Supplementary Questions for HP Chapter 6

1. Solve the following matrix equation for a, b, c and d :

$$
\left[\begin{array}{cc}
a-b & b+c \\
3 d+c & 2 a-4 d
\end{array}\right]=\left[\begin{array}{cc}
8 & 1 \\
7 & 6
\end{array}\right]
$$

2. Two-Commodity Market Model

Consider a model in which only two commodities are related to each other.
For i equal to 1 or 2 , let:
$Q_{d i}$ be the quantity demanded of the commodity i
$Q_{s i}$ be the quantity supplied of the commodity i
P_{i} is the price of commodity i.
For simplicity, the demand and supply functions of both commodities are assumed to be linear. Such a model can be written as:

$$
\begin{aligned}
& Q_{d 1}-Q_{s 1}=0 \\
& Q_{d 1}=a_{0}+a_{1} P_{1}+a_{2} P_{2} \\
& Q_{s 1}=b_{0}+b_{1} P_{1}+b_{2} P_{2} \\
& Q_{d 2}-Q_{s 2}=0 \\
& Q_{d 2}=\alpha_{0}+\alpha_{1} P_{1}+\alpha_{2} P_{2} \\
& Q_{s 2}=\beta_{0}+\beta_{1} P_{1}+\beta_{2} P_{2}
\end{aligned}
$$

where the a, b, α and β are (appropriately) chosen coefficients.
(a) Write the above system as a matrix equation consisting of column matrices, where each column matrix consists of the coefficients that are all associated with the same variable.
(b) Write the above system as a single matrix equation (i.e., in the form $A X=B$, where A is the coefficient matrix and X and B are column matrices).
3. Let $A=\left(\begin{array}{ccc}6 & 9 & 0 \\ -4 & -6 & 0 \\ 1 & 3 & 1\end{array}\right)$. Find A^{65}.
4. (a) Express the equations

$$
\begin{array}{ccc}
y_{1}=x_{1}-x_{2}+x_{3} \\
y_{2}=3 x_{1}+x_{2}-4 x_{3} \\
y_{3}=-2 x_{1}-2 x_{2}+3 x_{3}
\end{array} \quad \text { and } \quad \begin{gathered}
z_{1}=4 y_{1}-y_{2}+y_{3} \\
z_{2}=-3 y_{1}+5 y_{2}-y_{3}
\end{gathered}
$$

in the matrix forms $Y=A X$ and $Z=B Y$. Then use these to obtain a direct relationship $Z=C X$ between Z and X.
(b) Use the equation $Z=C X$ in (a) to express z_{1} and z_{2} in terms of x_{1}, x_{2} and x_{3}.
(c) Check the result in (b) by directly substituting the equations for y_{1}, y_{2} and y_{3} into the equations for z_{1} and z_{2} and then simplifying.
5. Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $X=\left[\begin{array}{l}x \\ y\end{array}\right]$
(a) Find all scalars k such that $A X=k X$ has a non-zero solution X.
(b) For each value of k from part (a), find all non-zero X such that $A X=k X$.
6. A restaurant owner plans to use x tables seating four, y tables seating six, and z tables seating eight, for a total of 20 tables. When fully occupied, the tables seat 108 customers. If only half of the x tables, half of the y tables and one-fourth of the z tables are used, each fully occupied, then 46 customers will be seated. Find x, y, z.
7. The pattern of unemployment over a period of time can be described by a Markov model, the linear system

$$
\begin{aligned}
x_{t+1} & =q x_{t}+p y_{t} \\
y_{t+1} & =(1-q) x_{t}+(1-p) y_{t}
\end{aligned}
$$

For any k, x_{k} denotes the percentage of people of working age employed at time k, and y_{k} denotes the percentage of people of working age who are unemployed at time $k . p$, q are constants such that $0 \leq p \leq 1,0 \leq q \leq 1$.

If the unemployment and employment numbers remain constant, this yields the linear system

$$
\begin{aligned}
& x=q x+p y \\
& y=(1-q) x+(1-p) y \\
& 1=x+y
\end{aligned}
$$

or

$$
\begin{array}{r}
(q-1) x+p y=0 \\
(1-q) x-p y=0 \\
x+y=1
\end{array}
$$

(a) If p and q lie between 0 and 1 , how many solutions does this system have? Why?
(b) Ignoring the condition that p and q lie between 0 and 1 , find values of p and q so that this system has no solutions.
8. A box containing pennies, nickels and dimes has 13 coins with a total value of 83 cents. How many coins of each type are in the box?
9. Solve the following system by the method of reduction:

$$
\begin{array}{cccccccc}
x_{1} & +3 x_{2} & -2 x_{3} & & +2 x_{5} & & =0 \\
2 x_{1} & +6 x_{2} & -5 x_{3} & -2 x_{4} & +4 x_{5} & -3 x_{6} & = & -1 \\
& & 5 x_{3} & +10 x_{4} & & +15 x_{6} & = & 5 \\
2 x_{1} & +6 x_{2} & & +8 x_{4} & +4 x_{5} & +18 x_{6} & = & 6
\end{array}
$$

10. Find the values(s) of the constant c for which the following system

$$
\begin{aligned}
x+3 y+2 z & =0 \\
x+c y+4 z & =0 \\
2 y+c z & =0
\end{aligned}
$$

has infinitely many solutions.
11. Without using row-reduction, determine whether the following matrices are invertible:
(a)

$$
A=\left[\begin{array}{cccc}
2 & 1 & -3 & 1 \\
0 & 5 & 4 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

(b)

$$
B=\left[\begin{array}{cccc}
5 & 1 & 4 & 1 \\
0 & 0 & 2 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 7
\end{array}\right]
$$

Hint: Consider the associated homogeneous system of equations for each matrix. Also, note that if a system $A X=C$ (including $C=0$) has a unique solution, then A is invertible.
12. (a) Let A be a square matrix. Show that
(i) $(I-A)^{-1}=I+A+A^{2}+A^{3}$ if $A^{4}=0$
(ii) $(I-A)^{-1}=I+A+A^{2}+A^{3}+\cdots+A^{n-1}$ if $A^{n}=0$
(b) Let J_{n} be the $n \times n$ matrix each of whose entries is 1 . Show that

$$
\left(I-J_{n}\right)^{-1}=I-\frac{1}{n-1} J_{n}
$$

13. Let I denote the $n \times n$ identity matrix and let A be an $n \times n$ matrix such that $A^{3}-3 A^{2}+2 A+I=0$. Then A^{-1}
(a) does not exist
(b) equals $-A^{3}+3 A^{2}-2 A$
(c) equals $A(A-I)(A-2 I)$
(d) equals $(I-A)(A-2 I)$
(e) equals $A^{2}-3 A+2 I$
14. A 3-industry sector of an economy is composed of industries A, B and C. The external demands for their products are d_{A}, d_{B} and d_{C} respectively.
(a) Suppose that each dollar of output in any of the industries requires a quarter (25 cents) of output from that industry itself and a quarter (25 cents) from each of the other industries. If external demand is to be satisfied exactly, find the total production of each industry (in terms of d_{A}, d_{B} and d_{C}). Show the technology matrix and the Leontiff matrix in solving this problem.
(b) As in (a), but each dollar of output of any industry requires $\frac{1}{3}$ of a dollar of input from that industry itself and $\frac{1}{3}$ of a dollar from each of the other industries, give all possible answers and interpret the result.
