now J2 is the matrix with n in every position, so J2 = n.J,. Therefore,

1 1 n
(I —J,) (I—mJn) —I—mJn—Jn—l—n_lJn
:I+n—(n—1)—1Jn
n—1
=1+0J,

and we’re done.



13. From the properties of matrix multiplication and addition:

A —3A2 4 2A+1=0

= A% —3A% 424 =1
= A(A* —3A+2)=-1I
= AA-I)(A-2)=—1I
= AT —A)(A-21)=1

But now it is obvious that A is invertible and that A=! = (I — A)(A — 2I). So the answer
is (d).

14.(a) The technology matrix is

Input
A B C
101 1
Afg 1 1\ =4
Output B % % %
1 1 1
C\i1 1 1
Hence, the Leontiff matrix, I — A, is
3 1 1
1 1 1
_1 3 _1
1 1 4
1 _1 3
1 i 1
We solve:
XA dA
(I — A) rB = dB
Tc de

where x4, rp, x¢ are the productions of industries A, B and C respectively. So

T A dA
rB = (I—A)_l dB
Wite dC
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We calculate (I — A)~!

|

— o

3004)
-3/0 0 —4
~114 0
~1|0 4
-3[0 0
814 0
—4[0 4

0

0
—4
12
—4
4
-3
1
-3

o

da +dp + 2d¢

2ds +dp + dco
da + 2dpg + de

/=
o O

1
1
2

)|

o

N—————
— |
I
RS

[ —|M

o — O — AN —

—-1(4 0 0
0

—-1/0 4 0

0
-1 0

4

0
-1 0

1

1

— o O AN~ —

= (I-A)""'= (
da

dp

)5

(b) Here, the technology matrix is

<t
_ _ o<t

-1

-1

-1

—4

-3
-2
-1
-2

—|<f — <t
__ ol “ — = X —len—lo e

-1
~1
-1
11
0 1
0
0 1
0
1 0 0|2 1
01 0[1 2 1
00 1[1 1 2

=[N —|M

N—

—<
o< _ _

—

—
—
—

So

-1 -1
2 -1
-1 2

2
-1
-1

11

I-A=

so (I — A), the Leontiff matrix, is



We solve

1 2 -1 -1 XA dA
g -1 2 -1 rB = dB
-1 -1 2 Wite dc

Hence,

2 -1 —1|3da

1
3 -1 2 -1]|3dg
-1 -1 2 |3d¢
1 1 1 =2 —3dc
— 3 0 3 =3|3dg—3dc
0 —3 3 |3da+6de
1 1 1 -2 —3dc
— 3 0 1 -1 dp — dc
0 0 O |3da+3dp+ 3de «— note the third row.

So there are no solutions unless d4 = dg = dc = 0, since d4 > 0, dg > 0 and d¢ > 0.

This is intuitive, since it costs $1 to make $1 of any product. So no (nontrivial)
external demand can be satisfied.

Now, if the external demand is zero (i.e. d, = dp = dc = 0), then

1 1 -2|0 1 0 —-1]0
01 —-1{0]—=1(10 1 —-1/0
0 0 0160 0 0 0160

The first row says that 4 = x¢, and the second row says that g = z¢, hence 4 =
xrp = xc. This means that, when external demand is nonexistent, the three industries can
produce at any level, supplying only each other, as long as their productions are equal.
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