Solutions to Supplementary Questions for HP Chapter 6

1. We have

$$
\begin{aligned}
& \text { (1) } a-b=8 \\
& \text { (2) } b+c=1 \\
& \text { (3) } 3 d+c=7 \\
& \text { (4) } 2 a-4 d=6
\end{aligned}
$$

Adding (1) and (2), we get: (5) $a+c=9$. By taking (5) - (3) , we get (6) $a-3 d=2$. Now, (4) $-[2 \times$ (6) $]$ gives us (7) $2 d=2$, or $d=1$. Substituting back into (4), we get $a=5$. Similarly, $c=4$ and $b=-3$. So, $a=5, b=-3, c=4, d=1$.
2. (a) $Q_{d 1}\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+Q_{s 1}\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+Q_{d 2}\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right]+Q_{s 2}\left[\begin{array}{c}0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 1\end{array}\right]+P_{1}\left[\begin{array}{c}0 \\ -a_{1} \\ -b_{1} \\ 0 \\ -\alpha_{1} \\ -\beta_{1}\end{array}\right]+P_{2}\left[\begin{array}{c}0 \\ -a_{2} \\ -b_{2} \\ 0 \\ -\alpha_{2} \\ -\beta_{2}\end{array}\right]=\left[\begin{array}{c}0 \\ a_{0} \\ b_{0} \\ 0 \\ \alpha_{0} \\ \beta_{0}\end{array}\right]$.
(b) $\left[\begin{array}{cccccc}1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -a_{1} & -a_{2} \\ 0 & 1 & 0 & 0 & -b_{1} & -b_{2} \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -\alpha_{1} & -\alpha_{2} \\ 0 & 0 & 0 & 1 & -\beta_{1} & -\beta_{2}\end{array}\right]\left[\begin{array}{c}Q_{d 1} \\ Q_{s 1} \\ Q_{d 2} \\ Q_{s 2} \\ P_{1} \\ P_{2}\end{array}\right]=\left[\begin{array}{c}0 \\ a_{0} \\ b_{0} \\ 0 \\ \alpha_{0} \\ \beta_{0}\end{array}\right]$
3. $A^{2}=\left(\begin{array}{ccc}6 & 9 & 0 \\ -4 & -6 & 0 \\ 1 & 3 & 1\end{array}\right)\left(\begin{array}{ccc}6 & 9 & 0 \\ -4 & -6 & 0 \\ 1 & 3 & 1\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ -5 & -6 & 1\end{array}\right)$

$$
\begin{aligned}
A^{4} & =A^{2} \cdot A^{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-5 & -6 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-5 & -6 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-5 & -6 & 1
\end{array}\right)=A^{2} \\
A^{8} & =A^{4} \cdot A^{4}=A^{2} \cdot A^{2}=A^{4}=A^{2} \\
A^{16} & =A^{8} \cdot A^{8}=A^{2} \cdot A^{2}=A^{4}=A^{2} \\
A^{32} & =A^{16} \cdot A^{16}=A^{2} \cdot A^{2}=A^{4}=A^{2} \\
A^{64} & =A^{32} \cdot A^{32}=A^{2} \cdot A^{2}=A^{4}=A^{2} \\
A^{65} & =A \cdot A^{64}=A \cdot A^{2}=\left(\begin{array}{ccc}
6 & 9 & 0 \\
-4 & -6 & 0 \\
1 & 3 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-5 & -6 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-5 & -6 & 1
\end{array}\right)
\end{aligned}
$$

Another method:
From just above, we have seen that $A^{3}=A \cdot A^{2}=A^{2}$. But now, $A^{4}=A \cdot\left(A \cdot A^{2}\right)=$ $A \cdot A^{2}$, and in fact for any $n \geq 2$,

$$
\begin{aligned}
A^{n} & =\overbrace{A \cdot\left(A \cdot \left(A \cdot\left(\ldots\left(A \cdot\left(A \cdot A^{2}\right)\right) \ldots\right)\right.\right.}^{n-3 \text { times }} \\
& =\overbrace{A \cdot(A \cdot(A \cdot(\ldots)}^{n-4 \text { times }}\left(A \cdot\left(A^{2}\right)\right) \ldots) \\
& =\overbrace{A \cdot(A \cdot(A \cdot(\ldots)}^{n-5 \text { times }}\left(A \cdot A^{2}\right) \ldots)=\ldots= \\
& =A \cdot\left(A \cdot\left(A \cdot A^{2}\right)\right)=A \cdot\left(A \cdot A^{2}\right)=A \cdot A^{2}=A^{2} .
\end{aligned}
$$

In particular, when $n=65, A^{65}=A^{2}$.
4. (a) The matrix forms are

$$
\begin{aligned}
& Y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 1 \\
3 & 1 & -4 \\
-2 & -2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=A X, \\
& Z=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
4 & -1 & 1 \\
-3 & 5 & -1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=B Y
\end{aligned}
$$

$Z=B Y=B A X$, so

$$
C=B A=\left[\begin{array}{ccc}
4 & -1 & 1 \\
-3 & 5 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 1 \\
3 & 1 & -4 \\
-2 & -2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -7 & 11 \\
14 & 10 & -26
\end{array}\right]
$$

and

$$
Z=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -7 & 11 \\
14 & 10 & -26
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=C X
$$

(b) From the above equation,

$$
\begin{array}{llll}
z_{1} & =-x_{1} & -7 x_{2} & +11 x_{3} \\
z_{2} & =14 x_{1} & +10 x_{2} & -26 x_{3}
\end{array}
$$

(c) Making the substitutions,

$$
\begin{aligned}
z_{1} & =4 y_{1}-y_{2}+y_{3} \\
& =4\left(x_{1}-x_{2}+x_{3}\right)-\left(3 x_{1}+x_{2}-4 x_{3}\right)+\left(-2 x_{1}-2 x_{2}+3 x_{3}\right) \\
& =4 x_{1}-4 x_{2}+4 x_{3}-3 x_{1}-x_{2}+4 x_{3}-2 x_{1}-2 x_{2}+3 x_{3} \\
& =-x_{1}-7 x_{2}+11 x_{3} \\
z_{2} & =-3 y_{1}+5 y_{2}-y_{3} \\
& =-3\left(x_{1}-x_{2}+x_{3}\right)+5\left(3 x_{1}+x_{2}-4 x_{3}\right)-\left(-2 x_{1}-2 x_{2}+3 x_{3}\right) \\
& =-3 x_{1}+3 x_{2}-3 x_{3}+15 x_{1}+5 x_{2}-20 x_{3}+2 x_{1}+2 x_{2}-3 x_{3} \\
& =14 x_{1}+10 x_{2}-26 x_{3}
\end{aligned}
$$

Both z_{1} and z_{2} agree with the results in (b).
5.
(a) $A X=k X \Rightarrow\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=k\left[\begin{array}{l}x \\ y\end{array}\right] \Rightarrow\left[\begin{array}{l}y \\ x\end{array}\right]=\left[\begin{array}{l}k x \\ k y\end{array}\right] \Rightarrow$ (1) $y=k x$ and (2) $x=k y$. By substituting (2) into (1), we get $y=k(k y)=k^{2} y$. Similarly, we see that $x=k^{2} x$. Since either x or y is non-zero, this forces $k^{2}=1$, and hence $k=1$ or $k=-1$.
(b) i) $k=1$. Here $A X=k X \Rightarrow A X=X \Rightarrow\left[\begin{array}{l}y \\ x\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$. In other words, $x=y$. So all X of the form $X=\left[\begin{array}{l}x \\ x\end{array}\right]$, for any $x \neq 0$ satisfies $A X=k X$ when $k=1$.
ii) $k=-1$. Here $A X=k X \Rightarrow A X=-X \Rightarrow\left[\begin{array}{l}y \\ x\end{array}\right]=\left[\begin{array}{l}-x \\ -y\end{array}\right]$. In other words, $y=-x$.

So all X of the form $X=\left[\begin{array}{c}x \\ -x\end{array}\right]$, for any $x \neq 0$ satisfies $A X=k X$ when $k=-1$.
6.

$$
\begin{aligned}
& \begin{array}{cccc}
x & +y & +z & =20 \\
4 x & +6 y & +8 z & =108 \\
\frac{1}{2}(4 x) & +\frac{1}{2}(6 y) & +\frac{1}{4}(8 z) & =46
\end{array} \\
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 20 \\
4 & 6 & 8 & 108 \\
2 & 3 & 2 & 46
\end{array}\right]} \\
& \longrightarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 20 \\
0 & 2 & 4 & 28 \\
0 & 1 & 0 & 6
\end{array}\right] \begin{array}{l}
\\
-4 R_{1}+R_{2} \\
-2 R_{1}+R_{3}
\end{array} \\
& \longrightarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 20 \\
0 & 1 & 0 & 6 \\
0 & 2 & 4 & 28
\end{array}\right] \quad R_{2} \leftrightarrow R_{3} \\
& \longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & 1 & 14 \\
0 & 1 & 0 & 6 \\
0 & 0 & 4 & 16
\end{array}\right] \begin{array}{c}
R_{1}-R_{2} \\
-2 R_{2}+R_{3}
\end{array} \\
& \longrightarrow\left[\begin{array}{lll|l}
1 & 0 & 1 & 14 \\
0 & 1 & 0 & 6 \\
0 & 0 & 1 & 4
\end{array}\right]{ }_{\frac{1}{4} R_{3}} \\
& \longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & 0 & 10 \\
0 & 1 & 0 & 6 \\
0 & 0 & 1 & 4
\end{array}\right] \quad R_{1}-R_{3}
\end{aligned}
$$

Therefore $x=10, y=6, z=4$.
7. (a) The second equation is the negative of the first, so there are really only two distinct equations

$$
\begin{array}{r}
(q-1) x+p y=0 \\
x+y=1
\end{array}
$$

which yield the augmented coefficient matrix

$$
\left[\begin{array}{cc|c}
q-1 & p & 0 \\
1 & 1 & 1
\end{array}\right]
$$

Adding $1-q$ times the second row to the first and interchanging the two rows gives the matrix

$$
\left[\begin{array}{cc|c}
1 & 1 & 1 \tag{*}\\
0 & 1-q+p & 1-q
\end{array}\right]
$$

Since $p>0, q<1$, then $1-q+p \neq 0$ so we may add $-\frac{1}{1-q+p}$ times the second row to the first

$$
\left[\begin{array}{cc|c}
1 & 0 & \frac{q-1}{1-q+p}+1 \\
0 & 1-q+p & 1-q
\end{array}\right]
$$

and multiplying the second row by $\frac{1}{1-q+p}$ gives

$$
\left[\begin{array}{cc|c}
1 & 0 & \frac{q-1}{1-q+p}+1 \\
0 & 1 & \frac{1-q}{1-q+p}
\end{array}\right]
$$

or

$$
\left[\begin{array}{cc|c}
1 & 0 & \frac{p}{1-q+p} \\
0 & 1 & \frac{1-q}{1-q+p}
\end{array}\right]
$$

so there is the unique solution $x=\frac{p}{1-q+p}, y=\frac{1-q}{1-q+p}$.
(b) The above argument is valid unless $1-q+p=0$, or $p-q=-1$. If that is the case, the augmented matrix $(*)$ becomes

$$
\left[\begin{array}{ll|c}
1 & 1 & 1 \\
0 & 0 & 1-q
\end{array}\right]
$$

If $q \neq 1$, this system has no solutions. If $q=1$ (and hence $p=0$), then the matrix is

$$
\left[\begin{array}{ll|l}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

and any x, y such that $x+y=1$ is a solution. Therefore the system has no solutions for any p, q such that $p-q=-1$ and $q \neq 1$.
8. Let x be the number of pennies, y the number of nickels, and z the number of dimes. Since there are 13 coins, $x+y+z=13$, and since their value is 83 cents, $x+5 y+10 z=83$.

Therefore the problem is to find non-negative, integer solutions to the system

$$
\begin{array}{ccc}
x+y+z & =13 \\
x & +5 y+10 z & =83
\end{array} .
$$

The augmented coefficient matrix is

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 13 \\
1 & 5 & 10 & 83
\end{array}\right]
$$

which we now reduce

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 13 \\
1 & 5 & 10 & 83
\end{array}\right] } \\
\longrightarrow & {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 13 \\
0 & 4 & 9 & 70
\end{array}\right]-R_{1}+R_{2} } \\
\longrightarrow & {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 13 \\
0 & 1 & \frac{9}{4} & \frac{70}{4}
\end{array}\right] \frac{1}{4} R_{2} } \\
\longrightarrow & {\left[\begin{array}{ccc|c}
1 & 0 & -\frac{5}{4} & -\frac{18}{4} \\
0 & 1 & \frac{9}{4} & \frac{70}{4}
\end{array}\right]-R_{2}+R_{1} }
\end{aligned}
$$

The solution in parametric form is $z=r, y=\frac{70-9 r}{4}, x=\frac{-18+5 r}{4}$. We now try non-negative integer values of r to determine which value(s) of r give non-negative integer values for x and y. For $r \leq 3, x$ is negative, and for $r \geq 8 y$ is negative, so we need only try $r=4,5,6,7$. A quick check shows $r=6$ gives the only integer solution, which is $x=3, y=4, z=6$.

Therefore, there are three pennies, four nickels and six dimes in the box.
9. The augmented coefficient matrix of the system is

$$
\begin{aligned}
& {\left[\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
2 & 6 & -5 & -2 & 4 & -3 & -1 \\
0 & 0 & 5 & 10 & 0 & 15 & 5 \\
2 & 6 & 0 & 8 & 4 & 18 & 6
\end{array}\right] } \\
& \longrightarrow\left[\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & -1 & -2 & 0 & -3 & -1 \\
0 & 0 & 5 & 10 & 0 & 15 & 5 \\
0 & 0 & 4 & 8 & 0 & 18 & 6
\end{array}\right]-2 R_{1}+R_{2} \\
& {\left[\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 6 & 2
\end{array}\right]-2 R_{1}+R_{4} } \\
& \longrightarrow {\left[\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] R_{2}+R_{4} } \\
& \text { then }-R_{2}
\end{aligned}
$$

(Note: this matrix is said to be in 'reduced row echelon form')
$\longrightarrow\left[\begin{array}{cccccc|c}1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]-3 R_{3}+R_{2}$ $\longrightarrow\left[\begin{array}{llllll|l}1 & 3 & 0 & 4 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] 2 R_{2}+R_{1}$

Discarding the last unnecessary row of zeros, the corresponding system of equations is

$$
\begin{aligned}
x_{1}+3 x_{2}+4 x_{4}+2 x_{5} & =0 \\
x_{3}+2 x_{4} & =0 \\
x_{6} & =\frac{1}{3}
\end{aligned}
$$

from which,

$$
\begin{aligned}
& x_{1}=-3 x_{2}-4 x_{4}-2 x_{5} \\
& x_{3}=-2 x_{4} \\
& x_{6}=\frac{1}{3}
\end{aligned}
$$

There is no restriction placed on x_{2}, x_{4}, or x_{5}, so we get as a solution set

$$
\begin{aligned}
& x_{1}=-3 r-4 s-2 t \\
& x_{2}=r \\
& x_{3}=-2 s \\
& x_{4}=s \\
& x_{5}=t \\
& x_{6}=\frac{1}{3}
\end{aligned}
$$

where r, s and t are any real numbers.
10. Since this is a homogeneous system, we find the reduced coefficient matrix of this system

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 3 & 2 \\
1 & c & 4 \\
0 & 2 & c
\end{array}\right] } \\
& \longrightarrow {\left[\begin{array}{ccc}
1 & 3 & 2 \\
0 & c-3 & 2 \\
0 & 2 & c
\end{array}\right]-R_{1}+R_{2} } \\
& \longrightarrow {\left[\begin{array}{ccc}
1 & 3 & 2 \\
0 & 2 & c \\
0 & c-3 & 2
\end{array}\right] R_{2} \leftrightarrow R_{3} } \\
& \longrightarrow\left[\begin{array}{lll}
1 & 0 & \frac{4-3 c}{2} \\
0 & 1 & \frac{c}{2} \\
0 & 0 & \frac{4-c(c-3)}{2}
\end{array}\right] \begin{array}{c}
-\frac{3}{2} R_{2}+R_{1} \\
\mathbf{A l s o}, \frac{1}{2} R_{2} \\
-\frac{c-3}{2} R_{2}+R_{3}
\end{array}
\end{aligned}
$$

At this point, we note that if the last row is non-zero (i.e., if $\frac{4-c(c-3)}{2} \neq 0$) then we can continue as follows

$$
\begin{aligned}
& \longrightarrow\left[\begin{array}{llc}
1 & 0 & \frac{4-3 c}{2} \\
0 & 1 & \frac{c}{2} \\
0 & 0 & 1
\end{array}\right] \frac{2}{4-c(c-3)} R_{3} \\
& \longrightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\frac{(4-3 c)}{2} R_{3}+R_{1} \\
& -\frac{c}{2} R_{3}+R_{2}
\end{aligned}
$$

So if $\frac{4-c(c-3)}{2} \neq 0$ then the number of non-zero rows is equal to the number of unknowns in this reduced matrix and hence the trivial solution is the only solution. However, if at (A) $\frac{4-c(c-3)}{2}=0$, i.e., $c^{2}-3 c-4=0$, or $(c-4)(c+1)=0$, whence $c=4$ or $c=-1$, then the matrix at (A) looks as follows

$$
\left[\begin{array}{ccc}
1 & 0 & \frac{4-3 c}{2} \\
0 & 1 & \frac{c}{2} \\
0 & 0 & 0
\end{array}\right]
$$

and this is a reduced matrix with fewer non-zero rows than unknowns.
Thus, if $c=-1$ or $c=4$, the system has infinitely many solutions. And if $c \neq-1,4$, then the system has only the trivial solution.
11. (a) Here, the associated homogeneous system is

$$
\begin{array}{cccc}
2 x_{1} \begin{array}{cc}
+x_{2} & -3 x_{3}+x_{4}
\end{array}=0 \\
& 5 x_{2}+4 x_{3}+3 x_{4} & =0 \\
& & (2) \\
& x_{3}+2 x_{4} & =0 \\
& & 3 x_{4} & =0
\end{array}
$$

From (4) , $x_{4}=0$
From (3) , $x_{3}+2(0)=0$, hence $x_{3}=0$
From (2) , $5 x_{2}+4(0)+3(0)=0$, hence $x_{2}=0$
From (1), $2 x_{1}+0-3(0)+0=0$, hence $x_{1}=0$
Hence, there is only one unique (trivial) solution and by the hint, A is invertible.
(b) The associated homogeneous system is

$$
\begin{align*}
5 x_{1}+x_{2}+4 x_{3}+x_{4} & =0 \\
2 x_{3}-x_{4} & =0 \\
x_{3}+x_{4} & =0 \\
& 7 x_{4} \tag{4}
\end{align*}=0
$$

From (4) , $x_{4}=0$
From (3) , $x_{3}+0=0$, hence $x_{3}=0$
From (2) , $0=0$
From (1) $5 x_{1}+x_{2}+4(0)+0=0$, hence $5 x_{1}+x_{2}=0$. In other words, $x_{1}=\frac{-x_{2}}{5}$. Now, for any real r,

$$
\begin{aligned}
x_{1} & =-\frac{r}{5} \\
x_{2} & =r \\
x_{3} & =0 \\
x_{4} & =0
\end{aligned}
$$

is a solution. But from the text, (HP, p. 281), if B were an invertible matrix, then the above system would have a unique solution, which it does not. Thus B cannot be an invertible matrix.
12. (a) (i) If the inverse of $I-A$ exists, it must be unique, so we need only show that

$$
(I-A)\left(I+A+A^{2}+A^{3}\right)=I \quad \text { if } \quad A^{4}=0
$$

From the properties of matrix multiplication and addition

$$
\begin{aligned}
(I-A)\left(I+A+A^{2}+A^{3}\right) & =I+A+A^{2}+A^{3}-A-A^{2}-A^{3}-A^{4} \\
& =I-A^{4} \\
& =I \quad \text { if } \quad A^{4}=0
\end{aligned}
$$

(ii) As in (i), we have

$$
\begin{aligned}
(I- & A)\left(I+A+A^{2}+\cdots+A^{n-1}\right) \\
& =\left(I+A+A^{2}+\cdots+A^{n-1}\right)-\left(A+A^{2}+\cdots+A^{n}\right) \\
& =I+(A-A)+\left(A^{2}-A^{2}\right)+\cdots+\left(A^{n-1}-A^{n-1}\right)-A^{n} \\
& =I-A^{n} \\
& =I \quad \text { if } \quad A^{n}=0
\end{aligned}
$$

(b) If the inverse of $I-J_{n}$ exists, it must be unique, so we need to show

$$
\left(I-J_{n}\right)\left(I-\left(\frac{1}{n-1}\right) J_{n}\right)=I
$$

We have

$$
\left(I-J_{n}\right)\left(I-\frac{1}{n-1} J_{n}\right)=I-\frac{1}{n-1} J_{n}-J_{n}+\frac{1}{n-1} J_{n}^{2}
$$

Now J_{n}^{2} is the matrix with n in every position, so $J_{n}^{2}=n J_{n}$. Therefore,

$$
\begin{aligned}
\left(I-J_{n}\right)\left(I-\frac{1}{n-1} J_{n}\right) & =I-\frac{1}{n-1} J_{n}-J_{n}+\frac{n}{n-1} J_{n} \\
& =I+\frac{n-(n-1)-1}{n-1} J_{n} \\
& =I+0 J_{n} \\
& =I
\end{aligned}
$$

and we're done.
13. From the properties of matrix multiplication and addition:

$$
\begin{aligned}
& A^{3}-3 A^{2}+2 A+I=0 \\
& \Rightarrow A^{3}-3 A^{2}+2 A=-I \\
& \Rightarrow A\left(A^{2}-3 A+2\right)=-I \\
& \Rightarrow A(A-I)(A-2 I)=-I \\
& \Rightarrow A(I-A)(A-2 I)=I
\end{aligned}
$$

But now it is obvious that A is invertible and that $A^{-1}=(I-A)(A-2 I)$. So the answer is (d).
14.(a) The technology matrix is

$$
\left. \frac{1}{4}\right)=A
$$

Hence, the Leontiff matrix, $I-A$, is

$$
\left(\begin{array}{ccc}
\frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \\
-\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
-\frac{1}{4} & -\frac{1}{4} & \frac{3}{4}
\end{array}\right)
$$

We solve:

$$
(I-A)\left(\begin{array}{c}
x_{A} \\
x_{B} \\
x_{C}
\end{array}\right)=\left(\begin{array}{c}
d_{A} \\
d_{B} \\
d_{C}
\end{array}\right)
$$

where x_{A}, x_{B}, x_{C} are the productions of industries A, B and C respectively. So

$$
\left(\begin{array}{c}
x_{A} \\
x_{B} \\
x_{C}
\end{array}\right)=(I-A)^{-1}\left(\begin{array}{c}
d_{A} \\
d_{B} \\
d_{C}
\end{array}\right)
$$

We calculate $(I-A)^{-1}$

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
\frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} & 1 & 0 & 0 \\
-\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} & 0 & 1 & 0 \\
-\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} & 0 & 0 & 1
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{ccc|ccc}
3 & -1 & -1 & 4 & 0 & 0 \\
-1 & 3 & -1 & 0 & 4 & 0 \\
-1 & -1 & 3 & 0 & 0 & 4
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{ccc|ccc}
1 & 1 & -3 & 0 & 0 & -4 \\
3 & -1 & -1 & 4 & 0 & 0 \\
-1 & 3 & -1 & 0 & 4 & 0
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{ccc|ccc}
1 & 1 & -3 & 0 & 0 & -4 \\
0 & -4 & 8 & 4 & 0 & 12 \\
0 & 4 & -4 & 0 & 4 & -4
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{ccc|ccc}
1 & 1 & -3 & 0 & 0 & -4 \\
0 & 1 & -2 & -1 & 0 & -3 \\
0 & 0 & 4 & 4 & 4 & 8
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & -1 & 1 & 0 & -1 \\
0 & 1 & -2 & -1 & 0 & -3 \\
0 & 0 & 1 & 1 & 1 & 2
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 & 1 \\
0 & 0 & 1 & 1 & 1 & 2
\end{array}\right) \\
& \Rightarrow(I-A)^{-1}=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
\end{aligned}
$$

So

$$
\left(\begin{array}{l}
x_{A} \\
x_{B} \\
x_{C}
\end{array}\right)=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
d_{A} \\
d_{B} \\
d_{C}
\end{array}\right)=\left(\begin{array}{l}
2 d_{A}+d_{B}+d_{C} \\
d_{A}+2 d_{B}+d_{C} \\
d_{A}+d_{B}+2 d_{C}
\end{array}\right)
$$

(b) Here, the technology matrix is

$$
\left(\begin{array}{lll}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right)=\frac{1}{3}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

so $(I-A)$, the Leontiff matrix, is

$$
I-A=\frac{1}{3}\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

We solve

$$
\frac{1}{3}\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{A} \\
x_{B} \\
x_{C}
\end{array}\right)=\left(\begin{array}{l}
d_{A} \\
d_{B} \\
d_{C}
\end{array}\right)
$$

Hence,

$$
\begin{aligned}
& \frac{1}{3}\left(\begin{array}{ccc|c}
2 & -1 & -1 & 3 d_{A} \\
-1 & 2 & -1 & 3 d_{B} \\
-1 & -1 & 2 & 3 d_{C}
\end{array}\right) \\
& \longrightarrow \frac{1}{3}\left(\begin{array}{ccc|c}
1 & 1 & -2 & -3 d_{C} \\
0 & 3 & -3 & 3 d_{B}-3 d_{C} \\
0 & -3 & 3 & 3 d_{A}+6 d_{C}
\end{array}\right) \\
& \longrightarrow \frac{1}{3}\left(\begin{array}{ccc|c}
1 & 1 & -2 & -3 d_{C} \\
0 & 1 & -1 & d_{B}-d_{C} \\
0 & 0 & 0 & 3 d_{A}+3 d_{B}+3 d_{C}
\end{array}\right) \quad \leftarrow \text { note the third row. }
\end{aligned}
$$

So there are no solutions unless $d_{A}=d_{B}=d_{C}=0$, since $d_{A} \geq 0, d_{B} \geq 0$ and $d_{C} \geq 0$. This is intuitive, since it costs $\$ 1$ to make $\$ 1$ of any product. So no (nontrivial) external demand can be satisfied.

Now, if the external demand is zero (i.e. $d_{a}=d_{B}=d_{C}=0$), then

$$
\left(\begin{array}{ccc|c}
1 & 1 & -2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The first row says that $x_{A}=x_{C}$, and the second row says that $x_{B}=x_{C}$, hence $x_{A}=$ $x_{B}=x_{C}$. This means that, when external demand is nonexistent, the three industries can produce at any level, supplying only each other, as long as their productions are equal.

